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Optimal estimation of diffusion coefficients from single-particle trajectories
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How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse
recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal
covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used
methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also
outperforms the analytically intractable and computationally more demanding maximum likelihood estimator
(MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion.
However, given some long time series and a substrate under some tension, an extended MLE can separate
particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that
allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also
for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA
glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients
are severely overestimated if substrate fluctuations are not accounted for.

DOI: 10.1103/PhysRevE.89.022726 PACS number(s): 87.16.A−, 87.16.dj, 87.80.Nj, 87.16.Wd

I. INTRODUCTION

Diffusion is ubiquitous in biology, and many cellular
processes rely on diffusion as a passive means of trans-
port. Quantitative knowledge of the diffusion coefficient is
paramount for the precise understanding of these processes.
Recent developments in fluorescent labels have made it
possible to track diffusion of single molecules, e.g., proteins
on biopolymers such as DNA [1–3] or microtubules [4–6],
on surfaces [7], in lipid membranes [8–10], and inside cells
[11–13] with time-lapse photography. Data mostly consist of
relatively short time series with considerable experimental
localization error. This makes it a challenge to determine
diffusion coefficients. This challenge is even higher when
individuality of diffusion coefficients is a concern, since one
then cannot average over multiple trajectories of different
molecules to reduce statistical error.

The standard approach relies on Einstein’s classical result
for the mean squared displacement (MSD) of a particle
undergoing free diffusion. It estimates the diffusion coefficient
by fitting a straight line to experimental values of the MSD
[14]. This gives the right value on average, but that does
not mean that it is a good way to estimate the diffusion
coefficient. It is accurate (=unbiased), but when the MSD
is calculated from a single trajectory (or a few), its precision
depends on the number of MSD values fitted to [15], and
for good signal-to-noise ratio (SNR) the precision actually
decreases when more points are used in the fit [8,16]. This
result is counterintuitive if one’s intuition is based only on
experience with uncorrelated data. It is a fact, nevertheless.
We demonstrate and explain it below.
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The optimized least-squares fit (OLSF [17]) improves
on the MSD estimator by including the optimal number of
points in the fit [15]. Generalized least squares (GLS) fully
accounts for correlations between experimental estimates of
MSDs. These estimators have been proven optimal when
linearly dependent on the parameters to be estimated [18,19].
These proofs are not valid here, however, because both
these estimators depend nonlinearly on the parameters of
interest—the diffusion coefficient D and the variance σ 2 of
localization errors—and we show below that OLSF and GLS
are suboptimal.

The complicated dependence of the MSDs on data makes it
very difficult to derive a maximum likelihood estimator (MLE)
based on the MSDs. However, a MLE of D and σ 2 was recently
derived based on the much simpler statistics of the single-
time-lapse displacements [19,20]. This estimator is known to
be optimal, asymptotically, in the limit of infinitely long time
series. There it is unbiased and as precise as is possible: Its
variance is as small as the Cramér-Rao bound [18].

For some systems, however, it is difficult or impossible
to obtain long time series. Most experiments with individual
biological molecules are limited by fluorophore lifetimes;
proteins diffuse out of the field of view in confocal microscopy;
proteins that diffuse on biopolymers detach. Consequently,
data predominantly consist of short time series, for which
optimality of MLE is far from guaranteed. In this range we
find that a simple covariance-based estimator (CVE) is better,
since its variance practically reaches the Cramér-Rao bound
and it is unbiased, whereas the more complicated MLE, OLSF,
and GLS are biased. This CVE is an explicit function of data,
i.e., it is regression-free and is thus orders of magnitude faster
than maximum-likelihood and least-squares estimators.

For diffusion on many cellular structures, on DNA, and
in lipid membranes, the recorded movement contains a
contribution from thermal motion of the substrate. If the time
scale of these thermal fluctuations is much shorter than the time
lapse of the recording, they will contribute to the movement as
a random, uncorrelated error on positions, i.e., a white noise
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on positions. Hence, it can be absorbed in the total variance,
σ 2, of localization errors, which receives also a contribution
from true errors on localization due to photonic shot noise in
images of the tracked object.

However, substrate motion needs to be modeled to some
degree beyond white noise if the longest time scale of substrate
motion is comparable to the time lapse or longer. In a taut
region of a substrate, the amplitudes of thermal motion are
so small that they can be modeled with a linear model. We
take this as our definition of “taut.” On a finite substrate,
the spectrum of this thermal dynamics is discrete. When the
spectrum of characteristic times is well separated compared to
the time lapse—which holds for smaller, tauter substrates—
only one or a few slowest modes of substrate motion are
resolved by our time-lapse recording, while all higher modes
contribute as a white-noise error on positions. We derive a
MLE that explicitly accounts for substrate fluctuations in this
manner and is optimal for long time series. We also derive an
unbiased CVE for diffusion on a fluctuating substrate which
can be used to obtain unbiased and optimal estimates of
diffusion coefficients for short time series, where the MLE
fails.

We estimate diffusion coefficients of fluorescently marked
human 8-oxoguanine DNA glycolase (hOGG1) repair proteins
on DNA from time-lapse measurements. The data have
previously been analyzed using MSD-based methods [21]. We
measure diffusion coefficients in the range 0.1–0.5 μm2/s.
We show that the DNA fluctuations induce a bias in the
estimates of diffusion coefficients of up to 0.25 μm2/s; i.e., we
may overestimate diffusion coefficients by several times their
actual values if the fluctuations are not taken into account.
The increased resolution that our method offers enables us to
see a clear negative correlation between a protein’s residence
time on the DNA molecule and its diffusion coefficient. This
correlation was hidden when the data were analyzed with
MSD-based methods. The negative correlation is explained
by a two-state kinetics of hOGG1’s diffusion on λ DNA [22].

Section II gives protocols for how to analyze a time series
of a single particle diffusing on a substrate or in a medium
which is fluctuating or at rest. The protocols are kept short,
with details given in ensuing sections. Thus, Sec. II is a road
map to practical application of this paper. Not all applications
need all of the paper, so the road map provides short-cuts.

Section III reviews the statistics of time series of a freely
diffusing particle recorded in the presence of localization
error and motion blur and discusses why common MSD-
based estimators are suboptimal. We describe a rigorous
statistical test of whether a recorded trajectory describes free
diffusion. This test is based on the experimentally determined
periodogram of the recorded time series, which is compared
to the theoretical spectrum of a freely diffusing particle. We
derive the unbiased CVE of the diffusion coefficient, for both
the case in which the variance of localization errors also must
be estimated from the same time series and the case where
the variance of localization errors is known a priori or has
been determined independently. We test the performance of the
CVE on Monte Carlo generated data and compare it to other
near-optimal estimators based on the MSDs, to the MLE, and
to the ultimate limit on the precision of any unbiased estimator,
the Cramér-Rao bound.

Section IV develops a linear model for the motion of
a fluctuating substrate, in particular the motion of a taut
unstretchable polymer, here DNA. We derive the statistics of
diffusion on such a fluctuating substrate. Section V builds on
the theory of Sec. IV to extend MLE and CVE to diffusion on
a fluctuating substrate.

Section VI specializes these estimators to the case of
diffusion on a taut, unstretchable polymer. In this case the
transversal motion of the substrate is directly accessible ex-
perimentally. We test the estimators on Monte Carlo generated
data, compare their performance, and compare their precision
to the Cramér-Rao bound.

Section VII applies the estimators developed in Sec. VI to
time-lapse recorded data of hOGG1 repair proteins diffusing
on fluctuating, flow-stretched λ DNA and shows that our theory
for diffusion on a fluctuating substrate accurately describes the
data. Section VIII concludes.

Appendix A and Supplemental Materials (Tables I, II,
and III) summarize our acronyms and notation [23]. Many
technical details have been relegated to nine, mostly short,
appendixes. Appendix B discusses application of the GLS
estimator to our estimation task. Appendix C gives the
statistical properties of covariances and of the CVE for the
case of free diffusion. Appendix D shows how application of
discrete sine transformation or discrete Fourier transformation
decorrelates data. Appendix E describes the MLE for the case
of free diffusion. Appendix F describes the effect of finite
time-lapse recording and motion blur on a power spectrum.
Appendix G details estimators to be used on a fluctuating
substrate. Appendix H details the variances of these estimators.
Appendix I details Monte Carlo simulations of data used to test
estimators. Appendix J describes how to apply two statistical
tests of agreement between theory and data: Pearson’s χ2

goodness-of-fit test and the χ2 test for variance.

II. HOW TO ANALYZE A TIME SERIES OF POSITIONS OF
A SINGLE PARTICLE THAT DIFFUSES IN A MEDIUM

WHICH IS AT REST OR FLUCTUATES

This section gives a “road map” to the practical use of this
article, since few readers will need all its sections to analyze a
given problem. We give a protocol for how to analyze a time-
lapse recorded time series of positions of a particle diffusing on
a substrate or in a medium that is at rest (Sec. II A) or fluctuates
(Sec. II B). In Sec. II C we give a protocol for how to analyze
a time series in the specific case of a particle diffusing on a
taut, unstretchable, and fluctuating polymer, such as DNA. In
this case one is helped by the fact that information about the
transversal motion of the substrate is directly observable in the
time series.

A. Diffusion on a substrate or in a medium at rest

A time series (xn)Nn=0 of measured positions of a particle
undergoing free diffusion in a medium or on a substrate at rest
should be analyzed as follows.

(i) Calculate the set of one-time-lapse displacements
(�xn)Nn=1 from the time series (xn)Nn=0 as �xn = xn − xn−1.

(ii) Estimate the particle’s diffusion coefficient D (and
variance σ 2 of the localization error if it is not known a priori)
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from (�xn)Nn=1 using the CVE as described in Sec. III C. The
values of D and σ 2 determine the SNR; see Eq. (6) below. If
the SNR is smaller than one, and a small bias is of no concern,
then D (and σ 2) is more efficiently estimated using MLE as
described in Sec. III D.

(iii) Test whether the measured data (�xn)Nn=1 agree with the
initial hypothesis that the particle undergoes free diffusion in a
medium or on a substrate at rest by comparing the periodogram
of (�xn)Nn=1 to its expected value, the spectrum, as described
in Sec. III B.

If the data and the theory do not agree, an alternative
hypothesis should be considered, e.g., that the particle does
not undergo free diffusion, or that the substrate or medium
fluctuates. In the latter case, see the next section, Sec. II B.

B. Diffusion on a fluctuating substrate

An experimental time series of laboratory coordinates of
a particle diffusing on a taut, fluctuating substrate can be
analyzed as follows.

(i) If it is reasonable to assume that substrate fluctuations
are so fast that all they do is contribute to localization errors as
a white noise, then follow the procedure described in Sec. II A
to test if this hypothesis is true. If it is, use estimates of
diffusion coefficients as obtained following this procedure.
If the hypothesis is rejected by the data, proceed to step (ii).

(ii) From the time series (xn)Nn=0, calculate the set of
one-time-lapse displacements (�xn)Nn=1 as �xn = xn − xn−1,
and from (�xn)Nn=1 calculate the set of periodogram values

(P̂�x,f )
fNyq

f =�f as described in Sec. V A.
(iii) Estimate diffusion coefficient D, variance σ 2 of

the localization error, and parameters φ characterizing the
substrate’s motion using MLE as described in Sec. V A. If
the substrate’s motion has been characterized independently,
either by direct measurement or by averaging multiple ML
estimates as described in Sec. V B, use the unbiased CVE
given in Sec. V B to estimate D and σ 2.

(iv) Compare the measured periodogram (P̂�x,f )
fNyq

f =�f to its
expected values, the power spectrum, as described in Sec. V C,
to test whether data support the hypothesis that the particle
undergoes free diffusion on the fluctuating substrate.

C. Diffusion on taut, fluctuating DNA

An experimental time series of laboratory coordinates of a
particle diffusing on a taut polymer, such as DNA, reveals the
DNA’s transversal motion at the location of the particle. It does
this directly, uncontaminated by the particle’s diffusive motion,
because the particle only diffuses in the DNA’s longitudinal
direction; we qualify this statement below. Let x and y

denote the laboratory coordinates in the longitudinal and the
transversal direction, respectively, of the particle on the taut
DNA strand. Then our protocol for how to analyze such a time
series (xn,yn)Nn=0 is the following.

(i) If the DNA is (or might be) so taut that the longest
relaxation time of its fluctuations is much shorter than the
time lapse �t of measurements, then the protocol in Sec. II A
above should be used to analyze the x coordinate of the time
series. If the DNA indeed is this taut, that is confirmed by this
protocol.

(ii) If the DNA is not that taut, then calculate (�xn)Nn=1,

(P̂�x,f )
fNyq

f =�f , and (P̂y,f )
f ′

Nyq

f =�f ′ from (xn,yn)Nn=0 as described in
Sec. VI.

(iii) If the DNA’s motion has not already been characterized
by independent measurements, it must be characterized using
information in the time series (xn,yn)Nn=0. To this end, use the
MLE given in Sec. VI A on time series with N � 50. This MLE
optimally estimates the diffusion coefficient D of the particle,
the variance σ 2 of the localization error, and parameters φ that
characterize the DNA’s motion.

(iv) If the parameters describing the DNA’s motion have
been characterized independently by direct measurement or
by averaging multiple ML estimates as described in Sec. V B,
then estimate D and σ 2 optimally by using the bias-subtracted
CVE given in Sec. VI B.

(v) Test the hypothesis that the recorded particle under-
goes free diffusion along the fluctuating DNA molecule by
comparing the measured periodograms, (P̂�x,f )

fNyq

f =�f x
and

(P̂y,f )
f ′

Nyq

f =�f y
, to their theoretically expected values, the power

spectra, as described in Sec. VI C.

III. ESTIMATION OF THE DIFFUSION COEFFICIENT OF
PARTICLE DIFFUSING ON SUBSTRATE AT REST

We here review the statistics of time-lapse recorded labo-
ratory coordinates of a particle undergoing free diffusion in a
medium (or on a substrate) at rest in the laboratory. We review
the statistics of single-time-lapse displacements of the particle.
We also review the statistics of the particle’s experimentally
determined MSDs, and we discuss why common estimators
based on the MSDs are suboptimal (Sec. III A). We give a
rigorous procedure for testing the hypothesis that the particle
undergoes free diffusion in a medium (or on a substrate)
at rest (Sec. III B). We derive a CVE that is based on
the measured covariances of single-time-lapse displacements.
CVE is simple, explicit, unbiased, and practically optimal as
an estimator of the particle’s diffusion coefficient D and of the
variance σ 2 of the localization errors on positions (Sec. III C).
We give a fast algorithm for the MLE of D and σ 2. We
also give an expression for the Cramér-Rao bound, which
limits the precision of any unbiased estimator of D and σ 2

(Sec. III D). Finally, we compare the performance of estimators
of diffusion coefficients to each other and to the Cramér-Rao
bound. This is done using synthetic data generated by Monte
Carlo simulations (Sec. III E).

A. Statistics of recorded time series

1. Single-time-lapse displacements

Consider a particle diffusing in d dimensions. Its trajectory
is recorded using time-lapse photography. The particle’s
positions are determined in each frame using a localization
algorithm. For a fluorescent particle, e.g., this algorithm
would be a super-resolution microscopy method [24]. The
result is a time series of the particle positions, r0,r1, . . . ,rN ,
measured with constant time lapse �t . From this time series,
we form the time series of single-time-lapse displacements
�r1,�r2, . . . ,�rN defined by �rn = rn − rn−1. The series
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of displacements is stationary, as opposed to the series of
positions. Being stationary ensures that averages formed from
the series will converge to their expected values as N → ∞.

Each Cartesian coordinate of a particle diffusing in an
isotropic and homogeneous medium is independent. With no
loss of generality, we therefore only consider diffusion in one
dimension below.

Let the function ς (t) describe the state of the camera shutter
during a time lapse �t . ς (t) = 0 means closed shutter, while
ς (t) > 0 means open shutter. The scale of ς (t) is fixed by
the normalization condition

∫ �t

0 ς (t)dt = 1. The measured x

coordinate of the particle’s position at time tn = n�t is then
given by [20]

xn =
∫ tn

tn−�t

xtrue(tn − t)ς (t)dt + σξn. (1)

Here xtrue is the true position of the particle, and the time
integral describes the motion blur that results from finite
exposure time. The second term describes localization errors
associated with the time-averaged position given by the first
term. The stochastic variable ξn is a normalized, discrete
Gaussian white noise: It has zero mean, unit variance, zero
autocovariance. The real, positive parameter σ is the standard
deviation of the localization error. This error is the sum of
all localization errors in effect, including substrate motion, if
relevant and of such high frequency that it contributes in this
place.

From Eq. (1) the covariance matrix of the measured
displacements �x1, . . . ,�xN of the diffusing particle is found
to be [20]

〈(�xn)2〉 = 2D�t + 2(σ 2 − 2DR�t), (2)

〈�xn �xn+1〉 = −(σ 2 − 2DR�t), (3)

〈�xm �xn〉 = 0, for |n − m| > 1. (4)

Here 〈· · · 〉 denotes the expected value, and the parameter R is
the motion blur coefficient defined by

R = 1

�t

∫ �t

0
S(t)[1 − S(t)]dt, (5)

where S(t) = ∫ t

0 ς (t ′)dt ′ [20]. The motion blur coefficient can
take values in the interval [0,1/4]. In practice the camera
shutter is usually kept open for the full duration of the
time lapse, which makes R = 1/6. This is done in order to
maximize the number of photons recorded in an image, thereby
minimizing the localization error [1,2,4–13,21,25,26].

Diffusion is a scale-free process, but the root-mean-squared
displacement taking place during a time lapse,

√
2D�t ,

defines a length, the so-called diffusion length associated with
the time lapse. This length is the amplitude of our signal, the
signal being the displacement recorded for each time lapse. The
standard error on this signal is

√
2σ , where σ is the standard

deviation of the localization error as defined above. For given
length N of a time series and motion blur coefficient R, the

performance of an estimator is then characterized by the SNR,

SNR ≡
√

2D�t√
2σ

=
√

D�t

σ
. (6)

Typically, 1 < SNR < 20 [4,5,26–28]. In the following we
compare estimators by comparing how they perform as
function of N and SNR. We also compare the variances of
estimators to the ultimate lower bound on the variance of
any unbiased estimator, the Cramér-Rao bound [18]. These
variances are only marginally affected by the value of the
motion blur coefficient R [25]. So we only discuss the
performance of estimators for the case of maximal exposure
time [ς (t) = 1/�t , R = 1/6] in the following, but note that
their performances are similar for other values of R.

2. Mean squared displacements

Einstein argued in 1905 that the mean length of time-lapse
recorded displacements of a particle suspended in a static
liquid are not proportional to the elapsed time, and hence
one cannot deduce the particle’s mean velocity from it.
Instead, MSD is proportional to time, and the constant of
proportionality gives the particle’s diffusion coefficient, D

[29]. Adding the effects of localization error and motion
blur, we find that the expected value of the measured squared
displacement of a diffusing particle is

〈d(t)2〉 = 〈[x(t) − x(0)]2〉 = 2Dt + 2(σ 2 − 2D�tR). (7)

Since 1905, diffusion coefficients have been determined
from trajectories of individual particles with Eq. (7) or variants
thereof [14,15]. This is OK when data are so rich that precision
is not an issue. When precision is an issue, the MSD is a
poor-to-miserable estimator. Its precision depends strongly on
the extent to which one accounts for the fact that its values, d2

n ,
at different times tn = n�t are highly correlated [Fig. 1(a)]
[15], when they all are estimated from the same (or a few)
time series of positions x0,x1, . . . ,xN using

d2
n = 1

N − n + 1

N−n∑
i=0

(xi+n − xi)
2. (8)

This fact is not common knowledge [1,2,4–14,21,26,30];
neither is the fact that for a good SNR an ordinary least squares
(OLS) or weighted least squares (WLS) fit of a straight line
to d2

n plotted against n for n = 1,2, . . . ,nmax � N yields an
estimate for D that becomes worse when more points (n,d2

n) are
included in the fit [Fig. 1(b)] [8,15]. One might intuit that more
data points supply more information. Such intuition is based
on experience with statistically independent data points. The
values of the MSD are not statistically independent, however.
They are so strongly correlated that when more values are
included in a fit, the added noise may exceed the added signal.

This counterintuitive result can be understood by looking
at the extreme case where the localization error is zero. In
this case the least-squares estimator based on the single data
point (1,d2

1 ), D̂ = d2
1/(2�t), is equal to the MLE of D and is

optimal; it is unbiased and its precision reaches the Cramér-
Rao bound. It is optimal because d2

1 is a sufficient statistic for
D; all information available in the time series about the value
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FIG. 1. (Color online) Performance of MSD-based estimators.
(a) Experimental MSDs, d2

1 ,d2
2 , . . . ,d2

N , calculated from simulated
Brownian motion trajectories. Each color represents one trajectory.
The straight black line shows their expected values 〈d(tn)2〉. The
values of d2

n for different n values are highly correlated because they
are estimated from the same trajectory. The variance of d2

n increases
with n. (b) Variances of MSD-based estimates of the diffusion
coefficient D as a function of the number of MSD points used in the
fit. Variances of ordinary (OLS), weighted (WLS), and generalized
(GLS) least-squares fits are compared to their information-theoretical
lower limit, the Cramér-Rao bound (CR bound), for SNR = 10.
(c)–(f) Mean plus/minus standard error of optimized least-squares fit
(OLSF) [15] and GLS estimates D̂ in units of the true value D. Edge
of shaded gray region is the Cramér-Rao bound. (c) For unknown
noise amplitude and N = 10, the OLSF and GLS estimators are
biased and do not reach the Cramér-Rao bound in practice. (d) For
unknown noise amplitude and N = 100, the OLSF almost reaches
the Cramér-Rao bound and is practically unbiased, while the GLS
estimator is significantly biased and does not reach the Cramér-Rao
bound. (e),(f) For known noise amplitude and (e) N = 10 or (f)
N = 100, the GLS estimator is practically optimal.

of D is contained in d2
1 . Thus, including more points gives no

new information about D. If we furthermore treat these points
as independent of the first point (1,d2

1 ) of the measured MSD
(as in WLS) or, even worse, also give them the same weight
as given to this first point (1,d2

1 ) (OLS), we actually decrease
the precision of our estimate of D by including more points.

We extend the example to the case where the localization
error amplitude is unknown but small (it needs not be very

small; for SNR > 2 the arguments below hold). Here the set
(d2

1 ,d2
2 ) is almost a sufficient statistic for D (see also the

discussion of the relationship between the CVE and the MSDs
below). Thus, additional points (n,d2

n) contain almost no new
information about D, and if we include them in a less than
optimal way, i.e., using OLS or WLS, then the precision of our
estimate of D decreases when more points are included.

This underscores the danger of being naive about statistics:
In situations where Eq. (7) is very true, common estimators
based on Eq. (8) nevertheless give poor estimates for D;
though accurate, they are not precise. Thus, an excellent
particle-tracking experiment may appear mediocre if common
practice is followed and the analysis is based naively on MSD.

A recent method aims to find the optimal number of
MSD points to include in an unweighted OLSF [15,19].
Alternatively, one may include the full covariance matrix of
the d2

n and fit to all d2
n in a GLS fit (Appendix B). Both of these

estimators depend nonlinearly on the estimated parameters.
Consequently, theoretical results for their optimality, which
were derived for linear dependence on parameters [15,18], do
not apply here [Figs. 1(c)–1(f)].

B. Testing whether a recorded trajectory
describes free diffusion

Equation (4) is as important as Eqs. (2) and (3), since
it states that the signature of free diffusion is �xn�xm ≈ 0
for |n − m| > 1. Specifically, in order for a time series to be
consistent with free diffusion, these covariance estimates must
scatter about zero [Figs. 2(a) and 2(d)] with variances that
depend on D and σ 2 as (Appendix C)

var(�xn�xm) = α2 + 4αβ + 6β2

N − |n − m| − 2β2

(N − |n − m|)2
. (9)

Here α = 2D�t and β = σ 2 − 2D�tR are, respectively, the
squared diffusion length corresponding to the time lapse and
the variance of the localization error at finite exposure time.
The estimated covariances are correlated and they are Gaussian
distributed only in the limit of long time series. This makes
them unsuitable for statistical testing of whether a given time
series of displacements is consistent with free diffusion or
not, just like the MSDs are. Instead, one should compare the
periodogram based on the discrete sine transform [DST,
Eq. (11) below] of the measured displacements with its
expected values (the power spectrum) for the case of a
freely diffusing particle. Figures 2(b) and 2(e) show such
periodograms and their expected values. The comparison is
made easy by the fact that periodogram values corresponding
to different frequencies are statistically independent of each
other.

1. Spectrum of displacements for finite N

For quantitative statistical testing of whether a recorded
trajectory describes free diffusion, the MSDs and the co-
variance function of the single-time-lapse displacements are
both impractical due to their complicated distributions and
high inherent correlations. Instead, one should compare the
periodogram P̌k = 2( |�xk)2/[(N + 1)�t] to its expected
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FIG. 2. (Color online) Statistics of single-time-lapse displace-
ments of a particle diffusing in a medium or on a substrate at rest.
(a)–(c) The statistics of a time series of length N = 100. (d)–(f) The
same statistics for N = 1000. (a),(d) Covariance of single-time-lapse
displacements calculated from a Monte Carlo (MC) simulated time
series shown in units of D�t and compared to their expected values.
The theoretical covariance shows an isolated large, positive value at
zero lag, the signature of free diffusion. A small negative value at
unit lag is the signature of localization errors; motion blur makes
it less negative and may even change its sign. Consequently, the
value at unit lag may be difficult to resolve on a background of
stochastic noise. (b),(e) Periodogram of single-time-lapse Monte
Carlo generated displacements in units of D(�t)2 compared to their
expected values, the power spectrum. The power spectrum is the sum
of a term due to localization errors (Noise) and a term due to diffusive
motion of the particle (Diff.). Shown values are block averages over
10 (b) and 100 (e) periodogram values each [31]. This averaging
facilitates comparison by eye with the expected values, the theoretical
curve. The gray area marks the 68% confidence interval (CI) for
the blocked values, which is equivalent to the mean plus/minus one
standard deviation for Gaussian distributed data. On average, 2/3 of
the points should fall in the gray area. The theoretical curve is not a
fit to the data, but the ultimate truth, which is known in Monte Carlo
simulations. For real experimental data, fitting is necessary before
comparing and should be done to with CVE or MLE as described in
the text. Block averages are shown since the raw periodogram values
have a SNR of 1/

√
2, which makes visual comparison unpractical.

(c),(f) The normalized periodogram values ε̌k = P̌k/
〈
P̌k

〉
follow a �

distribution with shape and scale parameters of 1/2 and 2, respec-
tively. In (a),(b),(d),(e) SNR = 1.5 and R = 1/6 (maximally open
shutter).

value,

Pk = 〈P̌k〉 = 2D(�t)2

+ 2[σ 2�t − 2DR(�t)2]

(
1 − cos

πk

N + 1

)
, (10)

which is called ψk(D,σ 2) in [20]. Here |�xk is the DST of
(�x1,�x2, . . . ,�xN ),

|�xk = �t

N∑
n=1

sin

(
πkn

N + 1

)
�xn, (11)

where the multiplicative term �t ensures that the DST has the
same physical dimensions as its continuum analog, the Fourier
sine transform. The DST of (�xn)Nn=1 is efficiently calculated
using a fast sine transform such as MATLAB or SciPy’s dst
[32] or as described in [33,34]. The N values (P̌k)Nk=1 are
statistically independent (Appendix D) and are thus suitable
for statistical testing, e.g., by simple visual inspection, by
comparing the measured periodogram to its expected values
[Figs. 2(b) and 2(e)], and by comparing the distribution of
normalized values ε̌k = P̌k/〈P̌k〉 to a � distribution with shape
and scale parameter values, respectively, 1/2 and 2 [Figs. 2(c)
and 2(f)]. The latter comparison can be made quantitative
with Pearson’s χ2 goodness-of-fit test (Appendix J), taking
into account that two parameters, D and σ 2, were fitted (one
parameter if σ 2 was determined independently).

Comparison between the experimentally measured peri-
odogram and the theoretically predicted power spectrum is
difficult for time series of short or intermediate length due to
poor statistics of these [Fig. 2(b)]. Since longer time series
[Fig. 2(e)] may not be available, comparison can be facilitated
by averaging over multiple time series of particles that show the
same diffusion coefficients and localization errors. Averaging
over a set of ten such time series of length N = 100 gives a
dispersion which is the same (to order 1/N) as that of a single
time series of 1000 points [Fig. 2(e)].

The statistical test presented here is based on independent
statistics and assumes that we have exact knowledge of their
distribution based on the theoretical results for the measured
time series [Eq. (2)–(4)]; i.e., it is a parametric test. It is thus
more reliable and more powerful than previously proposed
tests based on nonparametric estimates of the autocorrelations
and their variances or marginal distributions of correlated
single-time-lapse displacements [35].

2. Spectrum of displacements in the large-N limit

For long time series, P̌k , the periodogram obtained
with the DST, approaches the periodogram P̂�x,f =
|�̂xf |2�f obtained with the the discrete Fourier transform
(DFT). Here �f = 1/(N�t), and �̂xf is the DFT of
(�x1,�x2, . . . ,�xN ),

�̂xf = �t

N∑
n=1

e−i2πf tn�xn, (12)

where f = fk = k�f . It is efficiently calculated using fast
Fourier transformation (FFT) such as MATLAB or SciPy’s
fft [32] or as in [33,34]. In this case one can com-
pare the periodogram P̂�x,f to its expected value, the
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power spectrum,

P�x,f (D,σ 2)

= 2D(�t)2 + 2[σ 2�t − 2DR(�t)2][1 − cos(2πf �t)].

(13)

The normalized periodogram values ε̂�x,f =
P̂�x,f /P�x,f (D,σ 2) should be exponentially distributed
on the non-negative real numbers with expected value equal
to one. In this case also, the comparison is made quantitative
with Pearson’s χ2 goodness-of-fit test (Appendix J), taking
into account that two parameters, D and σ 2, were fitted (one
parameter if σ 2 was determined independently).

C. The covariance-based estimator

Equations (2) and (3) tell us how to construct simple,
unbiased estimators for D and σ 2 from a single recorded
trajectory. We replace the expected values in Eqs. (2) and
(3) with unbiased estimators of these and solve for D and σ 2.
This gives unbiased CVEs of D and σ 2,

D̂ = (�xn)2

2�t
+ �xn�xn+1

�t
, (14)

σ̂ 2 = R(�xn)2 + (2R − 1)�xn�xn+1. (15)

where · · · denotes averages over the time series �x1, . . . ,�xN .
For a particle diffusing in d dimensions, estimates are obtained
by averaging over the estimates obtained from the d one-
dimensional time series of individual coordinates. In this
manner the standard errors on estimates are reduced by a factor
1/

√
d.

If the value of the parameter σ 2 is known a priori, or if it
has been estimated in advance, as described in Sec. III C 3,
then the CVE of the diffusion coefficient reduces to

D̂ = (�xn)2 − 2σ 2

2(1 − 2R)�t
. (16)

The CVEs of D [Eqs. (14) and (16)] are guaranteed to be
unbiased and are practically optimal, as long as the SNR is
larger than one (Sec. III E).

1. Variance of the CVE

Equation (14) results in the following variance of its
estimate for D (Appendix C), to second order in 1/N ,

var(D̂) = D2

[
6 + 4ε + 2ε2

N
+ 4(1 + ε)2

N2

]
, (17)

where ε = σ 2/(D�t) − 2R.
Equation (16), on the other hand, results in the following

variance of its estimate for D̂,

var(D̂) = D2(2 + 4ε + 3ε2)

N (1 − 2R)2
+ var(σ̂ 2)

(1 − 2R)2(�t)2
. (18)

Here the second term describes the contribution from a
stochastic error on our known value for σ 2. This contribution
is proportional to the variance var(σ̂ 2) of that error, when, as
assumed here, the latter error is uncorrelated with the error on
(�xn)2.
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FIG. 3. (Color online) Distribution of the CVE of the diffusion
coefficient D (a) and minus-log-likelihood landscape (b) for diffusion
on a substrate at rest. (a) Distribution of CVEs D̂, here measured in
units of the true value D. The distribution approaches a Gaussian
as N is increased. (b) Minus-log-likelihood as a function of the
unitless variable φ defined as φ = arccot(

√
D�t/σ ) (Appendix E)

for a Monte Carlo generated time series of length N = 100. SNR = 2,
R = 1/6 (maximally open shutter), and σ 2 is not known a priori.

For importance weighting of estimates—e.g., when cal-
culating the weighted mean of estimates from time series
of different lengths—the length N of a time series should
be used as weight when possible, since it is known exactly.
The inverse variance of an estimate should be avoided as
weight when possible. This avoids complications such as
bias due to correlations between the estimated parameters
and the estimated variances; see [36] for an example of such
correlations and resulting bias of estimate.

2. Higher moments and probability density of the CVE

Higher moments of the distribution p(D̂|D,σ 2) of estimates
D̂ [37] resulting from the CVE for given true values D

and σ 2 are found by differentiating its characteristic function
p̃(ω|D,σ 2)—see Appendix C, Eq. (C10)—with respect to ω

and setting ω to zero,

〈D̂k〉 CVE= ik
∂kp̃(ω|D,σ 2)

∂ωk

∣∣∣∣
ω=0

. (19)

The distribution itself is equal to the inverse Fourier
transform of the characteristic function,

p(D̂|D,σ 2) =
∫ ∞

−∞

eiD̂ω

2π
p̃(ω|D,σ 2)dω. (20)

Thus, the distribution of estimates by CVE, and hence exact
confidence intervals for estimates, can be found by numerical
Fourier transformation of p̃ [Fig. 3(a)]. This can be done
effectively using a FFT algorithm with corrections for end
contributions as described in [33,34].

3. Independent determination of the variance of
localization errors

The position of a diffusing fluorescent particle is estimated
by fitting to its measured point-spread function (PSF). When
this is done as described in [24], one can estimate the variance
σ 2 of localization errors directly from the fitting procedure.

If it is not possible to estimate σ 2 directly from the fitting
procedure, an alternative approach may be used: If estimates of
σ 2 from many time series are indistinguishable up to stochastic
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FIG. 4. (Color online) Quality of various estimators for the diffu-
sion coefficient. Mean plus/minus standard error of estimators given
in units of the true value D as function of SNR. Estimates D̂ obtained
with approximate MLE, MLE, and CVE applied to 1000 Monte
Carlo generated time series of positions of a freely diffusing particle
recorded with motion blur and noise on positions. Edges of the shaded
gray regions represent the information-theoretical lower limit on the
standard error, the Cramér-Rao bound. (a),(c) Time series of length
N = 10. (b),(d) Time series of length N = 100. All simulations were
performed with shutter time equal to time lapse (R = 1/6). (a),(b)
For unknown amplitude of localization errors, the MLEs reach and
even surpass the Cramér-Rao bound for high SNR, where they are
biased. The CVE is unbiased and attains the Cramér-Rao bound for
SNR > 1. (c),(d) For known amplitude of localization errors, both
MLEs and CVE are unbiased and attain the Cramér-Rao bound for
SNR > 1.

errors, then these estimates can be averaged to obtain a more
precise estimate of the noise amplitude. Diffusion coefficients
can then be estimated again, using the average noise variance
estimate as a fixed parameter, since this averaged quantity
covaries little with the individual time series. In this manner,
essentially all information in a time series is used to estimate
its diffusion coefficient D. This reduces the standard error on
estimates of the diffusion coefficient by a factor of up to 1.8 in
the limit of high SNR and the absence of motion blur (R = 0).
The standard error of the CVE is reduced by a factor ≈1.5 for
maximally open shutter (R = 1/6) [compare Figs. 4(c) and
4(d) to Figs. 4(a) and 4(b)].

4. Relationship between the CVE and the MSDs

The MSD in Eq. (7) suggests how to construct a maximally
simple MSD-based estimator of the diffusion coefficient D

from d2
1 and d2

2 : D̂msd = (d2
2 − d2

1 )/(2�t). On average, this
maximally simple MSD-based estimator is exactly equivalent
to the CVE of D: They have the same expected value, D.
This follows from the relations 〈d(2�t)2〉 = 2〈(�xn)2〉 +

2〈�xn�xn+1〉 and 〈d(�t)2〉 = 〈(�xn)2〉. Thus,

〈D̂msd〉 = 〈(�xn)2〉 + 2〈�xn�xn+1〉
2�t

= 〈D̂cve〉. (21)

CVE is the more precise of the two, however. The estimates
of 〈d(n�t)2〉 and 〈�xm�xn〉, d2

n and �xn�xm, respectively,
do not use the information present in the displacements
(�x1,�x2, . . . ,�xN ) in the same way. d2

n places less weight
on the end displacements �x1 and �xN , while CVE weights
all displacements equally (Appendix C). This makes CVE of
D more precise than the MSD-based method.

D. Maximum likelihood estimation and the Cramér-Rao bound

Using the power spectral density in Eq. (10), one can easily
construct a MLE of D and σ 2 using the periodogram based on
the DST of (�x1,�x2, . . . ,�xN ) [Eq. (11)] [19]. The MLE is
usually found by maximizing the logarithm of the likelihood
function L(θ ) with respect to the two parameters θ = (D,σ 2)
as detailed in [20]. Appendix E gives a fast algorithm for
ML estimation of (D,σ 2) which uses the scale-invariance of
free diffusion to reduce the dimensionality of the optimization
problem from two to one dimensions. Besides increasing the
speed of the MLE algorithm, the reduction from two to one
dimensions enables us to inspect the likelihood landscape
visually as a function of a single parameter and thus ensure that
the algorithm has converged to the global minimum [Fig. 3(b)].

1. Variance and the Cramér-Rao bound

The variance of the MLE is to first order in 1/N given
by the Cramér-Rao bound I(θ)−1, where I(θ) is the Fisher
information matrix [18]. Its entries are

I(θ)ij = −
〈
∂2 lnL(θ )

∂θi∂θj

〉
=

N∑
k=1

1

Pk(θ)2

∂Pk(θ )

∂θi

∂Pk(θ)

∂θj

, (22)

with

∂Pk(θ)

∂D
= 2(�t)2

[
1 − 2R

(
1 − cos

πk

N + 1

)]
(23)

and

∂Pk(θ)

∂σ 2
= 2�t

(
1 − cos

πk

N + 1

)
. (24)

The Cramér-Rao bound sets a lower limit on the variance
of any unbiased estimator [18]. An unbiased estimator that
reaches the Cramér-Rao bound is thus considered optimal.

For the case in which the amplitude σ of the localization
error has been estimated independently, and only D is
estimated from the time series, the Fisher information matrix
is a 1 × 1 matrix, i.e., a scalar. This scalar equals

I(D) =
N∑

k=1

[
1

Pk(D,σ 2)

∂Pk(D,σ 2)

∂D

]2

. (25)

The Cramér-Rao bound on the variance of unbiased
estimators of D is given by 1/I(D). Since MLE is known
to saturate the Cramér-Rao bound asymptotically as N → ∞,
this bound, 1/I(D̂), serves as an estimate (accurate to order
1/N) of the variance of the MLE of D.
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E. Monte Carlo simulations

We tested the CVE on Monte Carlo generated time
series. We compared its performance to two near-optimal
MSD-based estimators—OLSF [15] and the GLS estimator
(Appendix B)—and to the “gold standard,” MLE (Sec. III D
and Appendix E) [19], as well as to an approximate MLE
[20]. The precision of each estimator was compared to the
Cramér-Rao bound, the ultimate bound on the precision of
any unbiased estimator (Sec. III D).

1. How to simulate

Monte Carlo simulation was done as follows. The DST
diagonalizes the covariance matrix given in Eqs. (2)–(4)
(Appendix D). Thus, it transforms the N displacements
�xn into N independent, normally distributed “transformed”
displacements |�xk with mean zero and variances given by
Eq. (10). Such transformed displacements were generated from
Gaussian random numbers and transformed back, using the
inverse DST given by a matrix M with entries

Mi,j = 2

(N + 1)�t
sin

(
πij

N + 1

)
. (26)

This gives synthetic data sets with the statistics of time series
of time-lapse recorded freely diffusing particles [Eqs. (2)–(4)].
We tested our estimators on these data sets.

2. Simulation results

As shown in Sec. III A 2, the MSD-based estimators are
suboptimal. The CVE and the MLEs practically reach the
Cramér-Rao bound, and the MLEs even surpass it for high SNR
[Figs. 4(a) and 4(b)]; this is possible because the MLEs are
biased [Figs. 4(a) and 4(b)], which means that the total error of
the MLE can be, and is here, smaller than that of any unbiased
estimator. This extra precision comes at a cost, however: a
systematic error in the estimate, a bias (Appendix E). This
bias complicates statistical analysis of estimates from multiple
time series, since averages and other statistics do not converge
to their true values.

The CVE, in contrast, is unbiased by construction, and, as
Fig. 4 shows, it practically reaches the Cramér-Rao bound as
long as the SNR is larger than one. In experiments, typically
1 < SNR < 20. There, CVE is the best estimator of diffusion
coefficients.

Monte Carlo simulations confirm that a more precise
estimate of D can be obtained by using a priori knowledge of
σ 2 [Figs. 4(c) and 4(d)]. We furthermore see that the MLE is
practically unbiased when σ 2 is known a priori and that both
the MLE and the CVE reach the Cramér-Rao lower bound for
SNR > 1 [Figs. 4(c) and 4(d)].

3. Conclusion

In conclusion, we find that the CVE is to be preferred
in practice since (i) it is unbiased and practically optimal in
experimentally relevant situations. This is not the case for the
MLEs, the OLSF, and the GLS estimators, which are biased.
(ii) The CVE is given by a simple analytical expression; it
is thus regression-free and is orders of magnitude faster than
the MLEs, the OLSF, and the GLS estimator. (iii) The exact

variance and distribution of the CVE are known. For the MLE,
this is only the case asymptotically as N → ∞.

IV. STATISTICS OF DIFFUSION ON A
FLUCTUATING SUBSTRATE

In this section we derive the statistics of recorded time
series of a particle diffusing on a fluctuating, taut substrate. A
fixed point on such a substrate moves in the laboratory frame.
We first derive the statistics of this motion (Sec. IV A). We
then derive the covariance of single-time-lapse displacements
of a particle diffusing on the substrate (Sec. IV B). Next,
we calculate the power spectrum of the single-time-lapse
displacements (Sec. IV C). Finally, we consider the specific
case of a particle diffusing on a taut, incompressible fiber or
polymer, such as DNA, and derive the statistics (covariances
and power spectra) of this motion (Sec. IV D).

A. Statistics of a fluctuating substrate

Consider a fluctuating elastic substrate. The substrate is
d-dimensional and of finite extent (Lx,Ly,Lz) but much larger
than the characteristic diffusion length,

√
2DtN , of a particle

diffusing in or on it. We assume that the substrate’s motion is
massively overdamped, i.e., inertia plays no role. Let s denote
the coordinates of a physical point in the substrate in the refer-
ence frame of the substrate. Let r(s,t) = [x(s,t),y(s,t),z(s,t)]T

denote the coordinates of this point in the reference frame of the
laboratory at time t . Thermal fluctuations or other causes drive
the substrate out of mechanical equilibrium. We assume that
its excursions from equilibrium are so small that the restoring
forces are well described as Hookean. Then the dynamics of the
substrate is linear and a superposition of independent spatial
eigenmodes.

From the assumptions above and the equipartition theo-
rem follows that the amplitude of each spatial eigenmode
has the dynamics of an overdamped harmonic oscillator at
finite temperature with the same temperature applying to all
eigenmodes. Thus, without knowing the specific form of these
spatial eigenmodes, we know the character of the dynamics
of a given physical point of the substrate: Its distance to its
equilibrium position evolves as the sum of spatial eigenmodes
evaluated at that point of the substrate. Since the spectrum of
relaxation times of these eigenmodes is discrete for a finite,
taut substrate, and faster modes have smaller amplitudes, two
cases are so simple that we can account for the motion of the
substrate without knowing its dynamics in detail.

(i) If the longest relaxation time of the eigenmodes is some-
what shorter than the time lapse �t , substrate motion appears
uncorrelated in our recordings, which means it contributes as
a white-noise localization error. The CVE derived in Sec. III
can then be used to obtain optimal estimates of the diffusion
coefficients of particles diffusing in or on the substrate.

(ii) If the longest relaxation time of the eigenmodes is longer
than the time lapse �t , but all other relaxation times are
somewhat shorter than �t—which is not at all unrealistic;
see examples of spectra of relaxation times in [22]—then
substrate motion appears in our recordings as a white-noise
localization error plus the thermal motion of one overdamped
harmonic oscillator. The parameter values characterizing this
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overdamped harmonic oscillator may vary across the substrate,
but locally it may be determined experimentally.

We consider the motion in the laboratory of a point s of
the substrate. Let x(s,t) denote the first laboratory-coordinate
of this point. In case (ii) above, the autocovariance of this
coordinate is

ρx(t − t ′|s) = cov(x(s,t),x(s,t ′)) = Kx(s)τx(s)e−|t−t ′|/τx (s),

(27)

where Kx describes the amplitude of the motion and τx(s) its
correlation time. Here τx(s) = (2πfc,x)−1, where fc,x is the
so-called corner frequency of the Lorentzian power spectrum
of this motion. Both Kx and fc,x depend on s in general.

Now let P
(sub,cont)
f denote the power spectrum of a contin-

uously recorded variable that describes the substrate’s motion
in the laboratory, and let an additional subscript indicate which
variable. Then the power spectrum of x(s,t) is

P
(sub,cont)
x,f =

∫ tN

0

∫ tN

0
e−i2πf (t−t ′)ρx(t − t ′|s)dt ′dt

= Kx(s)

2π2[fc,x(s)2 + f 2]

+ Kx(s)(1 − e−2πfc,x (s)tN )[fc,x(s)2 − f 2]

4π3fc,x(s)tN [fc,x(s)2 + f 2]2
, (28)

where f = fk = k�f with k integer. Here, the last term
describes the effect of finite time of measurement, tN = N�t ,
on the power spectrum. It is included only to provide a
quantitative indicator of how long one must measure to
avoid its contribution. For 2πfc,x tN = tN/τx(s) 
 1, which
is always the case for situations of practical interest, this
second term in Eq. (28) can be ignored. For two- and
three-dimensional substrates, similar expressions result for
each dimension, provided that a separation of spatial variables
is possible.

B. Covariance of displacements of a particle diffusing on a
fluctuating substrate

Observed from the laboratory frame of reference, the
trajectory of a particle moving on a fluctuating substrate can
be described by the particle’s trajectory on the substrate, s(t),
and the consecutive positions in the laboratory of the points
visited on the substrate at the time they are visited, i.e.,

r(t) = r(s(t),t). (29)

As in the previous section (Sec. III), we look at the
particle’s single-time-lapse displacements, �rn = rn − rn−1.
In practice, the camera’s shutter is kept open during the
whole time lapse to maximize the number of photons recorded
[1,2,4–13,21,26] and thus maximize the information content
of recorded time series [25]. The recorded positions are conse-
quently motion blurred, and a single-time-lapse displacement
in, e.g., the x direction, is modeled as

�xn = 1

�t

∫ tn

tn−1

x(s(t),t)dt + σξx,n

− 1

�t

∫ tn−1

tn−2

x(s(t),t)dt + σξx,n−1, (30)

where (ξx,n)Nn=1 is a normalized Gaussian white noise, i.e.,
independent N (0,1) variables.

We use that the dimensions of the substrate are large
compared to the diffusion length of the particle and Taylor
expand around the average position, s, of the particle on
the substrate. Neglecting terms of order

√
2D�t/Lx � 1 or

higher, we thus have that

�xn � ∂xn(s)

∂sx

�sx,n + �xn(s) + σ�ξx,n, (31)

where �sx,n = 1
�t

∫ tn
tn−1

[sx(t) − sx(t − �t)]dt is the diffusive
displacement of the particle along the x axis of the reference
frame of the substrate, and �xn(s) = 1

�t

∫ tn
tn−1

[x(s,t) − x(s,t −
�t)]dt is the displacement in in reference frame of the
laboratory of the point s on the substrate during one time lapse.
∂xn(s)/∂sx = 1

�t

∫ tn
tn−1

∂x(s,t)/∂sx dt describes the degree of
stretching of the substrate during the nth time lapse.

Since the substrate motion is uncorrelated with the particle’s
diffusion, the autocovariance of �xn is just the sum of the
autocovariances of the three terms in Eq. (31). We furthermore
use that ∂x/∂sx and �sx,n are uncorrelated except for terms
of order 2D�t/L2

x . We then get〈(
�x2

n

)〉 = 4ζ (s)2D�t/3 + 2σ 2 + C�x(0|s), (32)

〈�xn�xn±1〉 = −[σ 2 − 2ζ (s)2D�t] + C�x(1|s), (33)

〈�xm�xn〉 = C�x(|n − m||s) , for |n − m| > 1. (34)

Here ζx(s) =
√

〈(∂x(s)/∂sx〉)2 is the mean degree of stretching
of the substrate. It is equal to one for three-dimensional and
flat substrates, and smaller than one for substrates that tend
to bend and twist. C�x(|n − m||s) = cov(�xn(s),�xm(s)) is
the autocovariance of the displacements of the x coordinate in
the laboratory of the point s on the substrate in the presence
of motion blur. It is equal to C�x(j |s) = 2Cx(j |s) − Cx(j −
1|s) − Cx(j + 1|s), where Cx is the autocovariance of the x

coordinate in the laboratory of the point s on the substrate in
the presence of motion blur. It is given by

Cx(j�t |s) = 1

(�t)2

∫ �t

0

∫ �t

0
ρx(j�t − t + t ′|s)dt ′dt

=
{ 2[c−1+2πfc,x (s)�t]

[2πfc,x (s)]3(�t)2 Kx(s) for j = 0,

(1−c)2

[2πfc,x (s)]3(�t)2 Kx(s) c|j−1| for j = 0,

(35)

where c = exp[−2πfc,x(s)�t].
The covariance [Eqs. (32)–(34)] of single-time-lapse dis-

placements from a Monte Carlo generated time series is shown
in Figs. 5(a) and 5(d). Notice the nonzero value of the co-
variance at unit lag and the negative values with exponentially
decreasing magnitude at higher lags, characteristic of diffusion
on a fluctuating substrate, e.g., DNA [Fig. 6(a)] and biological
membranes [38, Table 4].
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FIG. 5. (Color online) Statistics of single-time-lapse displace-
ments of a particle diffusing on a fluctuating substrate. Panels (a)–(c)
show the statistics of a time series of length N = 100, while (d)–(f)
show statistics for N = 1000. (a),(d) Covariance of single-time-lapse
displacements in units of D�t calculated from a Monte Carlo
(MC) simulated time series and compared to their expected values.
The covariance shows an isolated positive value at zero lag, the
sum of positive contributions due to diffusion, localization error,
and substrate fluctuations. The value at unit lag is a sum of both
positive and negative contributions. At higher lag, the covariance is
negative and decreases exponentially in magnitude, a signature of
substrate motion. (b),(e) Periodogram of single-time-lapse Monte
Carlo generated displacements in units of D(�t)2 compared to
their expected values, the power spectrum. Shown values are block
averages over 10 (b) or 100 (e) periodogram values each [31]. Block
averages are shown since the raw periodogram values have a SNR
of one, which makes visual comparison unpractical. The gray area
marks the 68% confidence interval (CI) for the block-averaged values.
The power spectrum is composed of three terms: a term due to
localization error (Noise), a diffusive (Diff.) term, and a term due to
substrate (Sub.) motion. (c),(f) The normalized periodogram values
εf = P̂f /Pf (θ ) follow an exponential distribution with unit expected
value. In (a),(b),(d),(e) R = 1/6 (maximally open shutter), and
D = 0.31 μm2 s−1, σ 2 = 1500 nm2 (SNR = 1.5), 2πfc,x = 50 Hz,
and Kx = 0.37 μm2 s−1, corresponding to typical values observed
experimentally.

C. Power spectrum of displacements of a particle diffusing on a
fluctuating substrate

It is useful to know the power spectrum of measured
displacements of a particle diffusing on a fluctuating substrate.
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FIG. 6. (Color online) Statistics of time-lapse measured time
series of a hOGG1 protein diffusing on flow-stretched λ DNA. The
time series consist of 293 points measured with maximally open
shutter and time lapse �t = 11 ms. In (a),(b),(d),(e) black lines
are fits of the phenomenological theory (Sec. IV D) for diffusion on
DNA to data. (a) Covariance of single-time-lapse displacements of
the protein along the DNA’s longitudinal direction. Compare this
to Figs. 5(a) and 5(d). (b) Periodogram of the particle’s single-
time-lapse displacements along the DNA’s longitudinal direction.
Compare to Figs. 5(b) and 5(e). (c) Distribution of normalized
normalized periodogram values ε�x,f = P̂�x,f /P�x,f (θ ) compared
to a theoretically expected exponential distribution. Compare this
panel to Figs. 5(c) and 5(f). (d) Covariance of the protein’s measured
transversal positions. Compare this to Figs. 7(a) and 7(d). (e)
Periodogram of the particle’s transversal positions. Compare to
Figs. 7(b) and 7(e). (f) Distribution of normalized periodogram
values εy,f = P̂y,f /Py,f (θ) and theoretically expected exponential
distribution with unit mean. Compare this panel to Figs. 7(c) and
7(f). Shown values for data in (b) and (e) are block averages,
each over 29 periodogram values, and the gray area marks the
68% confidence interval (CI) for the blocked values. The estimated
parameter values are D̂ = 0.12 μm2 s−1, σ̂ 2 = 750 nm2, 2πf̂c =
44 Hz, K̂x = 0.33 μm2 s−1, and K̂y = 0.20 μm2 s−1.

As in Sec. III, we use it to test whether the recorded motion of
a particle is consistent with diffusion on a fluctuating substrate
(Sec. V C). We do this by comparing the measured peri-
odogram to the power spectrum [Figs. 5(b) and 5(e) and 6(b)]
and by using that the periodogram values are exponentially
distributed about their expected values, the power spectral
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values. We also use this power spectrum to construct a MLE for
the diffusion coefficient D, the variance σ 2 of the localization
error, and parameters characterizing substrate fluctuations, all
from a single measured time series (Sec. V A).

As for the covariance of displacements, the power spectrum
is the sum of three terms, the three individual power spectra of
the three independent terms in Eq. (31). We derive expressions
for each of them separately.

1. Power spectrum of the diffusive and localization error terms

Let Pf denote the power spectrum of a time series, and let
an additional subscript on Pf indicate which time series. Thus,
the power spectrum of �sx,1, . . . ,�sx,N is

P�sx,f = 2D(�t)2{1 − [1 − cos(2πf �t)]/3}, (36)

in consequence of the white-noise property of diffusive
displacements and the low-pass filtering effect of motion blur.
Likewise, the power spectrum of the localization error σξx,n

is equal to σ 2�t . The DFT of �ξx,n = ξx,n − ξx,n−1 is equal
to (1 − ei2πf �t )̃ξx,f to order 1/N . Using that, we find that the
power spectrum of σ�ξx,n is equal to

Pσ�ξx,f = 2σ 2�t[1 − cos(2πf �t)]. (37)

2. Power spectrum of substrate fluctuations

Since a time series is recorded at a finite frame rate
fsample = 1/�t , its periodogram is aliased [31, Appendix F].

Moreover, the camera’s finite shutter time acts as a low-pass
filter. Consequently, the periodogram should not be compared
to the power spectrum based on a continuous-time theory,
P

(sub,cont)
f , but on an aliased and low-pass filtered version of

that power spectrum (Appendix F),

P
(sub)
x,f = Kx(s)

(2πfc,x)3�t c

[
c2 − 1 + 4πfc,x�t c

+ (1 + c)(1 − c)3

1 + c2 − 2c cos(2π�tf )

]
, (38)

with fc,x = fc,x(s) and c = exp(−2πfc,x�t).
As above, we use that

P�x,f = 2[1 − cos(2πf �t)]Px,f (39)

up to neglected contributions from the two ends of the series,
contributions of order N−2. Insertion of Eq. (38) into Eq. (39)
yields the contribution from substrate fluctuations to the
measured power spectrum.

3. Total power spectrum

Equations (36)–(39) give us the power spectrum of a particle
diffusing on a fluctuating substrate recorded in the presence of
motion blur and localization error,

P�x,f = 2ζ (s)2D�t2 + [2σ 2�t − 2ζ (s)2D�t2/3][1 − cos(2πf �t)]

+ 2Kx(s)

(2πfc,x)3�t c
[1 − cos(2πf �t)]

[
c2 − 1 + 4πfc,x�t c + (1 + c)(1 − c)3

1 + c2 − 2c cos(2πf �t)

]
. (40)

Examples of the power spectrum and periodogram of time
series of a particle diffusing on a fluctuating substrate are
shown in Figs. 5(b) and 5(e).

4. Distribution of the periodogram

The displacements measured in the laboratory frame for
the particle diffusing on the substrate are stationary processes,
since they are the sum of three time series, each of which
is a stationary process; two of them, localization errors and
the displacements themselves in the reference frame of the
substrate, even consist of jointly Gaussian distributed terms.
Consequently, both the real and the imaginary parts of the
Fourier transform of displacements consist of independently
Gaussian distributed terms (Appendix D). Since the real and
imaginary parts of the Fourier transform at a given frequency
have the same variance, periodogram values are exponentially
distributed about their expected values, being the sum of two
squares of Gaussian values with same variance [Figs. 5(c)
and 5(f)]. The periodogram values corresponding to different
frequencies are furthermore independent, except for terms of
order 1/N2 or higher (Appendix D).

D. Statistics of diffusion on fluctuating, stretched DNA

We now consider a particle diffusing on an incompressible,
taut, fluctuating, flexible or semiflexible fiber or polymer

such as DNA. We designate by L the contour length of this
polymer. For a one-dimensional substrate of this type, let s

denote the coordinate of a physical point on the substrate as
measured along the contour of the substrate, e.g., the base-pair
number for DNA. Let r(s,t) = [x(s,t),y(s,t),z(s,t)]T denote
the coordinates of this point in the laboratory reference frame
at a given time t . Thermal fluctuations and/or other forces
drive the substrate out of equilibrium and a point on the
substrate feels a restoring force. Since the substrate is taut,
fluctuations are small and the restoring force is locally well
approximated as Hookean, i.e., proportional to the distance
to equilibrium. As Fig. 6(e) shows, this approximation is
excellent for our purpose. This is confirmed by theoretical
investigation of substrates stretched by various means [22].
The results presented in this section are easily generalized to
include multiple modes (Appendix G).

1. Fluctuations of a taut polymer in solution

We consider an inextensible semiflexible or flexible fiber
or polymer (DNA is inextensible at the stretching forces used
in measurements of diffusion on DNA [39]). Since the fiber’s
length is fixed, its longitudinal motion is determined by its
motion in the two transversal directions by the condition
r′ = 1, where the prime denotes the derivative with respect
to s. Furthermore, since the fiber is taut, we have by Taylor
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expansion

x ′ � 1 − 1

2
[(y ′)2 + (z′)2]. (41)

The fiber’s motion in the transversal directions is locally
that of a harmonic oscillator, because we have assumed that we
only resolve the spatial eigenmode with the slowest relaxation
time. We do not know the functional form of this eigenmode,
unless we have a dynamical theory for the substrate motion.
However, we manage without by observing that whatever
the functional form of that eigenmode is, its only role in
describing the motion of a fixed point or narrow region on
the substrate is to specify the amplitude of this motion. Its
dynamics is that of an overdamped harmonic oscillator. So we
manage by measuring that unknown amplitude experimentally
at each location of interest. Its associated relaxation time is
also determined experimentally. We then have, e.g., in the y

direction, that

ρy(t − t ′|s) = Ky(s)τy(s)e−|t−t ′ |/τy (s), (42)

where Ky(s) parametrizes the amplitude of ρy at s, and τy(s) is
its characteristic time. By virtue of the Wiener-Khinchin theo-
rem, τy(s) = (2πfc,y)−1, where fc,y is the corner frequency of
the Lorentzian power spectrum of the y coordinate of substrate
fluctuation at s.

The autocovariance of the longitudinal motion is found
from Eq. (41) by using that y ′ and z′ are Gaussian distributed,

ρx(t |s) = 1

2

[∫ s

0
ρy ′ (t |s ′)ds ′

]2

+ 1

2

[∫ s

0
ρz′ (t |s ′)ds ′

]2

, (43)

where ρy ′ and ρz′ are the autocovariances of y ′ and z′ and are
proportional to ρy and ρz, respectively, with proportionality
constants that only depend on s. Usually the motion in the two
transversal directions contribute equally to the longitudinal
motion (for DNA stretched by optical tweezers or a plug
flow this is exact, for DNA stretched by a shear flow this
is approximate [22]). In this case fc,y = fc,z = fc, and hence
τy(s) = τz(s) = τ (s), so Eq. (43) reduces to

ρx(t |s) = 1

2
Kx(s)τ (s)e−2|t |/τ (s). (44)

The exact forms of Ky and Kx depend on the substrate and
how it is stretched. They are, in general, unknown, but can be
calculated explicitly for some specific substrates and methods
of stretching [22].

2. Covariances of displacements of a particle
diffusing on taut DNA

a. Transversal motion. The measured y position of a
particle diffusing on a fluctuating polymer is given by

yn = 1

�t

∫ �t

0
ytrue(tn − t ′)dt ′ + σξ (y)

n . (45)

Since localization errors are uncorrelated with substrate
motion, and since terms of order 2D�t/L2 � 1 or higher
can be ignored, the autocovariance of y is given by

〈(yn − 〈y〉)2〉 = σ 2 + Cy(0|s), (46)

〈(ym − 〈y〉)(yn − 〈y〉)〉 = Cy(|n − m|�t |s),

for |n − m| � 1. (47)

Here Cy is the autocovariance of the y coordinate of the
substrate’s motion,

Cy(j�t |s) =
{ 2(c−1+2πfc�t)

(2πfc)3(�t)2 Ky(s) for j = 0,

(1−c)2

(2πfc)3(�t)2 Ky(s) c|j−1| for j = 0,

(48)

with c = exp(−2πfc�t). Examples of Monte Carlo simula-
tions and experimental measurements of the covariance of the
transversal positions of a particle diffusing on fluctuating DNA
are shown in Figs. 7(a) and 7(d) and 6(d).

b. Longitudinal motion. The covariance of the measured
longitudinal displacements of a particle diffusing on a polymer
is described by Eqs. (32)–(34) [Figs. 5(a) and 5(d) and 6(a)],
except that the autocovariance of the substrate’s position, Cx ,
is given by

Cx(j�t |s) =
⎧⎨⎩

2(c2−1+4πfc�t)
(4πfc)3(�t)2 Kx(s) for j = 0,

(1−c2)2

(4πfc)3(�t)2 c2 Kx(s) c2|j | for j = 0.
(49)

The degree of stretching or tortuosity, ζ (s), is constant along
a DNA molecule or another polymer stretched by applying a
force to its ends. It is approximately constant and close to one
for a tethered polymer in a strong hydrodynamic flow, except
near the polymer’s free end [22,40–44].

3. Power spectra of displacements of a particle
diffusing on taut DNA

a. Transversal motion. The power spectrum of the
transversal motion is calculated from Eq. (45) in the same
manner as Eq. (40) was derived from Eq. (31). This gives

Py,f = σ 2�t + Ky(s)

(2πfc)3�t c

[
c2 − 1 + 4πfc�t c

+ (1 + c)(1 − c)3

1 + c2 − 2c cos(2πf �t)

]
. (50)

See Figs. 7(b) and 7(e) and 6(e) for examples of the power
spectrum Py,f .

b. Longitudinal motion. The power spectrum of the
particle’s displacements in the longitudinal direction of the
substrate is derived in the same manner as above and is given
by

P�x,f = 2ζ (s)2D�t2 + [2σ 2�t − 2ζ (s)2D�t2/3][1 − cos(2πf �t)]

+ 2Kx(s)

(4πfc)3�t c2
[1 − cos(2πf �t)]

[
c4 − 1 + 8πfc�t c2 + (1 + c2)(1 − c2)3

1 + c4 − 2c2 cos(2πf �t)

]
. (51)

Figures 5(b), 5(e), and 6(b) show examples of what P�x,f may look like.
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FIG. 7. (Color online) Statistics of the time-lapse measured
transversal position of a particle diffusing on a taut but flexible,
fluctuating fiber, such as DNA. (a),(d) Covariance of the measured
positions in units of σ 2 calculated from a Monte Carlo (MC) simulated
time series and compared to their expected values. The covariance
shows an positive value at zero lag, the sum of contributions from
localization error and substrate fluctuations, and an exponential
decrease for higher lags, the signature of substrate fluctuations. (b),(e)
Periodogram of Monte Carlo generated positions in units of σ 2�t

compared to their expected values, the power spectrum. Shown values
are block averages over 10 (b) or 100 (e) periodogram values each
[31]. The gray area marks the 68% confidence interval (CI) for the
block-averaged values. The power spectrum contains an additive
constant term due to uncorrelated localization errors on positions
(Noise) and a Lorentzian additive term from the substrate’s motion
(Sub.). (c),(f) The normalized periodogram values εf = P̂f /Pf (θ)
are exponentially distributed on the positive real axis with unit
expected value. In (a),(b),(d),(e) R = 1/6 (maximally open shutter),
σ 2 = 1500 nm2, 2πfc = 25 Hz, and Ky = 0.20 μm2 s−1.

c. Distribution of the periodogram. The measured
transversal positions of the particle on the substrate is the
sum of two Gaussian distributed terms, so the transversal
position is Gaussian itself. The real and imaginary parts of
the Fourier transforms of these displacements are thus also
Gaussian distributed. As a result, their squared moduli are
exponentially distributed, as demonstrated in Figs. 7(c) and
7(f) and 6(f)]. These exponentially distributed periodogram
values are approximately independent (Appendix D).

Less is needed, however, to arrive at exponentially
distributed periodogram values: The longitudinal substrate
fluctuations are not Gaussian distributed, since longitudinal
motion is a nonlinear function of the transversal motion. This
means that �xn is not Gaussian. However, since its Fourier
transform is a weighted sum over all the measured �xn, it is
approximately Gaussian by virtue of the central limit theorem.
Furthermore, the measured Fourier transform is a sum of the
Fourier transforms of the three independent terms in Eq. (31),
of which the two others are Gaussian. The periodogram
values of the measured longitudinal displacements are thus,
in practice, exponentially distributed [Figs. 5(c) and 5(f) and
6(c)] and independent (to order 1/N2, Appendix D).

V. ESTIMATION OF DIFFUSION COEFFICIENT OF A
PARTICLE DIFFUSING ON A FLUCTUATING SUBSTRATE

Based on the statistics of diffusion on a taut, fluctuating
substrate (Sec. IV), we here derive two estimators of the
diffusion coefficient of a particle diffusing on such a substrate
from a time series of its measured positions. When the
substrate’s motion cannot be characterized independently, e.g.,
by direct measurement, and the measured time series is long,
the MLE derived in Sec. V A optimally estimates the particle’s
diffusion coefficient D, the variance σ 2 of localization error
on positions, and parameters φ characterizing the substrate’s
motion. For the case where substrate motion has been
characterized independently, we derive in Sec. V B an unbiased
CVE which optimally estimates D along with σ 2 even from
a short time series. We finally give a procedure for rigorous
statistical testing of whether a recorded time series describes
free diffusion on a fluctuating substrate in Sec. V C.

A. Maximum likelihood estimation

We construct a MLE of the diffusion coefficient D, the
variance σ 2 of localization errors, and parameters of substrate
motion φ in the point s on the substrate. This MLE uses
the periodogram of the measured time series as input. If
one has recorded N displacements �r0,�r1, . . . ,�rN of a
particle diffusing on an elastic, d-dimensional substrate, one
can calculate d periodograms, one for each coordinate of the
time series. Since the motion along the coordinate axes are
independent, estimates can be obtained for each coordinate
individually and averaged afterwards, as in the case of free
diffusion (Sec. III).

In the x direction, the periodogram values are

P̂�x,f = |�̂xf |2�f , (52)

where f ∈ {�f ,2�f , . . . ,fNyq}, with �f = 1/(N�t) and
the Nyquist frequency fNyq = 1/(2�t) = fsample/2 for N even
and fNyq = (N − 1)/(2N�t) for N odd. The DFT �̂xf of
the displacements (�xn)Nn=1 is calculated efficiently with, e.g.,
MATLAB or SciPy’s fft [32].

Given the measured periodogram (P̂�x)f , the MLE is the
set of parameter values (D̂,σ̂ 2,φ̂) which maximizes the log-
likelihood function

lnL(D,σ 2,φ|(P̂�x)f ) =
fNyq∑

f =�f

(
ln P�x,f + P̂�x,f

P�x,f

)
. (53)
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The power spectral values P�x,f are given by Eq. (40). If
more than one mode is needed to properly describe the
substrate’s fluctuations, or if the camera shutter is not kept
open for the full duration of the time lapse, see Appendix G. It
gives expressions for the power spectrum P�x,f for a multi-
mode theory and for a camera shutter time that is shorter than
the time lapse.

If the parameters describing substrate motion have been de-
termined independently, they can be used as fixed parameters
in the MLE algorithm. This is done by plugging them into
Eq. (53) and maximizing lnL with respect to the remaining
parameters only. In this case, however, a simpler, unbiased
CVE which also reaches the Cramér-Rao bound, should be
used instead (Sec. V B).

1. Variance of the MLE

We define θ = (D,σ 2,φ)T . The covariance matrix of the
MLE is, to first order in 1/N , equal to the inverse of the Fisher
information matrix I, the elements of which are

Ijk =
fNyq∑

f =�f

(P�x,f )−2 ∂P�x,f

∂θj

∂P�x,f

∂θk

. (54)

The variance of the MLE is estimated by inserting estimated
values of θ in Eq. (54).

If parameters characterizing substrate fluctuations have
been estimated independently and used in the MLE, the vari-
ances of its estimates of D and σ 2 are as given in Appendix H.

B. Covariance-based estimation

If independent estimates (K̂x,f̂c,x) of parameters character-
izing substrate motion have been obtained, an unbiased CVE
of the diffusion coefficient can be constructed by subtracting
the bias caused by substrate fluctuations from the CVE that
was designed for free diffusion [Eq. (14)]. For a particle with
mean position s on the substrate, the bias due to substrate
fluctuations is

bD[Kx(s),fc,x(s)] =
[

1 − c

2πfc,x(s)�t

]3

Kx(s), (55)

with c = exp[−2πfc,x(s)�t]. An unbiased CVE of D is then

D̂ =
[

�x2
n

2�t
+ �xn�xn+1

�t
− bD

(
K̂x,f̂c,x

)]/
ζ (s)2, (56)

where eventual incomplete stretching of the substrate has
also been taken into account by dividing by ζ (s)2. In the
same manner we can derive an unbiased CVE for D in the
case when also the localization error has been characterized
independently. It is given in Appendix G. In practice, it is not
more precise than the CVE given by Eq. (56) (Sec. VI D). So
one can in all cases use Eq. (56).

The CVE [Eq. (56)] requires prior knowledge of the
parameters Kx(s), fc,x(s), and ζ (s) that characterize the
substrate and its fluctuations. ζ (s) is often known a priori. For
a three-dimensional homogeneous substrate, e.g., it is equal to
one. For a polymer stretched by constant forces applied to its
ends, it is constant and equal to the overall degree of stretching
while Kx(s) and fc,x(s) are measured experimentally.

If these parameters cannot be determined by direct mea-
surement of the substrate motion, estimates can be obtained
by averaging over MLEs (Sec. VI A) obtained from long
time series of particles with a mean position close to s. If
we have recorded M time series that are long enough for
reliable estimation of φ(s) = [Kx(s),fc,x(s)], we calculate the
weighted average of K̂x and f̂c,x as [45]

φ̂i =
∑M

m=1 Nmφ̂i,m∑M
m=1 Nm

, (57)

where Nm is the length of the mth time series. The variance of
the weighted average is estimated by

var(φ̂i) =
∑M

m=1 Nm(φ̂i,m − φ̂i)
2

(M − 1)
∑M

m=1 Nm

. (58)

These estimates can then be used in Eq. (56) to obtain
practically optimal and unbiased estimates of the diffusion
coefficient [Figs. 8(c) and 8(d)].

One may consider alternative approaches to reduce or elim-
inate the bias of the original CVE without using ML estimated
parameter values, e.g., by adding higher autocovariances to
reduce the bias or by estimating substrate fluctuation param-
eters directly, using higher autocovariances. Both approaches
considerably increase the variance of estimates of the diffusion
coefficient, however, compared to the CVE defined above, and
hence should not be used.

1. Variance of the CVE

The variance of the unbiased CVE is to order 1/N2

(Appendix H)

var(D̂)

D2
= V0(D,σ 2,φ) + 2V1(D,σ 2,φ)

ζ (s)2D

+ V2(φ) + var[bD(φ̂)]

[ζ (s)2D]2
+ var[ζ (s)2]

ζ (s)4
, (59)

where we have introduced three functions,

V0(D,σ 2,φ) = 6 + 4ε + 2ε2

N
+ 4(1 + ε)2

N2
, (60)

V1(D,σ 2,φ) = (3 + ε)C0 + 4C1 + 2C2 − εC3

N (�t)2

+ 2(1 + ε)C0 + 2εC2 + εC3

N2(�t)2
, (61)

V2(φ) = 1

(�t)2

N−1∑
j=1

[
N − j

N2
C2

j + 4(N − j )

N (N − 1)
Cj−1Cj

+ 2(N − j − 1)

(N − 1)2

(
Cj−1Cj+1 + C2

j

)]
+ 3C2

0/2 + C2
1

N (�t)2
+ C2

0 + C2
1

N2(�t)2
, (62)

using ε = [σ 2 − ζ (s)2D�t/3]/[ζ (s)2D�t] and
Cj ≡ C�x(j�t |s), with C�x(j�t |s) = 2Cx(j�t |s) − Cx(|j −
1|�t |s) − Cx[(j + 1)�t |s] and Cx(j�t |s) given in Eq. (35). A
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FIG. 8. (Color online) Quality of various estimators for the dif-
fusion coefficient for diffusion on a fluctuating, taut, but flexible one-
dimensional substrate. Mean plus/minus standard error of estimators
given in units of the true value D. Estimates D̂ were obtained with
MLE and CVE applied to 1000 Monte Carlo generated time series
of positions of a particle diffusing on a fluctuating substrate recorded
with motion blur and localization errors. (a),(c),(e) Time series of
length N = 10. (b),(d),(f) Time series of length N = 100. (a),(b)
Case of unknown variance σ 2 of localization errors and unknown
parameters of DNA motion. They are all estimated together with D

from the same time series. Results: CVE is highly biased for large
substrate fluctuations (=small 2πfc). MLE is optimal for large N . For
small N , both CVE and MLE fail: Their estimates have systematic
errors (bias) larger than the true value of D. (c),(d) Case where
substrate fluctuations have been characterized independently. Results:
Both CVE and MLE practically reach the Cramér-Rao bound, but
only CVE is unbiased. (e),(f) Case where also localization errors
have been characterized independently. Results: Precision of CVE
increases negligibly; compare with (c),(d). MLE increases its bias
for large substrate fluctuations (=small 2πfc), especially at small N .
CVE is unbiased.

linear approximation to bD’s dependence on φ results in the
usual formula for linearized error propagation:

var[bD(φ)] =
∑
ij

∂bD

∂φi

∂bD

∂φj

cov(φ̂i ,φ̂j ). (63)

C. Testing whether a recorded trajectory describes free
diffusion on a fluctuating substrate

As for diffusion on a substrate at rest, we can design a test for
diffusion on a fluctuating substrate based on the periodogram
of the measured time series of the particle’s positions. Fourier
transformation of the set of displacements �x1,�x2, . . . ,�xN

decorrelates them (Appendix D), which means that their
periodogram values, P̂f , are uncorrelated (to order 1/N2). This
makes them well suited for statistical testing of whether a time
series describes free diffusion on the fluctuating substrate. The
periodogram values P̂f should be compared to their expected
values, the power spectrum, given by Eq. (40) [Figs. 5(b)
and 5(e)], and the distribution of their normalized values
εf = P̂f /Pf (θ̂ ) to an exponential distribution with unit mean
[Figs. 5(c) and 5(f)]. If a P value is wanted for quantitative
comparison, it can be calculated from ε�f ,ε2�f , . . . ,εfNyq using
Pearson’s χ2 goodness-of-fit test (Appendix J) with four fitted
parameters, D, σ 2, Kx , and fc (two if substrate motion has
been characterized independently).

VI. ESTIMATION FOR DIFFUSION ON
FLUCTUATING, TAUT DNA

We here derive a MLE of a particle’s diffusion coefficient
D, variance σ 2 of localization error, and parameters φ

characterizing substrate motion from a recorded time series
of the particle’s motion on a taut, fluctuating polymer, e.g., a
DNA strand, optimal for long time series (Sec. VI A). For the
case when the DNA strand’s motion has been characterized
independently, we derive an unbiased CVE of D and σ 2. This
CVE estimates the diffusion coefficient much more precisely
than the MLE, which also estimates φ, and it is optimal even for
short time series (Sec. VI B). We develop a rigorous procedure
for testing whether a recorded time series describes diffusion
on a fluctuating, taut DNA strand (Sec. VI C). Finally, we test
the estimators on synthetic Monte Carlo generated data and
compare their precision with the information inequality, the
Cramér-Rao lower bound on achievable precision (Sec. VI D).

A. Maximum likelihood estimation

We here construct a MLE for the special case of a
particle diffusing on a taut, incompressible fiber or polymer
such as DNA. This case is special because our observations
include substrate motion in dimensions in addition to the
one dimension of the substrate. This extra information offers
extra insight. Specifically, the substrate is stretched along
the x axis of laboratory coordinates, but in addition to
displacements �x of the particle diffusing along the substrate,
we also observe the particle’s transversal positions y. The
latter trace the transverse motion of the small region of
the substrate that is visited by a particle diffusing on it.
In order to use this extra information, we assume that the
recorded transversal positions and longitudinal displacements
are uncorrelated. This assumption is not completely true, since
the longitudinal DNA fluctuations are fully determined by the
upstream fluctuations in the two transversal directions y and
z. However, the contribution of local fluctuations in transverse
position to longitudinal displacements at the same locality is
so small, simulations show (Appendix I), that neglecting them
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does not affect estimates noticeably. A comparison between
estimator precision and the approximate Cramér-Rao bound
shows this (Fig. 8).

The periodograms are calculated as

P̂�x,f = |�̂xf |2�f (64)

for f = �f ,2�f , . . . ,fNyq and

P̂y,f = |ŷf |2�f ′ (65)

for f = �f ′,2�f ′, . . . ,f ′
Nyq, where �f ′ = 1/[(N + 1)�t],

while the Nyquist frequencies are fNyq defined above [23] and
f ′

Nyq = N/[2(N + 1)�t] for N even and f ′
Nyq = 1/(2�t) =

fsample/2 for N odd.
Given P̂�x,f and P̂y,f , the MLE θ̂ = (D̂,σ̂ 2,φ̂) returns the

set of parameter values θ = (D,σ 2,φ), which maximizes the
log-likelihood function

lnL(θ |(P̂f )f ) =
fNyq∑

f =�f

(
ln P�x,f + P̂�x,f

P�x,f

)

+
f ′

Nyq∑
f =�f ′

(
ln Py,f + P̂y,f

Py,f

)
. (66)

The power spectral values P�x,f and Py,f are given by
Eqs. (51) and (50), respectively.

1. Variance of the MLE

The variance of the MLE is, to order 1/N , equal to var(θ̂) =
I−1 [18]. Here the Fisher information matrix I is given by

Iij =
fNyq∑

f =�f

(P�x,f )−2 ∂P�x,f

∂θi

∂P�x,f

∂θj

+
f ′

Nyq∑
f =�f ′

(Py,f )−2 ∂Py,f

∂θi

∂Py,f

∂θj

, (67)

where P�x,f and Py,f are given by Eqs. (51) and (50),
respectively.

B. Covariance-based estimation

If independent estimates of parameters characterizing sub-
strate motion can be obtained either by direct measurement of
the DNA strand’s fluctuations or from long time series using
MLE as described in Sec. V B, an optimal and unbiased CVE
of diffusion coefficients can be constructed. This estimator is
generally as precise as the MLE (Sec. VI D) and is guaranteed
to be unbiased even for short time series.

This unbiased CVE of the diffusion coefficient is given by
Eq. (56), where bD is given by

bD (Kx,fc) =
(

1 − c2

4πfc�t

)3

Kx, (68)

instead of by Eq. (55).

1. Variance of the CVE

The variance of the unbiased CVE is given by Eq. (59) with
the expression for Cx(s,j ) [Eq. (35)] replaced with Eq. (49).

C. Testing whether a recorded trajectory describes free
diffusion on fluctuating DNA

To test whether a trajectory describes diffusion along
a taut DNA molecule (or any other taut but flexible and
fluctuating fiber), the test described in Sec. V C is modified
slightly to account for the fact that we also measure the
DNA’s transversal motion, which is uncontaminated by the
particle’s diffusive motion. In this case, one should compare
the periodograms of the particle’s longitudinal, as well as
its transversal, motion, respectively P̂�x,f and P̂y,f , to their
expected values, the power spectra, given by Eq. (51) for �x

[Figs. 5(b) and 5(e) and 6(b)] and Eq. (50) for y [Figs. 7(b)
and 7(e) and 6(e)]. The distributions of the normalized values
ε�x,f = P̂�x,f /P�x,f (θ̂ ) [Figs. 5(c) and 5(f) and 6(c)] and
εy,f = P̂y,f /Py,f (θ̂ ) [Figs. 7(c) and (f) and 6(f)] should be
compared to exponential distributions with unit mean. They
can be compared quantitatively by calculating a P value based
on Pearson’s χ2 goodness-of-fit test (Appendix J) taking into
account that five parameters, D, σ 2, Kx , Ky , and fc, were
fitted (two parameters instead of five if the DNA’s motion was
characterized independently).

D. Monte Carlo simulations

We tested the estimators on simulated data for a particle
diffusing on a taut, but flexible, fluctuating DNA strand. We
assumed that all but the lowest mode of the DNA’s fluctuations
could be ignored as contributors to the particle’s movement in
laboratory coordinates since this is a signature of taut DNA
[Figs. 6(b) and 6(e)] [22]. Consequently, we simulated only
the lowest mode.

Since the mathematical description of diffusion on a fluctu-
ating substrate contains two or three additional parameters
compared to free diffusion, estimator performance is not
determined by a simple SNR, as was the case for diffusion
on a substrate at rest (Sec. III), but by a complicated interplay
of parameters. Consequently, we did not investigate the whole
parameter space, but a subset which fully covers the parameter
values that we observed in experimental measurements of
hOGG1 proteins diffusing on flow-stretched DNA [22]. The
DNA fluctuations are described locally by three parameters:
(i) the relaxation rate 2πfc, where fc is the corner frequency
of the Lorentzian power spectrum of transverse substrate
fluctuations; (ii) the amplitude Kx(s) of longitudinal substrate
fluctuations; and (iii) the amplitude Ky(s) of transverse
substrate fluctuations.

For the experimental data (Sec. VII), we found that Ky(s)
does not change between time series though 2πfc varies
between 20 and 50 Hz. In contrast, Kx(s) scales with fc

as Kx = αx/(2πfc) with coefficient of proportionality αx =
9.2 ± 1.2 μm2 s−2. The precisions of estimators are less
sensitive to the value of σ 2, while varying D is mathematically
equivalent to a renormalization of the experimental noise,
i.e., a change of Kx(s) and σ 2. So we kept the parameters
αx , Ky(s), D, and σ 2 constant in our simulations and
equal to their experimental mean values: D = 0.3 μm2 s−1,
σ 2 = 1500 nm2, Ky = 0.20 μm2 s−1, and αx = 9.2 μm2 s−2,
while 2πfc was varied tenfold, between 10 and 100 Hz.
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Measured displacements were then simulated as described in
Appendix I.

Simulations demonstrate that DNA fluctuations induce a
bias in the estimates of the diffusion coefficient, which can
be many times larger than the diffusion coefficient itself, if
these fluctuations are not accounted for [(Figs. 8(a) and 8(b)].
For long time series [Fig. 8(b)], MLE accounts appropriately
for the DNA fluctuations and is practically optimal. For short
time series [Fig. 8(a)], both the CVE and the MLE fail to
give reliable estimates for the diffusion coefficient: Though
CVE outperforms MLE and beats the Cramér-Rao bound by
a factor two or more, this is of no practical interest, because
its estimates come with a bias that may be larger than the true
value of the diffusion coefficient.

In Figs. 8(c) and 8(d), DNA fluctuations were characterized
a priori. Both CVE and MLE are seen to be practically optimal
for short as well as long time series.

In Figs. 8(e) and 8(f), also the variance σ 2 of localization
errors was determined a priori. This results in a slight increase
in the precision of the CVE as compared to Figs. 8(c) and 8(d),
while it induces a bias in MLE for slow DNA fluctuations. In
this case the CVE should be used. There is, however, for the
parameter values examined, virtually no increase in precision
by knowing σ 2 a priori, over the case where both D and σ 2

are estimated from the same time series.

VII. ANALYSIS OF INDIVIDUAL hOGG1 PROTEINS
DIFFUSING ON FLUCTUATING DNA

We analyzed a set of hundreds of time series of hOGG1
proteins diffusing on a single λ DNA molecule that was flow
stretched over a coverslip. The proteins were fluorescently
labeled and visualized with TIRF microscopy; see [21] for
details. Measurements were performed at pH 7.5 and 10 mM
salt. Images were recorded with a time lapse of �t = 11 ms.
A detailed analysis of these data—and of data taken at
different pH and salt concentrations—is given in [22]. Here we
summarize results from this very practical application of the
estimators introduced above. These results include a two-state
kinetics of the protein. This kinetics remained hidden in the
original analysis of the same data, which was based on MSD.

A. Comparing MLE and CVE on long time series to remove
bias in CVE caused by DNA motion, so CVE can be trusted on

short time series, where MLE cannot

We estimated the diffusion coefficient D, variance of the
localization error σ 2, and parameters characterizing the motion
of the patch of DNA on which the protein diffused while it
was bound to DNA. We did this for time series of length N �
50 using the MLE that takes the DNA’s motion into account
(Sec. VI A). Figure 6 shows the covariance and periodogram of
each coordinate in a single such time series. The theoretically
expected values for the same covariances and periodograms
are also shown. They were calculated using parameter values
obtained with MLE.

We also estimated diffusion coefficients from the same time
series using CVE, which does not take substrate fluctuations
into account (Sec. III C).

FIG. 9. (Color online) Estimated diffusion coefficients of exper-
imentally recorded hOGG1 proteins diffusing on flow-stretched λ

DNA. (a) Estimates D̂ of diffusion coefficients versus protein’s mean
position x on the DNA strand as measured from the DNA’s tethered
end. Red squares: estimates obtained with MLE that accounts for
the DNA’s motion (Sec. VI). Values do not depend on the proteins’
position on the DNA (P = 0.88). Black diamonds: estimates obtained
with CVE that does not account for DNA motion (Sec. III C). An
increase in values appears near the DNA’s free end. (b) Bias of
CVE (black squares) compared to its theoretically expected value
calculated from Eq. (68) (cyan circles). The bias increases near the
DNA’s free end, where fluctuations are larger. (c) Estimates D̂ of the
diffusion coefficients as a function of the proteins’ residence time t

on DNA. A nontrivial correlation is clearly seen between D̂ and t . (d)
The average bias over the DNA strand of the CVE, which does not
take DNA fluctuations into account, does not depend significantly on
the protein’s residence time on DNA and is equal to its theoretically
expected value (P = 0.27). P values were estimated using a χ2 test
for variance (Appendix J).

Results show that diffusion coefficients estimated using the
MLE that takes DNA motion into account, do not depend on
a protein’ position on the DNA [Fig. 9(a)]. This means that
neither the DNA’s motion nor a protein’s average position
in the flow field (which depends on a protein’s position
on the DNA) affect the value of the diffusion coefficient.
If one does not take the DNA’s fluctuations into account,
however, then estimates of D are severely biased [Fig. 9(a)].
This bias can be estimated experimentally by subtracting the
estimates of D obtained using the MLE that accounts for DNA
fluctuations, from estimates of D obtained with CVE which
does not [Fig. 9(b)]. Since a protein’s limited residence time
on the DNA limits its movement along the DNA to patches
of 1 μm or smaller, we thus found the bias as function of
position on the DNA with 1 μm resolution of positions. We
also calculate the theoretically predicted bias caused by the
DNA’s fluctuations at these positions [Eq. (68)] as described
in Sec. V B. These theoretically predicted values for the bias
of the CVE are in excellent agreement with the experimentally
measured values of the bias [Fig. 9(b)]. We see that this bias
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does not depend significantly on the proteins’ residence time
on DNA [Fig. 9(d)]. We used this knowledge of the bias of
the CVE to correct biased estimates of diffusion coefficients
obtained with CVE from time series shorter than N = 50
[Fig. 9(c)]. For such short series MLE is suboptimal, while
CVE is optimal after its bias has been removed.

B. New results from old data

The procedure just described, using MLE for long and
CVE for short time series, allowed us to estimate diffusion
coefficients at the single-molecule level. Results obtained in
this manner revealed a significant negative correlation between
a protein’s residence time and its diffusion coefficient during
its residence [Fig. 9(c)]. The simplest explanation of this
correlation is a two-state kinetics of hOGG1 proteins diffusion
on DNA [22]. This interpretation of data is independently
confirmed by the fact that residence times are not exponentially
distributed, as they would be in a one-state model, since de-
tachment in a one-state model is a Poisson process. Residence
times are rather distributed according to a double exponential,
as predicted by our two-state model [22].

VIII. CONCLUSION

We have shown theoretically and on Monte Carlo generated
data that the optimal way to estimate diffusion coefficients
from short, noisy trajectories of freely diffusing particles
is with our unbiased and regression-free CVE. We have
described how the attractive properties of this estimator hold
also for short, noisy single-particle trajectories on a fluctuating
substrate, if the substrate is finite, taut, and some longer
trajectories on it also are available. We limited ourselves to
describing taut substrates because (a) it implies no loss of
generality, since observations of diffusion make sense only
on rigid or taut substrates; (b) we consequently arrive at a
description that is general and applies to a generic substrate,
independently of the specific substrate’s known or unknown
specific dynamics; and (c) we needed that for a specific
problem, a strand of DNA that is tethered by one end to a
plane and stretched by a shear flow, for which there is no good
theoretical model for its dynamics.

We used that if a substrate is sufficiently taut and its motion
sufficiently damped, then its dynamics can be linearized to a
good approximation. We also used that a finite substrate’s inde-
pendent degrees of freedom in such a linearized description is
a countable set of massively overdamped harmonic oscillators
in a heat bath, and their spectrum of relaxation times is discrete
and, for a small substrate, well separated. We used that particle
tracking with finite time lapse, and especially with motion
blur, may resolve only the slowest of these relaxation times,
while contributions from all higher modes only increased the
localization error.

We consequently modeled the observable transverse motion
of a given point on a fluctuating DNA substrate as a massively
overdamped harmonic oscillator in a heat bath, a model
which was confirmed by fits to experimental data. We derived
statistics for this motion which account also for effects due
to localization error, finite time-lapse recording, and motion
blur due to finite camera shutter time. We used that for

a one-dimensional stretched-out but unstretchable substrate,
such as DNA, the substrate’s longitudinal motion is given by
its transverse motion.

This model for the DNA’s fluctuations allowed us to derive
a MLE of diffusion coefficients, the variance of localization
errors, and parameters describing substrate motion, using both
the transverse and the longitudinal coordinates of a recorded
trajectory of a diffusing particle. Monte Carlo simulations
showed that this MLE is optimal for long time series. We
used it on long trajectories to derive the bias of the CVE
caused by substrate fluctuations, and we demonstrated that
theoretical predictions agree with experimental measurements
of the bias, which further confirms our model of the substrate’s
motion.

We then constructed an unbiased CVE for the case in which
substrate fluctuations have been characterized independently,
and we showed on Monte Carlo generated data and experi-
mental data that it optimally estimates diffusion coefficients.

Finally, we used it to estimate diffusion coefficients from
short, noisy single-particle trajectories of hOGG1 proteins on
fluctuating, flow-stretched DNA and showed that one severely
overestimates diffusion coefficients if substrate fluctuations
are not taken into account.
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APPENDIX A: SUMMARY OF NOTATION

See the Supplemental Materials (Tables I, II, and III) for
summaries of acronyms and notation used in main text [23].
A few symbols that are used only within the section in which
they are defined are not included in these tables. Neither are
the few new symbols introduced in the appendixes below, as
each is used only within the appendix in which it appears.

The constant c = exp(−2πfc�t) occurs repeatedly in our
aliased Lorentzian power spectra for substrate motion. Since
these power spectra come in slightly different flavors, so does
c. We have specified the definition of c in several places
where power spectra are described, and we repeat these
definitions in the Supplemental Materials (Table III) [23].
Even without that, the following rule of thumb should make
confusion impossible: In any power spectrum written using c,
a corner frequency fc also occurs explicitly or, in Appendix
G, occurs through λx,k = 2πf (k)

c,x . It is always that corner
frequency which enters in the definition of c used in the same
spectrum.

As stated in the Supplemental Materials (Tables II and

III) [23], for D̂, σ̂ 2, K̂x , φ̂i , φ̂i , θ̂ , and f̂c,x the “hat” over
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the symbols has the conventional meaning of “estimator for
parameter(s) denoted by the symbol under the hat.” In a few
places where no misunderstanding seems possible, we have
used one of these symbols with hat to denote the estimate
itself in order to distinguish the estimate of a parameter from
the parameter itself.

In order to make our notation agree with that of Ref. [31],
which the reader may want to consult for details on the power
spectrum analysis used here, a hat over a symbol means the
discrete-time, finite-time Fourier transform that one applies to
finite time series, in the two cases �̂xf and ŷf , while P̂�x,f and
P̂y denote the power spectra based on these Fourier transforms,
and ε̂�x,f denotes the normalized periodogram values based
on the same Fourier transforms. Similarly, a “tilde”—as in
p̃—denotes the continuous-time, finite-time Fourier transform
as in [31], while a “check”—as in |�xk , P̌k , and ε̌k—refers to
sine transforms. All of this is stated also in the Supplemental
Materials (Table III) [23].

APPENDIX B: GENERALIZED LEAST-SQUARES
ESTIMATOR

The GLS estimator of (D,σ 2) is defined as(
D̂

σ̂ 2

)
= (

AT �−1
msdA

)−1
AT �−1

msdd2, (B1)

where d2 = (d2
1 ,d2

2 , . . . ,d2
N ), A is a 2 × N matrix with A1,n =

2�t(n − 2R) and A2,n = 2, and �msd is a weight matrix
proportional to the covariance matrix of d2, which is given
in [19]. Since �msd depends nonlinearly on D and σ 2, the
GLS of (D,σ 2) must be found using an iterative relaxation
algorithm as described in [46].

If �msd is known a priori, the variance of the GLS estimator
is found by taking the expected value of the outer product of
Eq. (B1),

var(θ̂) = (
AT �−1

msdA
)−1

AT var(d2)A
(
AT �−1

msdA
)−1

= (
AT �−1

msdA
)−1

, (B2)

where θ̂ = (D̂,σ̂ 2)T . The iterative GLS estimator uses and
estimates �̂msd instead of the true covariance matrix �msd.
The estimated covariance matrix �̂msd is correlated with d2,
which means that variance of the iterative GLS does not reduce
to (AT �−1

msdA)−1 as in Eq. (B2) and that the variance of the
iterative GLS estimator is higher than the variance of the
linear GLS estimator [Figs. 1(c) and 1(d)]. The difference
is not of order Op(1/N2), since d2 is not bounded; i.e., the
variance of the GLS estimator does not necessarily approach
the theoretical value [Eq. (B2)] in the large N -limit.

When σ 2 is known a priori, the GLS estimator can be
reduced to

D̂ = (
aT �−1

msd−2σ 2 a
)−1

aT �−1
msd−2σ 2 (d2 − 2σ̂ 2), (B3)

where an = 2�t(n − 2R) and

�msd−2σ 2 = var(d2 − 2σ̂ 2) = �msd + 4var(σ̂ 2). (B4)

Even when the noise amplitude σ is known a priori, �msd

depends nonlinearly on the unknown parameter D. So one

still needs to use an iterative procedure to find the GLS esti-
mate. The estimator in this case, however, practically reaches
the Cramér-Rao lower bound and is unbiased [Figs. 1(e) and
1(f)].

APPENDIX C: STATISTICS OF COVARIANCES AND THE
CVE FOR DIFFUSION ON A SUBSTRATE AT REST

We here derive expressions for the variance of �xn�xn+j

(Sec. 1 of this appendix), the variance of the CVE of D and
σ 2 (Sec. 2 of this appendix), and the characteristic function of
the CVE of D (Sec. 3 of this appendix). Finally, we elaborate
on the difference between the CVE of D and the minimal
mean-squared-displacement-based estimator that uses only the
first two MSDs (d2

1 , and d2
2 ) to estimate D (Sec. 4 of this

appendix).

1. Variance of estimated covariances

The variance of estimated covariances �xn�xn+j

is derived directly from their definition, �xn�xn+j =∑N−j

n=1 �xn�xn+j /(N − j ). This gives

var(�xn�xn+j )

= 1

(N − j )2

N−j∑
m,n=1

cov(�xm�xm+j ,�xn�xn+j ), (C1)

where cov(x,y) denotes the covariance of x and y. For j > 1,
〈�xn�xn+j 〉 = 〈�xm�xn+j 〉〈�xm+j�xn〉 = 0. So

var(�xn�xn+j ) = 1

(N − j )2

N−j∑
m,n=1

〈�xm�xn〉2. (C2)

Using Eqs. (2)–(4) and the definitions of α and β [23,
Table II], we have

var(�xn�xn+j ) = 1

N − j
〈(�xn)2〉2

+ 2(N − j − 1)

(N − j )2
〈�xn�xn+1〉2

= α2 + 4αβ + 6β2

N − j
− 2β2

(N − j )2
, (C3)

i.e., Eq. (9) with j = |n − m|.

2. Variance of the CVE

The variance of the CVE of D is derived in a straightforward
manner from Eq. (14),

var(D̂) = var[(�xn)2]

4(�t)2
+ var(�xn�xn+1)

(�t)2

+
cov

(
(�xn)2,�xn�xn+1

)

(�t)2
. (C4)

The individual terms of Eq. (C4) are:

var[(�xn)2] = 2α2 + 8αβ + 12β2

N
− 4β2

N2
, (C5)
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where we have used that var[(�xn)2] = 2(α + 2β)2,
cov((�xn)2,(�xn+1)2) = 2β2, and cov((�xn)2,(�xm)2) = 0
for m > n + 1;

var(�xn�xn+1) = α2 + 4αβ + 7β2

N − 1
− 2β2

(N − 1)2
, (C6)

since var(�xn�xn+1) = (α + 2β)2 + β2, cov(�xn�xn+1,

�xn+1�xn+2) = β2, and cov(�xn�xn+1,�xm�xm+1) = 0

for m > n + 1;

cov((�xn)2,�xn�xn+1) = −4αβ + 8β2

N
, (C7)

since cov((�xn)2,�xn�xn±1) = 2αβ − 4β2 and
cov((�xn)2,�xm�xm+1) = 0 for m > n.

Inserting Eqs. (C5)–(C7) in Eq. (C4) gives Eq. (17). The
variance of σ̂ 2 and the covariance of D̂ and σ̂ 2 are derived in
the same manner and are, to second order in 1/N ,

var(σ̂ 2) = (1 − 4R + 6R2)α2 + 4(1 − 2R + 2R2)αβ + (7 − 12R + 8R2)β2

N

+ (1 − 2R)2α2 + 4(1 − 2R)2αβ + (5 − 20R + 16R2)β2

N2
, (C8)

and

cov(D̂,σ̂ 2) = − (1 − 2R)(α2 + 2αβ + 3β2) + α2/2 − β2

N�t
− (1 − 2R)(α + 2β)2 + β2

N2�t
. (C9)

The variance for the case when the localization error has
been characterized independently [Eq. (18)] is found in the
same manner.

3. Characteristic function of the CVE

The characteristic function of the CVE, p̃, is given by

ln p̃ = N + 1

2
ln

[
4

A

]
+ 1

4
ln[(A + C)2 − B2]

− 1

2
(S1,+ + S1,− + S2,+ + S2,−), (C10)

where

S1,± = N + 1

2
ln

⎡⎢⎣1 +

√√√√1 −
(

B ± √
B2 − 4AC

2A

)2
⎤⎥⎦ ,

(C11)

S2,± = 1

2
ln

⎧⎪⎨⎪⎩1 −
⎡⎣1 −

√
1 − (

B±√
B2−4AC
2A

)2

1 +
√

1 − (
B±√

B2−4AC
2A

)2

⎤⎦N+1⎫⎪⎬⎪⎭ ,

(C12)

and A, B, and C are functions of ω,

A(ω) = 1 + 2ωD

N
(1 + ε), (C13a)

B(ω) = 2ωD

N − 1

[
2 +

(
1 + 1

N

)
ε

]
, (C13b)

C(ω) = −4ωD

N
ε. (C13c)

1. Derivation

To derive the characteristic function of the CVE D̂ of D, we
first note the trivial equality for the distribution of D̂ around
the true value D,

p(D̂|D,σ 2) =
∫

p(�x|D,σ 2)δ

×
[
D̂ − (�xi)2 + 2�xi�xi+1

2�t

]
D�x,

(C14)

where �x = (�x1,�x2, . . . ,�xN )T , and D�x =∏N
i=1 d�xi . We use the Dirac δ function written in terms

of its Fourier transform, δ(x − x0) = ∫∞
−∞ ei(x−x0)ωdω/(2π ),

and that (�xn)2/2 = �xT I�x/N and �xn�xn+1 =
�xT C�x/(N − 1), where I is the identity matrix and
Cij = δi,j±1. This gives

p(D̂|D,σ 2) =
∫ ∞

−∞

eiD̂ω

2π

∫
e− 1

2 �xT {�−1
�x+ iω

�t ( I
N

+ C
N−1 )}�x

(2π )N/2
√

Det��x

×D�x dω, (C15)

where the covariance matrix of �x, ��x , is given by Eqs. (2)–
(4).

We use that both ��x and C can be diagonalized using
a normalized version of the DST given by the orthogonal
transformation matrix U with entries

Uij =
√

2

N + 1
sin

(
πij

N + 1

)
. (C16)

We define ck = [U−1CU]kk = 2 cos θk and note that Pk =
〈P̌k〉 = �t[U−1��xU]kk , where θk = πk

N+1 . Then

p(D̂|D,σ 2) =
∫ ∞

−∞

eiD̂ωdω

2π

√∏N
k=1 λk(ω)

, (C17)
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where

λk(ω) = 1 + iωPk

(�t)2

(
1

N
+ ck

N − 1

)
. (C18)

The characteristic function of the CVE, p̃, is defined as the
Fourier transform of the probability density p, So p̃(ω) =∏N

k=1 λk(ω)−
1
2 .

From Eq. (C18) we see that λk is a second-degree
polynomial in cos θk . So it can be written in the form λk =
A + B cos θk + C cos2 θk , where A, B, and C are given in
Eq. (C13). The logarithm of the characteristic function is thus
given by

− 2 ln p̃ =
N∑

k=1

ln(A + B cos θk + C cos2 θk). (C19)

We use that

N∑
k=1

f (cos θk) = −1

2
[f (1) + f (−1)] + 1

2

2N+2∑
k=1

f (cos θk)

(C20)

to rewrite Eq. (C19) as

− 2 ln p̃ = −1

2
ln[(A + B + C)(A − B + C)]

+ 1

2

2N+2∑
k=1

ln λk. (C21)

The last term can be further simplified,

1

2

2N+2∑
k=1

ln λk

= 1

2

2N+2∑
k=1

ln
[
C
(

cos θk + a+
2C

) (
cos θk + a−

2C

)]

= 1

2

2N+2∑
k=1

[ln(a+ + 2C cos θk) + ln(a− + 2C cos θk)]

− (N + 1) ln(4C), (C22)

where we have defined a± = B ± √
B2 − 4AC.

To simplify the last two terms of Eq. (C22), we define the
sum

S(a,b) = 1

2

2N+2∑
k=1

ln(a + b cos θk)

= 1

2

2N+2∑
k=1

ln[c(β + eiθk )(β + e−iθk )]

= (N + 1) ln

(
bβ±

2

)
+ 1

2

2N+2∑
k=1

ln

(
1 + eiθk

β±

)

+ 1

2

2N+2∑
k=1

ln

(
1 + e−iθk

β±

)
, (C23)

with c = b
2β

and β± = a
b

±
√

( a
b
)2 − 1. The two last terms in

Eq. (C23) can be rewritten as

2N+2∑
k=1

ln

(
1 + e±iθk

β±

)
= −

2N+2∑
k=1

∞∑
l=1

(− e±iθk

β±

)l
l

= −
∞∑
l=1

(−β±)−l

l

2N+2∑
k=1

e±ilθk . (C24)

The sum
∑2N+2

k=1 e±ilθk is equal to zero because its argument
makes a full circle in the complex plane, except when l is equal
to an integer times 2N + 2. Thus,

2N+2∑
k=1

ln

(
1 + e±iθk

β±

)
= −2(N + 1)

∞∑
m=1

[
(−β±)−2(N+1)

]
2(N + 1)m

= ln
(

1 − β
−2(N+1)
±

)
. (C25)

Inserting Eq. (C25) in Eq. (C23) gives

S(a,b) = (N + 1) ln

(
bβ±

2

)
+ ln(1 − β

−2(N+1)
± )

= ln[(a ±
√

a2 − b2)N+1 − (a ∓
√

a2 − b2)N+1]

−(N + 1) ln 2, (C26)

where we have used that β+β− = 1.
We insert this result into Eq. (C22) and use Eq. (C21) to get

ln p̃ = 1

2
(N + 1) ln(4C) + 1

4
ln[(A + C)2 − B2]

−1

2
S(a+,2C) − 1

2
S(a−,2C), (C27)

with a± = B ± √
B2 − 4AC.

To avoid numerical problems, we rewrite Eq. (C27) to get
Eq. (C10).

4. Difference between CVE and MSD

The CVE of the diffusion coefficient D was constructed
as a maximally simple unbiased estimator of D of a particle
based on estimates of the covariance function of the particle’s
recorded single-time-lapse displacements. In this spirit it
is also possible to construct a maximally simple unbiased
estimator D̂msd of D based on estimates of the first two
MSDs, d2

1 and d2
2 . While this estimator, given by D̂msd =

(d2
2 − d2

1 )/(2�t), has the same expected value as the CVE of
D—they are both unbiased—the two estimators have different
precision, D̂msd being less precise than CVE. This is seen as
follows.

From Eq. (8) we have

2�tD̂msd = (�x1)2 + (�xN )2 + (N + 1)
∑N−1

n=2 (�xn)2

N (N − 1)

+ 2
∑N−1

n=1 �xn�xn+1

N − 1
, (C28)
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while Eq. (14) gives us

2�tD̂cve =
∑N

n=1(�xn)2

N
+ 2

∑N−1
n=1 �xn�xn+1

N − 1
. (C29)

Comparison of Eqs. (C28) and (C29) reveals the subtle differ-
ence between D̂msd and D̂cve: while the CVE of D weights all
the squared displacements evenly [first term in Eq. (C29)],
the maximally simple MSD-based estimator weights the
contributions from the displacements at the start and the
end of the time series, �x1 and �xN , by only 1/(N − 1)
and the rest of the displacements by (N + 1)/(N − 1) [first
term in Eq. (C28)]. These unequal weights on equivalent
terms represent a suboptimal use of information: A simple
calculation proves that it gives D̂msd a larger variance than
D̂cve has.

APPENDIX D: TRANSFORMING THE MEASURED DATA
INTO STATISTICALLY INDEPENDENT DATA

We here show how discrete sine transformation of the
measured set of diffusive displacements on a substrate at rest
produces statistically independent data. Exact statistical tests
and practical success with maximum likelihood estimation
(Sec. 1 of this appendix) build on this simplification. We then
review how DFT produces approximately independent data
(independent to order 1/N ) for a much larger class of data
(Sec. 2 of this appendix).

1. Discrete sine transformation produces independent data for
diffusion on a substrate at rest

The covariance matrix for the set �x =
(�x1,�x2, . . . ,�xN ) of measured displacements of a
particle diffusing in a medium or on a substrate at rest
[Eqs. (2)–(4)] is a symmetric, tridiagonal Toeplitz matrix. It
can be written

��x = [2(1 − 2R)D�t + 2σ 2]I − (σ 2 − 2RD�t)M, (D1)

where I is the identity matrix and Mij = δi,j±1. It is easy to
verify that the set of N vectors (q(k))Nk=1 with entries

q(k)
n = �t sin[πkn/(N + 1)] (D2)

are eigenvectors of M and consequently eigenvectors of ��x .
The associated eigenvalues are

λk = 2{1 − cos[πk/(N + 1)]}. (D3)

Comparison of Eq. (D2) with Eq. (11) reveals that the matrix
M−1 composed of (q(k))k as columns is the matrix equivalent
of the DST, i.e., M−1�x = |�x. Consequently,

〈 |�x |�x
T 〉 = M−1��x(M−1)T = P, (D4)

where P is a diagonal matrix with diagonal entries (Pk)Nk=1

given in Eq. (10). This proves that |�xk and |�xl are
uncorrelated for k = l. Since (�xn)n are Gaussian distributed
and independent, ( |�xk)k , being linear combinations of (�xn)n,
are jointly Gaussian distributed. This implies that |�xk and
|�xl are statistically independent for k = l, the reason being
that uncorrelated jointly Gaussian distributed variables are
independent.

2. Discrete Fourier transformation approximately removes
statistical dependencies in data

We briefly review how DFT of a stochastic time series
results in approximately independent data under quite general
assumptions. These assumptions are satisfied by time-lapse
recorded displacements of a single diffusing particle.

We consider a zero-mean stationary stochastic process
z(t), which we sample at constant time lapse �t . The
autocovariance of the resulting sequence z = (z1,z2, . . . ,zN )
depends only on the relative separation in time,

〈zmzn〉 = C|m−n|. (D5)

We assume that j |Cj | is summable, i.e.,
∞∑

j=0

j |Cj | < ∞. (D6)

This assumption is satisfied by time series with, e.g., finite or
exponentially decreasing autocovariance. Consequently, it is
satisfied by stationary series from linear dissipative systems
driven by white noise, such as diffusion on a substrate that is
fluctuating or at rest.

Let ẑ denote the DFT of z. The off-diagonal elements of the
correlation matrix of ẑ/

√
N are bounded by 2

∑N
j=0 j |Cj |/N ;

thus, by Eq. (D6), they vanish except for terms of order 1/N :
〈ẑk ẑ

∗
l 〉/N = O(1/N ) for k = l, while 〈|ẑk|2〉/N = O(1) [47].

Consequently, for large N , (almost) all information in the time
series is contained in the periodogram P̂k = |ẑk|2/(N�t),
and we can ignore correlations between different spectral
values. In general, absence of correlations does not imply
independence. However, if (z1,z2, . . . ,zN ) are jointly Gaussian
distributed—as is the case for our time series—so are the real
and imaginary parts of (ẑ1,ẑ2, . . . ,ẑN ) (modulo redundancies
due to z being real), and then they are independent to the
extent that they are uncorrelated. Thus, ẑk/

√
N and ẑl/

√
N

are independent to lowest order in 1/N for k = l.
We do not need to assume that (z1,z2, . . . ,zN ) are jointly

Gaussian distributed, however. A central limit theorem for the
DFT [48] only requires that (z1,z2, . . .) is an ergodic process—
and ours is—to ensure that (ẑk/

√
N )k=··· are independent and

Gaussian distributed to order 1/N . Since the periodogram
values are proportional to |ẑk|2/N , they thus are independent,
except for terms of order 1/N2 or higher.

APPENDIX E: MAXIMUM LIKELIHOOD ESTIMATOR
FOR DIFFUSION ON A SUBSTRATE AT REST

We here derive an efficient algorithm for maximum likeli-
hood estimation (Sec. 1 of this appendix) and investigate the
source of the bias of the MLE (Sec. 2 of this appendix) for
diffusion in a medium or on a substrate at rest.

1. Fast MLE algorithm

Finding the MLE of D and σ 2 is a two-dimensional
optimization problem. We reduce it to a one-dimensional
problem by using the scale-invariance of diffusion. To this
end, we introduce two new parameters (λ,φ),

λ = (2D�t + 2σ 2)�t, φ = arccot(SNR). (E1)

The parameter φ obviously is a measure of the SNR. The
parameter λ describes the overall scale of power spectra and
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periodograms for R = 0, i.e., in the absence of motion blur.
Specifically, λ is the power spectral density of free diffusion
(recorded with localization errors) evaluated in the middle of
its frequency range, at f = fNyq/2; see Eq. (13).

With Pk = 〈P̌k〉, Eq. (E1) used in Eq. (10) gives Pk =
λFk(φ), where Fk(φ) = ak cos2 φ + bk sin2 φ with ak = 1 −
2R(1 − cos πk

N+1 ) and bk = 1 − cos πk
N+1 . The log likelihood

then reads

lnL
(
(λ,φ|(�xn)Nn=1

) = −1

2

N∑
k=1

{
( |�xk)2

λFk(φ)
+ ln[λFk(φ)]

}
.

(E2)

Stationarity of this log likelihood with respect to λ requires
that

λ = λ(φ) = 1

N

N∑
k=1

( |�xk)2

Fk(φ)
. (E3)

We use this result to eliminate λ in the log-likelihood function
in Eq. (E2) and are left with a one-dimensional optimization
problem. The value for φ that solves this problem for a given
time series is our estimate φ̂. Once it has been found by
numerical maximization of Eq. (E2), Eq. (E3) gives the MLE
for λ̂. With φ̂ and λ̂ thus determined, the MLE for (D,σ 2) is

D̂ = λ̂ cos2 φ̂

2D(�t)2
, σ̂ 2 = λ̂ sin2 φ̂

2�t
. (E4)

The one-dimensional optimization problem for φ is consid-
erably easier for a computer to solve than the two-dimensional
problem of maximizing the likelihood with respect to D and
σ 2. In practice, this reduction of dimension only speeds up
the MLE algorithm by a factor of two to three, since each
calculation of the likelihood function takes longer, as it now
involves a double sum and calls to transcendental functions.
However, the reduction to one dimension allows us to visualize
the likelihood landscape as a simple plot of a function of one
parameter, φ [Fig. 3(b)].

2. Bias of the MLE

Monte Carlo simulations show that the MLEs for D and σ 2

are biased [Figs. 4(a) and 4(b)]. We show here that this is so
because they do not admit negative values for D and σ 2. Such
negative values would be physically meaningless, so it makes
sense that the two estimators by design avoid negative values.
The cost of this meaningful design is bias, however.

A common source of bias in ML estimators is asymmetry
of the likelihood function with respect to the true values,
e.g., skewness. We derive an approximation to the bias of
the MLE due to skewness by Taylor expanding the stationarity
condition ∂θi

ln[L(θ)] = 0, where θ = (D,σ 2)T and ∂θi
is the

partial derivative with respect to θi .
To order 1/N , this bias is

bi(θ) = −
∑
jkm

I ijIkm

{〈
∂θj

∂θk
ln[L(θ)]∂θm

ln[L(θ )]
〉

+ 1

2

〈
∂θj

∂θk
∂θm

ln[L(θ )]
〉}

, (E5)

where I is the Fisher information matrix and I ij ≡ (I−1)ij .
The Fisher information matrix is determined using Eq. (22).
Since L is Gaussian and Pk is a first-degree polynomial in D

and σ 2, we have that

〈
∂θi

∂θj
∂θk

ln[L(θ)]
〉 = −2

N∑
n=1

∂θi
Pn∂θj

Pn∂θk
Pn

P 3
n

and

〈
∂θi

∂θj
ln[L(θ )]∂θk

ln[L(θ )]
〉 = N∑

n=1

∂θi
Pn∂θj

Pn∂θk
Pn

P 3
n

.

Thus, the bias due to skewness is zero (to order 1/N ), but
we introduce a bias when we require D̂ and σ̂ 2 to be positive.
For a given experimental realization of the measurements �x,
there is a finite probability that the maximum of lnL is found
at a physically meaningless negative value of either D or σ 2.
This probability is not symmetric in (D,σ 2), the maximum
is more likely to be in the region σ 2 < 0 for high SNR and
more likely to be in the region D < 0 for low SNR. Since we
require D and σ 2 to be positive, we introduce positive bias
in σ̂ 2 and negative bias in D̂ for high SNR, and vice versa
for low SNR. Since this bias stems from the dispersion of the
measured likelihood function around its true maximum, we
expect this bias to be of the same order as the standard error of
the estimates, i.e., that it decreases as N−1/2. This is confirmed
by numerical results [Figs. 4(a) and 4(b)].

APPENDIX F: THE EFFECT OF FINITE TIME-LAPSE
RECORDING AND MOTION BLUR ON A

POWER SPECTRUM

In order to obtain a power spectrum from an experimentally
measured time series (zn)Nn=1, we compute the DFT of the time
series as

ẑk = �t

N−1∑
n=0

e−i2πkn/Nzn. (F1)

Here the mode number k corresponds to the frequency fk =
k�f . From Eq. (F1) and the identity zn = 1

�t

∫ �t

0 z(tn − t)dt ,
which gives zn with motion blur due to a shutter time equal to
the time lapse, we have

ẑk =
N−1∑
n=0

e−i2πkn/N

∫ �t

0
z(tn − t)dt

=
N−1∑
n=0

e−i2πkn/N

∫ �t

0

1

tN

∞∑
k′=−∞

ei2πk′(tn−t)/tN ˜̃zk′dt

= 1

tN

∞∑
k′=−∞

z̃k′

∫ �t

0
e−i2πk′t/tN dt

N−1∑
n=0

e−i2π(k−k′)n/N

=
∞∑

m=−∞

1 − e−i2πk/N

i2π (k/N + m)
z̃k+mN. (F2)
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Here we have used the infinite Fourier series

z(t) = 1

tN

∞∑
k=−∞

ei2πkt/tN z̃k, (F3)

where the finite-continuous-time Fourier transforms z̃k are
defined as

z̃k =
∫ tN

0
z(t)e−i2πkt/tN dt. (F4)

We also used that
∑N−1

n=0 ei2πkn/N = 0, except for k = mN

with m ∈ Z.
We can then express the expected value of the measured

periodogram, the power spectrum Pf , in terms of the power
spectrum P

(cont)
f of the corresponding continuous-time process

z(t) as derived in the absence of finite sampling-time effects
and localization errors,

P
(sub)
f = 1 − cos (2πf �t)

2π2(�t)2

∞∑
m=−∞

P
(sub,cont)
f +mfsample

(f + mfsample)2
. (F5)

This equation gives the expected value of the power spectrum
for a time-lapse recorded stationary process measured with
maximally open shutter. The same result was found in [49]
for time series of infinite duration. We have here shown that
it is valid for time series of any finite duration as well. This
is no surprise: For a smooth power spectrum without spikes
and other abrupt changes in value, leakages [50] is no issue,
so finite time of measurement simply makes the spectrum
discrete, such that f only takes values that are integer multiples
of �f , the inverse measurement time, while the spectral values
remain unchanged [31].

The infinite sum over m in Eq. (F5) is a so-called periodic
summation. It makes F̃ (per) a periodic function of f with period
fsample = 1/�t . It can be evaluated analytically. It is of the
form

F̃ (per)(f ) =
∑
m∈Z

F̃ (f + mfsample). (F6)

Since P (sub,cont) is a Lorentzian, we have, apart from m-
independent factors,

F̃ (f ) = 1

f 2
(
fc

2 + f 2
) = 1

fc
2

(
1

f 2
− 1

fc
2 + f 2

)
. (F7)

From [31, Sec. VI] we have that∑
m∈Z

1

fc
2 + (f + mfsample)2

= π�t

fc

1 − c2

1 + c2 − 2c cos(2πf �t)
, (F8)

with c = exp(−2πfc�t). By taking the limit fc → 0 on both
sides in this result, we also have that∑

m∈Z

1

(f + mfsample)2
= 2π2�t2

1 − cos(2πf �t)
. (F9)

Thus,

F̃ (per)(f ) = 2π2(�t)2fc
−2

1 − cos(2πf �t)
− π�t(1 − c2)fc

−3

1 + c2 − 2c cos(2πf �t)
.

(F10)

From Eqs. (28) and (F5) we have that

P
(sub)
f = Kx[1 − cos(2πf �t)]

4π4(�t)2
F̃ (per)(f ), (F11)

which with some rearrangement of terms gives Eq. (38).

APPENDIX G: ESTIMATION FOR DIFFUSION ON A
FLUCTUATING SUBSTRATE

We here give estimators of the diffusion coefficient D and
parameters characterizing experimental conditions, σ 2 and φ,
for more general cases than the estimators presented in the
main text (Secs. V and VI). Section 1 of this appendix presents
a CVE of D for the case when both φ and σ 2 have been
estimated a priori. Section 2 of this appendix gives estimators
(both CVE and MLE) for the case when more than one mode is
needed to describe the substrate’s fluctuations. Finally, Section
3 of this appendix generalizes the estimators given in Section
2 to the case when the camera shutter is only kept open for a
fraction of the time lapse.

1. CVE for independently characterized localization errors

If the substrate fluctuations and the localization errors both
have been characterized independently, the bias of the CVE
for free diffusion [Eq. (16)] due to substrate fluctuations is,
with c = exp(−2πfc,x�t),

bD(Kx,fc,x) = 4πfc,x�t − 3 + 4c − c2

(1 − 2R)(2πfc,x�t)3
Kx. (G1)

So we can construct an unbiased CVE as

D̂ = (�xn)2 − 2σ̂ 2

2(1 − 2R)�t
− bD(K̂x,f̂c,x), (G2)

with bD given by Eq. (G1).

a. Diffusion on DNA

In the special case of diffusion on a taut polymer such as
DNA (Sec. IV D), the bias is given by

bD(Kx,fc) = 8πfc�t − 3 + 4c2 − c4

(1 − 2R)(4πfc�t)3
Kx. (G3)

2. Including higher modes of substrate fluctuations

a. Power spectrum

If multiple modes are needed to describe the substrate’s
motion, these are included in the MLE by replacing the term
of the power spectrum corresponding to substrate fluctuations
[Eqs. (40), (50), (51)] with a multimode term.
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In the case of diffusion on a generic multidimensional fluctuating substrate [Eq. (40)], the power spectrum then is

P�x,f = 2ζ (s)2D(�t)2 + [2σ 2�t − 2ζ (s)2D�t2/3][1 − cos(2πf �t)]

+kBT

γ

K∑
k=1

{
2 xk(s)2

λ3
x,k�t ck

[1 − cos(2πf �t)]

[
c2
k − 1 + 2λx,k�t ck + (1 + ck)(1 − ck)3

1 + c2
k − 2ck cos(2πf �t)

]}
, (G4)

where γ is the substrate’s drag coefficient, xk(s),k = 1,2, . . . are the spatial eigenfunctions of the substrate’s motion with the
slowest relaxation rates, λx,k = 2πf (k)

c,x , and ck = exp(−λx,k�t). If the system is linear, λx,k does not depend on s. K is chosen
such that all modes that contribute significantly to the motion, are included. If no theory exists or is known for the eigenmodes
of the substrate motion, the parameters (λx,k)Kk=1 and [xk(s)]Kk=1 can be fitted as independent parameters for a fixed value of s,
i.e., for a given “point” on the substrate. By a point we here mean a range or area or volume with linear extent large enough to
contain the observed trajectory of the diffusion particle. We assume that this range or area or volume is small, and hence a point,
compared to the characteristic length scales of those eigenmodes of substrate motion which contribute to the observed motion of
the tracked particle. We define taut to mean that this condition is satisfied.

For diffusion on a fluctuating, taut, but flexible fiber or polymer, such as DNA, the power spectrum of the transversal laboratory
coordinate is

Py,f = σ 2�t + kBT

γ⊥

K∑
k=1

{
yk(s)2

λ3
k�t ck

[
c2
k − 1 + 2λk�t ck + (1 + ck)(1 − ck)3

1 + c2
k − 2ck cos(2πf �t)

]}
, (G5)

with ck = exp(−λk�t), while the power spectrum of displacements in the longitudinal laboratory coordinate is

P�x,f

= 2ζ (s)2D(�t)2 + [2σ 2�t − 2ζ (s)2D(�t)2/3] [1 − cos (2πf �t)]

+
(

kBT

γ⊥

)2 K∑
k,l=1

2xk,l(s)2

λkλl(λk + λl)2�t ck,l

[1 − cos(2πf �t)]

[
c2
k,l − 1 + 2(λk + λl)�t ck,l + (1 + ck,l)(1 − ck,l)3

1 + c2
k,l − 2ck,l cos(2πf �t)

]
,

(G6)

where ck,l = exp[−(λk + λl)�t].

As above, yk(s) are spatial eigenfunctions of the DNA’s
transversal motion, and xk,l(s) = ∫ s

0 y ′
k(s)y ′

l (s)ds, where a
prime denotes derivative with respect to s, while γ⊥ is the drag
coefficient of the DNA in its perpendicular direction. Note
that the number of contributing modes of substrate motion
in P�x,f is K2 when the number of contributing modes of
substrate motion in Py,f , and hence by assumption in Pz,f , is
K . This is because the fixed contour length of the DNA makes
the longitudinal motion of a point on the DNA a function of
its transversal motion.

When a theory gives the spatial eigenmodes of the DNA’s
motion (see [22]), it suffices to fit two parameters, the DNA’s
drag coefficient for transversal motion γ⊥ and the protein’s
mean position s on the DNA. This assumes kBT is known.
If it is not, it should be fitted as well. If no such theory
exists, (λk)Kk=1, [xk,l(s)]Kk,l=1, and [yk(s)]Kk=1 must all be fitted
as independent parameters for each given value of s.

b. CVE

If the substrate fluctuations have been characterized inde-
pendently, an unbiased CVE that takes multiple modes of the
substrate’s motion into account, is constructed by replacing bD

in Eq. (56) with

bD (φ) =
K∑

k=1

(
1 − ck

λk�t

)3

xk(s)2. (G7)

As for the MLE of the previous section, K is chosen such
that all modes that contribute significantly to the motion, are
included.

For diffusion on taut, inextensible, but flexible fiber, such
as DNA, the bias of the CVE is

bD (φ) =
K∑

k,l=1

(1 − ck,l)3

λkλl(λk + λl)2(�t)3
xk,l(s)2. (G8)

If also the localization errors have been characterized
independently, bD is given by

bD(φ) =
K∑

k,l=1

2(λk + λl)�t − 3 + 4ck,l − c2
k,l

(1 − 2R)λkλl(λk + λl)2(�t)3
xk,l(s)2, (G9)

which is inserted in Eq. (G2).

3. Camera shutter time shorter than time lapse

In experiments the camera shutter is usually kept open
during the whole experiment; i.e., the camera shutter time is
equal to the time lapse [25]. In almost all relevant scenarios this
is optimal since it maximizes the number of photons recorded
in a frame and thus minimizes the localization error. It may be
necessary, e.g., due to excessive motion blur, to open the shutter
only for part of the time lapse, i.e, for a time interval τ < �t .
In this case the statistics of the measured time series change.
We give below the power spectrum and covariance which in
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this case should be used in the MLE and CVE instead of the
corresponding expressions given in Sec. IV.

a. Power spectrum

If the shutter is held open for the duration τ < �t , Eq. (36)
must be replaced with

P�sx,f = 2D�t{�t − [1 − cos(2πf �t)]τ/3} (G10)

and Eq. (38) with

P
(sub)
f =

∞∑
m=−∞

1 − cos[2π (f + mfsample)τ ]

2π2τ 2(f + mfsample)2
P

(sub,cont)
f +mfsample

= 2Kx(s)�t

(2πfc)3τ 2

{
2πfcτ − sinh(2πfcτ )

+ (1 − c2)[cosh(2πfcτ ) − 1]

1 + c2 − 2c cos(2πf �t)

}
, (G11)

where the infinite sum was done like that in Eq. (F5), by
Poisson resummation. The power spectra must be changed
accordingly in Eq. (40), Eqs. (50) and (51), and Eqs. (G4)–
(G6).

b. Covariance

If the shutter is kept open only for some fraction τ/�t of the
time lapse, the autocovariance of the substrate’s fluctuations is

given by

Cx(s,j�t ; τ )

=
⎧⎨⎩
∑K

k=1
[2λkτ−2(1−ck )]

λ3
kτ

2 xk(s)2 for j = 0,∑K
k=1

2[cosh(λkτ )−1]
λ3

kτ
2 xk(s)2c

|j |
k elsewise.

(G12)

From these expressions, bD can be calculated as bD =
[Cx(s,�t ; τ ) − Cx(s,2�t ; τ )]/�t when σ , the amplitude of
localization errors, is unknown, and as bD = [Cx(s,0; τ ) −
Cx(s,�t ; τ )]/�t when the localization errors have been char-
acterized independently and σ hence is known. The bias bD

can then be inserted into Eq. (56) or Eq. (G2), respectively, to
construct an unbiased CVE of D.

APPENDIX H: VARIANCE OF ESTIMATOR FOR A
FLUCTUATING SUBSTRATE

We here derive the variance of estimators D̂ and σ̂ 2 for
the diffusion coefficient D and the variance σ 2 of localization
errors. We do this for the case when substrate fluctuations
have been characterized independently and for the case when
both substrate fluctuations and localization error have been
characterized independently. Section 1 of this appendix details
the derivation of the variance of CVE, while Section 2 of this
appendix details the derivation of the variance of MLE.

1. Derivation of the variance of the CVE

We here derive the variance of the unbiased CVE [Eq. (56)] for diffusion on a fluctuation substrate. We ignore the contribution
to the variance from uncertainties in ζ (s) in the following calculations. Their contribution is found afterwards by standard
propagation of errors. From Eq. (56) the variance of the unbiased CVE is then

var
(
D̂
) = var[(�xn)2]

4(�t)2
+ var(�xn�xn+1)

(�t)2
+ cov((�xn)2,�xn�xn+1)

(�t)2
+ var(b̂D). (H1)

The variance of b̂D is found by standard propagation of errors as given by Eq. (63). The other three terms are calculated as in
Sec. III C, where we here must take contributions from DNA fluctuations into account as well,

var[(�xn)2] = var[(�xn)2]

N
+ 2

N2

N−1∑
j=1

(N − j )cov((�xn)2,(�xn+j )2)

= 8(α + β)2 + 4(1 − 1/N )β2

N
+ 8(α + β)C0 − 8(1 − 1/N )βC1

N
+ 2C2

0

N
+ 4

N2

N−1∑
j=1

(N − j )C2
j , (H2)

since

var[(�xn)2] = 8(α + β)2 + 8(α + β)C0 + 2C2
0 , cov((�xn)2,(�xn+1)2) = 2β2 − 4βC1 + 2C2

1 ,

cov((�xn)2,(�xn+j )2) = 2C2
j , j > 1,

where α ≡ ζ (s)2D�t and β ≡ σ 2 − ζ (s)2D�t/3;

var(�xn�xn+1) = var (�xn�xn+1)

N − 1
+ 2

(N − 1)2

N−2∑
j=1

(N − j − 1)cov(�xn�xn+1,�xn+j�xn+j+1)

= 4(α + β)2 + 3β2

N − 1
− 2β2

(N − 1)2
+ 4(α + β)C0 − 6βC1 + 4(α + β)C2 − 2βC3

N − 1
+ 4βC1 − 4(α + β)C2 + 4βC3

(N − 1)2

+ C2
0 + C2

1

N − 1
+ 2

(N − 1)2

N−2∑
j=1

(N − j − 1)
(
Cj−1Cj+1 + C2

j

)
, (H3)
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since

var (�xn�xn+1) = 4(α + β)2 + β2 + 4(α + β)C0 − 2βC1 + C2
0 + C2

1 ,

cov (�xn�xn+1,�xn+2�xn+3) = β2 − 2βC1 + 2(α + β)C2 + C0C2 + C2
1 ,

cov (�xn�xn+1,�xn+2�xn+3) = −βC3 + C1C3 + C2
2 ,

cov(�xn�xn+1,�xn+j�xn+j+1) = Cj−1Cj+1 + C2
j , j > 2;

cov((�xn)2,�xn�xn+1) = 2

N (N − 1)

N−2∑
j=0

(N − j − 1)cov((�xn)2,�xn+j�xn+j+1)

= −8(α + β)β

N
+ −4βC0 + 8(α + β)C1 − 4[1 − 1/(N − 1)]βC2

N

+ 4

N (N − 1)

N−2∑
j=0

(N − j − 1)CjCj+1, (H4)

since

cov((�xn)2,�xn�xn+1) = −4(α + β)β − 2βC0 + 4(α + β)C1 + 2C0C1,

cov((�xn)2,�xn+1�xn+2) = −2βC2 + 2C1C2,

cov((�xn)2,�xn+j�xn+j+1) = 2CjCj+1, j > 1.

Combining Eqs. (H2)–(H4) gives the variance [Eq. (59)] of the unbiased CVE defined by Eq. (56). The variance [Eq. (H8)] of
the CVE for a priori determined noise amplitude [Eq. (G2)] is derived in a similar fashion.

2. Variance of D̂ for known variance σ 2 of localization errors

a. MLE

We here derive an expression for the variance of the MLE D̂ for the case of diffusion on a fluctuating substrate. We do this
for the case when the substrate fluctuations have been characterized independently. We also do it for the case when substrate
fluctuations and localization errors both have been characterized independently.

Let φ denote the parameters that have already been estimated independently, and let φ̂ denote the estimates. Let θ denote the
parameters that we want to estimate using MLE. When we use the estimates φ̂ as fixed parameters in the estimation of θ , the
errors on φ̂, �φ = φ̂ − φ∗, propagate to θ̂ . Here φ∗ denotes the true value of φ. Since the stationarity condition

lθi
(θ̂ |φ̂,x) ≡ ∂ lnL(θ̂

∣∣φ̂,x)

∂θi

= 0 (H5)

gives θ̂ only as an implicit function of φ, we cannot use classical propagation of errors to calculate the variance of θ̂ . We can,
however, follow a derivation similar to the one that shows the approximate equality between the inverse Fisher information and
the variance of the MLE, and derive a first-order approximation (in 1/N ) of the variance of θ̂ .

From the stationarity condition [Eq. (H5)],

0 = lθi
(θ̂ |φ̂,x) = lθi

(
θ∗|φ∗,x

)+ lθi θj
(θ∗|φ∗,X)�θj + lθiφk

(θ∗|φ∗,X)�φk + Op(1)

= lθi
(θ∗|φ∗,X) + (

Iθ

)
ij
�θj + (Iθ

φ)ik�φk + Op(1),

since the central limit theorem dictates that lθiθj
(θ∗|φ∗,X) = (Iθ )ij + Op(1). Thus,

�θm = −(Iθ )mi[lθi
(θ∗|φ∗,X) + (

Iθ
φ

)
ik
�φk] + Op(N−1), (H6)

where Imi = (I−1)mi , and we sum over repeated indices. Then

var(θ̂ )mn = 〈�θm�θn〉 � (Iθ )mi
[ 〈

lθi
(θ∗|φ∗,X)lθj

(θ∗|φ∗,X)
〉+ (

Iθ
φ

)
ik

〈�φk�φl〉
(
Iθ

φ

)
lj

+ (
Iθ

φ

)
il

〈
lθi

(θ∗|φ∗,X)�φl

〉+ (
Iθ

φ

)
jk

〈
lθj

(θ∗|φ∗,X)�φk

〉 ]
(Iθ )jn

= (Iθ )mn + (Iθ )mi
(
Iθ

φ

)
ik

var
(
φ̂
)
kl

(
Iθ

φ

)
lj

(Iθ )jn , (H7)

since lθj
(θ∗|φ∗,X) and φ̂k are uncorrelated.
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b. CVE

When also σ 2 has been determined independently, the variance of the unbiased CVE is derived as for unknown σ 2. It is

var
(
D̂
)

D2
= var[(�xn)2]

[2ζ (s)2D(1 − 2R)�t]2
+ var(σ̂ 2)

[ζ (s)2D(1 − 2R)�t]2
+ var[bD(σ̂ 2,φ̂)]

[ζ (s)2D]2
+ var[ζ (s)2]

ζ (s)4
, (H8)

where now, differing from Eq. (H2) and with ε = σ 2/[ζ (s)2D�t] − 2R,

var[(�xn)2] = [2ζ (s)2D�t]2 2(1 + ε)2 + (1 − 1/N)ε2

N
+ 8ζ (s)2D�t

(1 + ε)C0 − (1 − 1/N )εC1

N

+ 2C2
0

N
+ 4

N2

N−1∑
j=1

(N − j )C2
j . (H9)

APPENDIX I: MONTE CARLO SIMULATIONS OF
DIFFUSION ON DNA

We simulated the laboratory motion of a point on the DNA
as the motion of a massively overdamped harmonic oscillator
in a heat bath [51]. Since we thus simulate only one mode of the
DNA’s motion, we can simulate the coupling between the two
transversal modes and the longitudinal mode exactly without
having to simulate the motion of the entire DNA strand. We
use that [22]

x(s,t) = s − 1

2

∫ s

0
[y ′(s ′,t)2 + z′(s ′,t)2]ds ′

= s − 1

2

∫ s

0
[A1,y(t)2 + A1,z(t)

2]y ′
1(s ′)2ds ′

= s − y(s ′,t)2 + z(s ′,t)2

2

∫ s

0

y ′
1(s ′)2

y1(s)2
ds ′

= s −
√

πfcKx

2Ky

[y(s ′,t)2 + z(s ′,t)2], (I1)

since the motions in the two transversal directions are
equivalent such that y1 = z1 and fcKx and Ky are constant
along the DNA.

Experimental data are usually measured with the camera
shutter kept open for the duration of a time lapse �t . So to
simulate positions we need to integrate over the full time lapse,

yDNA
n+1 = 1

�t

∫ �t

0
yDNA(tn + t)dt, (I2)

We do this by approximating the integral with a sum,

yDNA
n+1 � h

1/h∑
q=1

yDNA(tn + qh�t), (I3)

where 1/h is an integer and Eq. (I3) approaches Eq. (I2) as
h → 0. The motion of a transversal mode is equivalent to the
motion of a Brownian particle trapped in an optical trap. We
can thus simulate yDNA according to [31],

yDNA(tm+1) = e−2πfch�tyDNA(tm) + �yhη
DNA
m , (I4)

where m = 1,2, . . . ,(N + 1)/h, ηDNA
m is a normalized

Gaussian white noise, and

�yh ≡
√

(1 − e−4πfch�t )Ky(s)

4πfc
.

The y position of the DNA measured at time tn is thus

yDNA
n = h

1/h∑
q=1

yDNA(tn/h+q). (I5)

The diffusive movement of the protein is simulated in a similar
fashion,

xDiff(tm+1) = xDiff(tm) +
√

2Dh�tηDiff
m , (I6)

where m = 1,2, . . . ,(N + 1)/h and ηDiff
m is a normalized

Gaussian white noise.
We simulated three time series, {yDNA(tm)}(N+1)/h

m=−Q/h,

{zDNA(tm)}(N+1)/h

m=−Q/h, and {xDiff(tm)}(N+1)/h

m=−Q/h, where we set
x(t−Q/h) = y(t−Q/h) = z(t−Q/h) = 0 and 1/h = 100, and Q

was chosen such that the DNA thermalized before we sampled
the time series. We calculated the longitudinal positions of the
DNA, xDNA, from Eq. (I1) and calculated the motion blurred
positions {yDNA

n }Nn=0, {xDNA
n }Nn=0, and {xDiff

n }Nn=0 using Eq. (I5).
We finally summed the DNA motion and the diffusive

movement and added positional noise to obtain the “measured”
positions,

xn = xDiff
n + xDNA

n + σξn, (I7)

where ξn is standard white noise. We also calculated the
transversal positions,

yn = yDNA
n + σξn. (I8)

Figures 8(a) and 8(b) present numerical results for the
performance of the MLE that explicitly accounts for DNA
fluctuations, and for the CVE, which does not, as a function
of the relaxation rate 2πfc. Figures 8(c) and 8(d) compare
the performances of the MLE and CVE in the case when the
DNA’s fluctuations have been characterized a priori. Figures
8(e) and 8(f) show the performances of the estimators for the
case when both the DNA’s motion and the localization errors
have been characterized independently.

1. Correlations between transversal and longitudinal
DNA fluctuations

In order to extract as much information as possible about the
motion of the DNA from the experimental time series, we use
the periodograms of both the longitudinal and the transversal
motion, (P�x)f and (Py)f . To do this in practice, we assume
that P̂y,f and P̂�x,f are independent. However, since the
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FIG. 10. Heat map of correlations between P̂y,f and P̂�x,f (a
value of 1 signifies that P̂y,f and P̂�x,f are perfectly correlated while
a value of 0 signifies complete decorrelation). From Monte Carlo
generated data with D = 0.3 μm2/s, fc = 30 Hz, Kx = 2.1 μm,
Ky = 0.21 μm, and σ 2 = 1500 nm. The ensemble size is M =
10 000, the length of time series is N = 100, and the shutter is kept
open for the whole time lapse τ = �t . The plot shows that overall it is
a good approximation to assume that P̂y,f and P̂�x,f are uncorrelated.

longitudinal motion of the DNA is dependent on its transversal
motion, P̂y,f and P̂�x,f are not completely independent. We
calculated the correlations between P̂y,f and P̂�x,f for an
ensemble of 10 000 Monte Carlo generated time series of
length N = 100. The correlations between P̂y,f and P̂�x,f are,
in general, small and can globally be ignored (Fig. 10). The
maximal value of the correlations is 0.23, the mean correlation
coefficient is 0.0085 ± 0.0003, while the mean absolute value
of the correlation coefficient is 0.0133 ± 0.0002. Furthermore,
the MLE performs practically optimally even when these
correlations are ignored (Fig. 8).

APPENDIX J: HYPOTHESIS TESTING

We used the following two standard statistical tests to com-
pare theory with experimental data: Pearson’s χ2 goodness-
of-fit test (Sec. 1 of this appendix) and the χ2 test for variance
(Sec. 2 of this appendix).

1. Pearson’s χ 2 goodness-of-fit test

Pearson’s χ2 goodness-of-fit test is used to compare a
measured distribution to a theoretical distribution. For use
in Pearson’s χ2 test, the measured data are divided into a
number of bins r . The number of bins should be large enough

to ensure that the observed number of counts Oi in any bin
i is Poisson distributed. Moreover, the expected number of
counts, Ei , should be large enough in every bin to ensure that
the Poisson distribution of Oi is approximately Gaussian. The
test statistics is

X2 =
r∑

i=1

(Oi − Ei)2

Ei

. (J1)

If the theory that provides the values for Ei is correct, X2

follows a χ2 distribution in the limit of many counts in each
bin. A common and not-too-demanding rule of thumb demands
Oi � 5 in all bins. If no parameters were fitted, the expected
χ2 distribution has r − 1 degrees of freedom. If n parameters
in the theory were determined by fitting the theory to the data
before χ2 is evaluated, the number of degrees of freedom is
r ′ = r − 1 − n. The number 1 is subtracted to account for the
fact that the total count is known. This number r ′ and X2

are used to calculate the statistical support for the theory, also
known as its P value, defined as the probability that a repetition
of the experiment and the fitting to the data will result in a new
χ2 value that is larger than the value we obtained by fitting to
the existing data.

2. χ 2 test for variance

The χ2 test for variance consists of estimating whether the
dispersion of a number q of observed data points θ̂1,θ̂2, . . . ,θ̂q

with known variances σ 2
i is consistent with the assumption that

the points are independently and normally distributed around
their expected values θ1,θ2, . . . ,θq , which are predicted by a
theoretical model. This consistency is the null hypothesis of
the test.

The χ2 test statistic is

X2 =
q∑

i=1

(θ̂i − θi)2

σ 2
i

,

and follows a χ2 distribution with q − p degrees of freedom,
where p is the number of model parameters that were estimated
from the data if the null hypothesis is true.

In practice we bin measurements and use the sample
variances s2

i as estimates of the true variances σ 2
i of the

estimated means θi . Thus, the test statistic is not exactly χ2

distributed. However, since the number of measurements in
each bin is larger than 10, the difference between the actual
distribution and the χ2 distribution is negligible if the null
hypothesis is true, and consequently θi is Gaussian distributed
for all i = 1, . . . ,q.
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