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Nonequilibrium steady states in a model for prebiotic evolution
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Some statistical features of steady states of a Kauffman-like model for prebiotic evolution are reported from
computational studies. We postulate that the interesting “lifelike” states will be characterized by a nonequilibrium
distribution of species and a time variable species self-correlation function. Selecting only such states from the
population of final states produced by the model yields the probability of the appearance of such states as a
function of a parameter p of the model. p is defined as the probability that a possible reaction in the the artificial
chemistry actually appears in the network of chemical reactions. Small p corresponds to sparse networks utilizing
a small fraction of the available reactions. We find that the probability of the appearance of such lifelike states
exhibits a maximum as a function of p: at large p, most final states are in chemical equilibrium and hence are
excluded by our criterion. At very small p, the sparseness of the network makes the probability of formation of
any nontrivial dynamic final state low, yielding a low probability of production of lifelike states in this limit as
well. We also report results on the diversity of the lifelike states (as defined here) that are produced. Repeated
starts of the model evolution with different random number seeds in a given reaction network lead to final lifelike
states which have a greater than random likelihood of resembling one another. Thus a form of “convergence” is
observed. On the other hand, in different reaction networks with the same p, lifelike final states are statistically
uncorrelated. In summary, the main results are (1) there is an optimal p or “sparseness” for production of lifelike
states in our model—neither very dense nor very sparse networks are optimal—and (2) for a given p or sparseness,
the resulting lifelike states can be extremely different. We discuss some possible implications for studies of the
origin of life.

DOI: 10.1103/PhysRevE.89.022725 PACS number(s): 82.39.−k, 87.15.R−, 82.20.Wt, 87.23.Kg

I. INTRODUCTION

A central theoretical question associated with the origin of
life [1] is sometimes termed the “evolutionary paradox.” As
described by many authors and with particular clarity by Eigen
[2], the problem is sometimes also termed “Eigen’s paradox.”
Briefly, the paradox arises because, if it is assumed that
prebiotic chemistry must randomly construct a starter “naked
gene” of length N , then the number of possible biopolymers
which must be randomly sampled to find a biologically viable
one is of order BN where B is the number of available types of
monomer (B = 4 for DNA). If N is of the order of the length
of the shortest gene known in terrestrial biology, then the time
to randomly hit upon a viable starting gene is easily estimated
to be hundreds of orders of magnitude longer than the age
of our universe. The argument is seen to be an entropic one,
associated with the number of ways to assemble a polymer of
length N .

The still undetermined solution to this problem is absolutely
central to a meaningful quantitative estimate of the frequency
of life in the universe. In fact, if the naked gene model just
described were the correct one for describing the origin of
life, then Eigen’s paradox would clearly imply that no other
life forms will ever be found on other planets. It should be
emphasized that the argument depends on very few details of
the nature of terrestrial biochemistry. The only assumption is
that a unique high information content polymer or small class
of polymers of length comparable to that in biological DNA
on Earth must be formed at the initial stage.

*woods@woods1.spa.umn.edu

While one group of scientists [3,4] basically accepts the
argument and concludes that life is likely to be extremely rare
in the universe, others [5–12] including Eigen himself have
proposed a variety of models in which life is more likely to
arise than in the naked gene model.

In the present paper we describe results from such a model.
However, our version of this type of model differs from
previous ones in its definition of a lifelike state as we will
describe in more detail below. Briefly, and unlike previous
versions, we require that lifelike states not be in chemical
equilibrium and that they are not temporally static. All these
models use highly abstracted mathematical descriptions of
the biopolymer chemistry. There are two reasons for this
abstraction. First, it is totally impractical by computational or
analytical mathematical means to draw rigorous conclusions
from a complete mathematical description of the relevant
polymer chemistry in the forseeable future. But secondly and
more importantly, if the abstraction of the description of the
chemistry retains the basic entropic conundrum which leads
to the paradox, then the models can hope to provide insight
into the way, if one exists, to avoid the paradox and predict
the existence of other biospheres with an observably high
probability.

These models which suggest a way around the paradox all
basically take a similar approach, though details vary: it is
assumed that the rate limiting prebiotic step is not the forma-
tion of one of a small number of initially viable naked genes,
but is instead the formation of a population of interacting
biopolymers interacting autocatalytically, dynamically, and
metastably, far from equilibrium. Even with the simplifications
provided by the abstraction of the chemical description, the
mathematics of these models is very difficult to solve, and
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approximations, sometimes uncontrolled, are often used. With
that caveat, results are reported which predict the appearance of
such populations, arising from a randomly interacting “soup”
of monomers, with observably high probabilities.

In the present paper we describe results from such a model.
We make the same hypothesis that the initial step in the origin
of life was the formation of an autocatalytic set of interacting
polymers and not the formation of a single “gene.” Though
there is no direct experimental evidence for this initial step (or
for any other initial step) in the origin of life, this hypothesis has
the advantage of yielding these observably high probabilities,
whereas naked gene models do not. However, our version of
this type of model differs from previous ones in its definition
of a lifelike state as we will describe in more detail below.
Briefly, and unlike previous versions, we require that lifelike
states not be in chemical equilibrium and that they are not
temporally static.

Three issues arise concerning these models and these issues
motivate our modifications in the model in this paper as
described below. The three issues are as follows.

First, it appears that in some such models, the final states of
the simulated prebiotic evolution are autocatalytic, as desired
for a lifelike state, but also may be in chemical equilibrium
within the simplified artificial laws of chemistry set up
by the model. (In other words, the time-averaged polymer
populations are in the ratios which maximize the entropy.)
But intuitive notions of “lifelike” usually exclude systems in
chemical equilibrium and most formal lists of requirements
(see, e.g., Ref. [13]) for a system to be regarded as lifelike
also explicitly or implicitly exclude such chemical equilibrium
states.

Second, some such models (see, e.g., Ref. [11]) include
dynamically inert final fixed points of the simulated dynamics
within the definition of lifelike. While such states can certainly
be out of chemical equilibrium (as in a glass), such inert states
would not meet most intuitive notions of lifelike.

Third, whether the models exclude chemical equilibrium
states and dynamically inert states from the definition of
lifelike or not, they accept final states of the prebiotic evolution
as lifelike as long as they satisfy a short list of very abstract
generic properties. Thus another question which arises is,
given a set of laws of chemistry, and an interacting set
of chemical entities (as such models do), does the model
dynamics lead to a unique lifelike chemistry according to the
definition of lifelike adopted, or are many very different final-
state chemistries generated which meet the generic criteria of
lifelike? Within the models, this may be termed the issue of
the “convergence” of the models for prebiotic evolution. If the
models were realistic and the answer to the question posed
was that they generate many very different lifelike states, then
that answer would have implications for the kind of searches
of other planets for lifelike systems which would be most
likely to yield success. If prebiotic evolution is not convergent,
then a search for lifelike biochemistry much like our own is
likely to be fruitless, whereas a search for more generic lifelike
chemical qualities such as nonequilibrium population ratios in
steady states might be more successful.

In this paper we report simulations of a version of one of
these models [6] with the specific objective of determining the
following.

(i) First, how does a definition of lifelike which excludes
chemical equilibrium states and dynamically inert states affect
estimates of the probability of generating lifelike states within
the model under various conditions?

(ii) Second, within a definition of lifelike which includes
the nonequilibrium and dynamic constraints, how diverse are
the resulting “biochemistries”?

In this way we seek to provide partial answers to the
questions posed in the preceding paragraphs within the
model. Previewing the answers qualitatively, we find that
the constraint to nonequilibrium systems very significantly
reduces the probability of producing lifelike systems and
provides interesting and understandable constraints on the
parameter space which allows such systems to appear with
the largest probability.

With regard to convergence, we find that, within a given
artificial chemistry, some convergence of the dynamics to
similar final lifelike states is observed. However, if one
compares final lifelike states generated by chemical reaction
networks which are different but have the same statistical
characteristics (parametrized by the quantity p defined below),
then there is no convergence. In that latter case the final states
are almost as diverse as they could possibly be.

In the next section we describe the construction of the
model for the artificial chemistry, which, following Ref. [6],
proceeds in two distinct steps. First a network of reactions is
selected. Second, a model is adopted for the kinetic rates of the
selected reactions. A set of small polymers termed a food set
is maintained and the total population is limited during the dy-
namics (though, as we will discuss, for the states of interest the
population is self-limiting and the imposition of a maximum
population does not result in finite-size effects). This leads to
final states from which we identify those which are lifelike
according the definition of lifelike that we have qualitatively
discussed. The next section describes how the nonequilibrium
and dynamical constraints are implemented. Then we describe
results of repeatedly using the resulting chemical networks
to generate ensembles of final states which are analyzed to
determine the probability that they are lifelike according to our
definition. The last section contains a discussion, conclusions,
and suggestions for further work. Algorithms are described in
more detail in Appendixes A and B.

II. ESTABLISHING THE NETWORK

The “chemical species” in the model are described as
numerical strings interpreted as polymers (e.g., nucleic acids or
proteins). In the realization used here each digit is 0 or 1 so the
chemical species are binary strings. Previous work on similar
models [6,7] indicates that increasing the number of possible
digits per place in the strings (e.g., by using 20 for proteins or 4
for nucleic acids) does not have large effects on the qualitative
nature of the results. The allowed reactions are scission and
ligation corresponding to the separation of a polymer into two
parts and the connection of two polymers at their ends. As in
Ref. [6], not all possible reactions are included in the model
network. We include all possible ligation and scission reactions
of all possible polymers of length �Lmax with probability p.
The parameter p characterizes the extent of connectivity of
the resulting network of modeled chemical reactions. For each
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FIG. 1. Probability of forming a “viable network” as defined in
the text as a function of the parameter p. The fitted curves are intended
to be guides to the eye.

reaction an “enzyme” or catalyst is assigned, without which
the reaction cannot take place.

The algorithm for selection of reactions included in a real-
ization of the model is described in Appendix A. It is designed
to construct an artificial chemistry of reaction networks and
to determine which of these networks might be viable, i.e.,
satisfying those criteria outlined in the Introduction upon
simulating the dynamics of those networks. First, to construct
the reaction network, each possible reaction is admitted to
the network with probability p. Then, in order to determine
if a given network might be “viable,” the connectivity of the
network is probed. Only those networks that contain reaction
paths connecting members of the small polymer “food set”
defined below to at least one reaction involving a polymer
of the maximum size Lmax are accepted for further dynamics
studies. If a network is not found to be viable, the attempt to
form a network is still included in a count of such attempts
(successful and unsuccessful) for use in computation of the
probability of forming a viable network at that value of p. Our
algorithm has eliminated an implicit dependence on the run
time which seems to have been present in some previous such
algorithms, because we exhaust the list of possible reactions.

We implemented this algorithm for a wide range of the
parameters p, and for values Lmax = 8, 10, and 11. The
probability of forming such a network as a function of p as
determined from this process is shown in Fig. 1. The curves
connecting the data points are a fit to the functional form
Apη/(1 + Apη) and are only intended as guides to the eye and
for interpolation between the calculated values. We attribute no
theoretical significance to the functional form used for fitting.
The dependence on Lmax evident in Fig. 1 suggests that viable
networks are less likely to be formed at a given p as Lmax gets
larger. This is qualitatively similar to results for similar, but
simpler, networks [14,15] in which the probability for forming
a spanning cluster at fixed p shrinks as the size of the system
grows.

III. DYNAMICAL MODEL

A dynamical simulation is carried out on the ensemble
of networks representing artificial chemistries described in the

previous section. The system is assumed, as in previous similar
models, to be “well mixed” spatially and no explicit represen-
tation of the position of species is made. The dynamical laws
are stochastic. That is to say, if one were to carry out the
simulation many times on the same network, one would find
that the average number of polymers nl(t) of species l obeyed
a master equation of the form

dnl/dt =
∑
l′,m,e

[
vl,l′,m,e

(−kdnlnl′ne + k−1
d nmne

)
+ vm,l′,l,e

(+kdnmnl′ne − k−1
d nlne

)]
. (1)

Here vl,l′,m,e is proportional to the rate of the reaction l +
l′

e−→ m. e denotes the catalyst, l and l′ denote the polymer
species combined during ligation or produced during cleavage,
and m denotes the product of ligation or the reactant during
cleavage. If the ligation reaction in the network is chosen to be
“forward” as indicated, then kd = kf > 1, where kf is a global
model parameter roughly characterizing the temperature. [In
the case of the first two terms of the summand in Eq. (1), the
ratio of the ligation rate to the scission rate if all the populations
were 1 would be k2

d and would have value e�/kBT , where
� was the free-energy difference between the reactants and
products in the ligation reaction. This motivates the choice of
parametrization, but a realistic temperature dependence would
be much more involved.) On the other hand, if the reaction has
been chosen to be forward in the other, cleavage, direction, then
kd = 1/kf . The parameter kf is a rough proxy for the effects
of temperature in the model. In the simulation results reported
here we set kf = 1 corresponding to infinite “temperature.”
The v factors (times the length of the time step) are chosen
at random from the interval [0,1] for each reaction in the
network before the dynamical simulation starts and are held
fixed thereafter.

During the dynamic simulation, a set of small polymers (we
use 0, 1, 00, 10, 01, and 11) are designated the food set. The
food set is assigned a fixed population which is maintained
after each time step by addition or subtraction. We also assign
a fixed maximum polymer population Nmax and maintain the
total number of polymers near or below it by subtracting
polymers from the total population at random after each time
step if the population exceeds Nmax. In many of the simulation
results below, we found that steady lifelike states (according
to our criteria) were maintained at populations below Nmax

without the need for activation of this removal. The number
of polymers present in the population, which is �Nmax, is
denoted N . The dynamical algorithm is described in more
detail in Appendix B.

The algorithm is repeated until the set of populations {nl}
which we term the system point reaches a stable final state as
defined in more detail below. In our simulations the system
point usually converges to such a final state quite quickly.
A key point is that this dynamical algorithm is stochastic in
the sense that a given reaction occurs with a certain fixed
probability, but it need not occur in any given realization of the
dynamics even though all the parameters (kf , Nmax, v’s, and the
reaction network itself) have been fixed. Thus the results can be
different each time the algorithm is run with a different initial
seed for the numerical random number generator. Comparing
results obtained by using different initial random seeds to
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simulate reactions allowed by a given network of reactions
corresponds to comparing results carried out within the same
chemistry repeatedly, whereas comparing results with different
networks generated with the same parameter p corresponds to
comparing the results from chemistries which are different but
with a similarly sparse number of allowed reactions.

IV. IMPLEMENTATION OF ENTROPIC AND
DYNAMICAL CONSTRAINTS

To analyze the results of the dynamical simulation, we
must define the criteria for identifying lifelike systems.
There is a large amount of literature debating the issue of
what characterizes lifelike states [13]. As discussed in the
Introduction, we select final states to be lifelike by criteria
which require that they not be in chemical equilibrium and
that they be dynamical as described in more detail below.

Each state of the system is characterized by the set of
populations nl of each polymer species l. We computed
coarse-grained entropies for each such state, characterized
by a set of occupancies {nl} by defining the numbers
NL = ∑

{polymers l of length L} nl of polymers of length L. Since
there are 2L possible polymers of length L in the model,
it is straightforward, for example following Ref. [16] (see
Appendix C), to determine that the entropy is

S/kB =
∑
L

{ln[(2L + NL − 1)!] − ln(NL!) − ln[(2L − 1)!]}.

(2)

Using Stirling’s approximation for the factorials gives

S/kB =
∑
L

2L[(1 + N̄L) ln(1 + N̄L) − N̄L ln N̄L], (3)

in which N̄L = NL/2L. The maximum configurational entropy
Seq for a given number N of polymers is then determined by
standard methods and is provided in Appendix C [Eq. (C3)].
We impose the condition that lifelike states be nonequilibrium
states by requiring that those final states which are accepted
as lifelike have values of S/Seq � Smax/Seq < 1. The value
chosen for the cutoff Smax/Seq determining exactly how small
S/Seq should be is somewhat arbitrary and should be regarded
as a parameter of the model. We report results for a spectrum
of values of the cutoff Smax/Seq.

In Fig. 2, we show results for this entropy as a function
of simulation time in a dynamic simulation using the same
chemical network with different random number seeds at the
start (Lmax = 10). In the cases shown, the system reached a
final steady state containing a number of polymers N which
was less than Nmax. The values of Seq(N )/kB , at the steady-
state values of N , for different dynamical runs are shown as
horizontal straight lines in the figure. At larger values of p

most of the dynamics simulations lead to final states in which
N = Nmax and S/kB = Seq/kB . Such final states do not satisfy
our lifelike criteria. In the results described in the next section
we report results for different values of the cutoff parameter
Smax/Seq, below which the final state was deemed to meet
the nonequilibrium criterion for a lifelike state. We did not
observe qualitatively significant dependence of the results on
this threshold.
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FIG. 2. (Color online) Entropy as a function of time is shown for
four different dynamics runs on the same network. The maximum
entropy, determined from the total number of polymers at the last
time step, is drawn as a straight line with an arrow pointing from the
calculated entropy to its maximum value for a given run. The same
chemical network of reactions, for the same value of p = 0.0032
but with different values of the random number seed, was used to
generate each curve.

We applied a second filter to the final states which
were found to be stable nonequilibrium states in order to
assure that they displayed the dynamical behavior minimally
expected of lifelike states, thus excluding states of a glasslike
nature. To do this, we computed the following time-dependent
self-correlation function for each nonequilibrium asymptotic
state α:

C(τ ) = (1/Nst)
∑

t

∑
j

n
{α}
j (t)n{α}

j (t + τ ), (4)

where Nst corresponds to the number of discrete time steps
over which the sum over the time steps had been averaged.
The times over which the average is taken were chosen to
be well into the asymptotic region in which the computed
configurational entropy had stopped changing significantly.
As indicated in Fig. 2, the asympototic region defined in this
way turns out to be numerically well defined.

We explored several algorithms for selecting states which
might be regarded as sufficiently dynamic to be lifelike from
the time dependence of C(τ ). Here we report results from the
following characterization of the dynamics of C(τ ): C(τ ) is
Fourier transformed and its power spectrum P (ω) is integrated
about the origin out to a characteristic frequency ωm defined
implicitly by the relation

∫ ωm

−ωm
P (ω)dω∫ ∞

−∞ P (ω)dω
= 1/2.

Then states are regarded as lifelike if ωm > ωc, where ωc is a
parameter of the model, thereby requiring that the populations
of individual species are still temporally varying on time scales
of order 2π/ωc in states characterized as lifelike. (In practice
the transforms and integrals are discretized as described in
Appendix D.)
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FIG. 3. (Color online) Probability of obtaining a lifelike state
in the model. Results are show for Lmax = 10 unless otherwise
noted. Results are shown for the choice of the dynamics cut
ωc = 0.01(2π/�tav), where �tav is the average time step in a given
dynamics simulation. The points are the products of the data in
Figs. 1, 4, and 5, and the lines are the products of the fits to that
data as described in the captions to those figures.

V. RESULTS

We repeated such calculations for a series of networks,
characterized by various p. For decreasing p, the number
of nonequilibrium final states increases to a maximum and
then decreases. Results obtained for Lmax = 10 and for three
values of the cutoff S/Seq (and for one value of the cutoff for
Lmax = 8) are shown in Fig. 3. The dynamical cutoff parameter
used here was ωc = 0.01(2π/�tav), where �tav is the average
value of the time step during the dynamics simlulation. The
value chosen for ωc assures that significant temporal variations
in the self-correlation function occur at least on time scales
down to 10 time steps. Dependence of the results on ωc was
explored as described below (Fig. 5). The error bars were
determined as described in Appendix D.

The qualitative results are not strongly dependent on the
choice of the entropy cutoff, and the value of p for which
the probability of forming a final state below the cutoff is
maximum is quite stable at a value of around p = 0.005. The
probability of forming a nonequilibrium final state at that value
of p is around a percent in all cases, varying between 0.3%
and 1.0% as the choice of the entropy cutoff is increased from
0.3 to 0.8. We find that the nonequilibrium states are generated
predominantly in very sparse networks, and that, even in them,
the likelihood of trapping a nonequilibrium state is quite small.

We understand the nonmonotonicity diagramed in Fig. 3
as follows. At large values of p, there are many reactions
in the network, making it relatively easy to achieve equilib-
rium, so equilibrium is usually achieved and the number of
nonequilibrium fixed points is small. As p becomes smaller,
the likelihood of kinetic blocking of the paths to equilibrium
grows and, with it, the number of nonequilibrium final states.
However, at very small p, the likelihood of forming a network
with a fixed number of species itself gets small (see Fig. 1). As
a result, the average number of nonequilibrium lifelike states
starts to shrink as p gets very small.

The results shown in Figs. 1, 4, and 5 are consistent with
this understanding. The probability of forming a network rises
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FIG. 4. (Color online) Probability of forming a steady state with
entropy lower than the indicated cutoff, given that the network is
“viable.”Results are shown for Lmax = 10 unless otherwise noted.
Smax is the cutoff for the calculated entropy of the system, whereas
Seq is the equilibrium entropy for the number of polymers in the
steady state.

sharply at a threshold around p = 0.002 in a percolationlike
transition, much like the one discussed by Kauffman and
co-workers [5–7], as shown in Fig. 1. However, as the
probability of forming a viable network rises, the network
of reactions becomes more connected and the likelihood of
forming an equilibrium final dynamical state increases, with
a corresponding decrease in the likelihood of the formation
of nonequilibrium dynamical final states of the sort which we
characterize as lifelike. This effect is shown in Fig. 4. Given a
viable network, the likelihood of forming a nonequilibrium
state drops with increasing values for p, as shown there,
becoming negligible when p � 0.01.

Finally, we show the likelihood that, given a viable network
and a nonequilibrium final steady state, the steady state has
lifelike dynamics (as a function of p) in Fig. 5. Although
we observe that the systems tend to be “more dynamic,”
i.e., there are greater variations in the populations during
the simulation runs, with increasing values of p (due to
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FIG. 5. Probability of “lifelike dynamics” given that the network
is viable and the entropy is below the cutoff Smax = 0.8Seq. Results
are shown for Lmax = 10. Again, �tav in the legend corresponds to
the average time step of the dynamics simulation.
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the networks being larger), no definitive dependence on the
frequency cutoff appears to be emerging from the simulations.
We take the probability, within the model, of forming a
lifelike state according to our definition to be the product of
[probability of forming a network (Fig. 1)] × [probability of
lifelike state per network (Fig. 4)] × [probability of lifelike
dynamics (Fig. 5)], as shown in Fig. 3. As noted above, a peak
appears around p = 0.005. If we were to interpret this as a
model for the formation of biospheres on planets, our model
would suggest that under optimal conditions (corresponding to
chemical networks with p = 0.005), the probability of forming
a lifelike biosphere would be around 1%.

Next, we analyzed the dispersion of the dynamical nonequi-
librium states which we found. The motivation is to un-
derstand, within the model, whether the selection principle
we have chosen to characterize lifelike states leads in any
sense to chemical convergence. That is, do the requirements
that the final state be nonequilibrium and dynamic select
out any particular types of combinations of polymer species
in the model? In the real world of the search for life, this
would translate into the question of whether all biospheres are
expected to be chemically similar. To test this, we characterized
the final states of the “successful” runs by a vector {nl(t)} of
species populations in the space of system points. In the final
states which our criteria accept as lifelike these vectors move
through this space, but they are not found to move over large
distances through the space. We accordingly characterize each
lifelike state by the time-average value of its state vector, with
the average taken over times long with respect to the period
of the characteristic time scale (2π/ωm) of its steady-state
dynamics, and well after the steady state has been realized.
We characterize the angular difference between two lifelike
states {〈nα

i (t)〉} and {〈nβ

i (t)〉} by the angle

	αβ = cos−1

∑
i

〈
nα

i (t)
〉〈
n

β

i (t)
〉

√∑
i

〈
nα

i (t)
〉2 ∑

j

〈
n

β

i (t)
〉2 (5)

between the time-averaged vectors of the two states in this
space. If the “evolution” within our model is “convergent,” we
expect to get a narrow distribution of the 	αβ angles about
the value 	 = 0 (cos 	 = 1), whereas we will interpret a
broad distribution of 	 values as indicative of nonconvergent
evolution. Results are shown for Lmax = 10 and for two
different values for p, p = 0.0032, and 0.004 52 in Fig. 6.

As noted, for repeated simulations using the same chemical
network, there is evidence of convergence, as indicated in the
curves labeled “within network” in Fig. 6. In contrast, the
curves labeled “outside network” were obtained by evaluating
the distribution over all networks with a fixed value of p and
show no correlation. The curves labeled “random distribution”
in Fig. 6 were obtained from a sample of randomly selected
vectors in six dimensions subject to the constraint that a
number of vectors corresponding to the food set be maintained,
as we do in the model simulation. The randomly generated
sample, using the minimum number of species for a given
network (the number of species defined in the food set),
provides a distribution of the angle most skewed toward
convergence (	α,β = 0) to which we can make a comparison
with the model simulation. The shift of the distribution of
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cos Θαβ
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p = 0.0032 within network
p = 0.00320 outside network
p = 0.00452 within network
p = 0.00452 outside network
Random distribution (6 species)
Random distribution (10 species)

FIG. 6. (Color online) Distribution of the cosine of the angle
between those final states of dynamical simulations of the model
which are lifelike as defined in the text. The curves to the right of
the diagram indicate some convergence of states generated from a
given chemical network. The wider curves indicate no convergence
between states generated by chemical networks which are different
but characterized by the same sparseness, parametrized by p. Results
are provided for Lmax = 10, Smax = 0.8Seq, ωc = 0.01(2π/�tav),
and p = 0.0032 and 0.004 52, as labeled. Distributions for random
six-dimensional and ten-dimensional vectors, corresponding to the
number of species in the food set and the average number of species
in lifelike steady states, are provided for comparison.

the random sample from a symmetrical distribution about 0.5
arises from this requirement that the food set be maintained.
Thus part, but not all, of the convergence observed in the model
appears to arise just from that requirement. The additional
convergence (the more peaked curves to the right of the
randomly generated sample distribution) is presumably due
to a combination of the sparseness of the network and of the
entropy constraint. Effects of the sparseness of the network
are further elucidated by the curves providing the distribution
of the angles between lifelike states generated in different
chemical networks with the same value of p. There is no
convergence at all between such states. This shows that the
convergence observed is for particular chemical networks and
not for any chemical network generated with a given value
of p. We understand this qualitatively as follows: because
the networks generating lifelike states are all very sparse, a
relatively small number of paths through the population space
are allowed by each network. Thus the paths to lifelike states
in each such sparse network are likely to sample a different
part of the space, leading to no correlation. On the other hand,
for repeated runs with different random number seeds on the
same network, the small number of reaction paths to lifelike
states leads to the expectation that the lifelike states found
will be similar leading to correlation. We discuss the possible
significance of these results for the search for lifelike systems
on other planets or elsewhere in the next section.

VI. DISCUSSION

We have explored the consequences of a prebiotic evo-
lutionary model using criteria for the acceptance of lifelike
states in the asymptotic dynamics which are different from
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corresponding criteria used by others [5–7]. In particular, many
authors explicitly or implicitly assume that final dynamical
states which are “autocatalytic” are lifelike. The meaning of
autocatalytic has been made mathematically precise, and such
criteria lead to a threshold on the value p, which defines
the connectivity of a chemical network, for forming lifelike
states much like the curves shown in Fig. 1. With such results,
authors sometimes conclude that one should be “optimistic.”
That is to say, one should expect that a wide range of chemical
networks will lead to lifelike states. On the other hand, most
states in chemical equilibrium will be autocatalytic, even
though most biologists (and others) do not regard systems in
chemical equilibrium as lifelike. Accordingly we have applied
the constraint that lifelike states must be kinetically trapped
out of chemical equilibrium. This constraint results in a low
probability of production of lifelike states, which are not in
chemical equilibrium when p is large, and, accordingly, greatly
limits the range of networks in which it is at all probable to
find a lifelike state as seen in Figs. 3 and 4. As noted, in our
numerical realization, the maximum probability of producing a
lifelike state by our criteria occurred at p ≈ 0.005 and resulted
in a probability of finding a lifelike state in this optimally tuned
network of about a percent, as summarized in Fig. 3.

The peak in the probability at small p arises from the
requirement that the final states of the dynamic evolution
be kinetically trapped out of equilibrium. Sparse networks
of reactions provide few paths to equilibrium and increase
the likelihood of such trapping. This conclusion that sparse
networks are favorable is different from the conclusions of
Kauffman and co-workers [5–7] who used similar models but
did not apply the entropy constraint. It suggests qualitatively
that a “desert” might be more favorable than a strongly
interacting Darwinian “pond” for starting lifelike evolution.
In laboratory attempts to generate lifelike states, the reported
struggles [17] to avoid “asphalt” are a version of the problem
of generating lifelike states in systems in which chemical
equilibrium is easily reached.

We suggest that it may be possible to realize laboratory sys-
tems in which sparse networks of reactions lead to dynamically
stable, out of equilibrium, states thus demonstrating this effect.
For example, dynamical molecular networks [18,19] with a
set of dithiol “building blocks” as a food set have been shown
to result in nonequilibrium, kinetically trapped states under
some conditions. Whether such nonequilibrium states involve
molecular populations which fluctuate or oscillate in time is
not reported. This could possibly be determined optically if
the fluctuating constituents have distinguishable absorption
characteristics (as in the Belousov-Zhabotinsky interaction
[20]). The rates of reaction in the dithiol system are reportedly
controlled by the pH, which might then approximate the effects
of p in our model.

The other criterion for a lifelike state which we have applied
is that the final asymptotic state of the dynamics be “dynamic”
and not a glasslike inert collection of populations. Though
this again is consistent with the biological intuition of most
biologists and other scientists, such dynamically inert states
are included in the final states of interest in some models of
prebiotic evolution [11]. However, this second change in the
criteria for selecting a lifelike state has less dramatic qualitative
effects on the results than the constraint to nonequilibrium final

states. The dynamic character of the lifelike states that we find
in our model has not been fully explored. There are anecdotal
indications from samples of the functions C(τ ) [Eq. (4)] that a
wide variety of dynamical types is selected by the low entropy
condition, and this will be studied further.

The other question which we addressed here is whether our
criterion for lifelike states selects any particular combinations
of chemical species. This question is a crude form of the
issue of convergence in this model of prebiotic evolution.
By determining the distribution of angles between time-
averaged final states in the model we found evidence that
there is convergence in a given sparse reaction network of
reactions, but that there is no convergence when comparing
final states associated with different sparse reaction networks
with the same degree of sparseness as measured by the
parameter p. However, our results show approximately the
same probability of finding lifelike states for all ensembles of
networks generated with a given value of p. If lifelike states
were observed (for example, on exoplanets) under conditions
in which the chemical network was similarly sparse in each
case, but environmentally constrained to favor different sets of
reactions, this then suggests that such lifelike states might be
completely different from each other.

It should be noted that taking more realistic account
of the details of allowed reactions might result in more
convergence than is manifest here. For example, if one confines
one’s attention to planets orbiting stars, then the addition of
criteria associated with the need to efficiently utilize radiant
energy from the star could be conjectured to favor some
chemistries over others. Nevertheless, our results suggest that
nonequilibrium dynamical limit cycles of many divergent
chemical types can form in networks of the type we consider,
and we believe that they therefore suggest some caution
concerning the assumption that lifelike states on other planets
will be chemically similar to our own.

An unexpected feature of our results is that the steady
nonequilibrium dynamic states which we find are not satu-
rating the bound on the total number of polymers which we
imposed. This means that, without this bound, the population
would nevertheless remain approximately fixed. An advantage
of this result is that it means that the steady states we find
are not artificially affected by the “finite-size effect” imposed
by the population bound. On the other hand, evolution to
larger polymer lengths and more complexity is apparently
not occurring in these steady states (though we have not
yet explored the time dependence of the individual polymer
populations and this conclusion is tentative). The model may
require environmental “shocks” or spatial heterogeneity in
order to exhibit such evolution. Both effects are known to be
important in macroscopic Darwinian evolution. The effects
of environmental shocks of various kinds and of spatial
heterogeneity are quite easy to add to the model as discussed
briefly below, and we have begun some such studies.

There is a wide variety of possible ways to model envi-
ronmental shocks in this model, all involving some kind of
rare event which changes the parametrization of the chemical
network. For example, one could change all the parameters
vl,l′,m,e in Eq. (1) by εrvl,l′,m,e at some point during the steady-
state evolution, where r is evenly distributed between −0.5 and
0.5 and ε is a positive real parameter controlling the magnitude
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of the shock. We have made preliminary explorations of the
effects of spatial diffusion in the model. These will be reported
later. Introducing space also opens the possibility of spatially
heterogeneous diffusion rates and distributions of reaction
rates which are doubtless also present in real contexts and
which may be explored later. The effects of temperature have
yet to be explored, even at the primitive level of varying the
parameter kf from unity. Sudden changes in the temperature
are also a form of shock which can be explored. The limited
results on the dependency of the conclusions on Lmax suggest
that no new qualitative changes will result, but, on the other
hand, the dependency is quantitatively significant. In the study
of convergence, correlations functions other than 	α,β could
obviously be studied. For example, one could look at the
“Hamming distance” between the vectors. However, along a
“ray” from the origin to a particular state in the population
space, the Hamming distances between points can be large,
though the “chemistry” is essentially the same. Nevertheless,
the study of other correlations in the structure of the space of
lifelike states in the model may yield further insight.
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APPENDIX A: ALGORITHM FOR GENERATION
OF THE NETWORK

(1) Select parameters p, and Lmax characterizing the
network. p is the probability that a possible reaction is actually
included in the network (as described in more detail below),
and Lmax is the maximum allowed length of the polymer strings
of integers (here restricted to 0’s and 1’s) which are allowed
in the network.

(2) Provisionally accept each possible reaction [2(2Lmax+1 −
2)(Lmax2Lmax − 2Lmax+1 + 2) total] involving the (2Lmax+1 − 2)
different species, as a candidate for the network with a
probability p.

(3) Select a “firing disk” of initial short polymer species
(binary strings of polymers) to include in the network.

(4) For the species within the firing disk, determine what
candidate reactions accepted in step (2) consist solely of
reactants and enzymes that are species within the firing disk.
If they do, include these reactions and the resulting product
species in the network.

(5) For all candidate reactions (both scission and ligation)
determine if the reactants and enzymes of each reaction
are species that have already been included in the network.
For those reactions that do satisfy this criterion, include the
reaction and its product species, unless the product species
have already been included, in the network.

(6) Repeat step (5), iterating through all those candidate
reactions that have not yet been included in the network,
until no more candidate reactions satisfy the criterion that
the reactants and enzymes are species in the network.

(7) Once the network is constructed, determine if any of the
species included in the network have a length of Lmax. If so,
this network is considered viable. If not, this is still counted as
an attempt to form a network.

(8) This procedure [steps (2)–(7)] is performed repeatedly,
using different random number seeds, in order to determine the
probability of forming a viable network (the ratio of successes
of forming a viable network to the total number of attempts
to form a network), which is shown in Fig. 1. Dynamics
simulations (see the next section) are then performed on those
networks that are deemed viable.

APPENDIX B: DYNAMICS ALGORITHM

The dynamics simulation proceeds as follows. Note that
states in the dynamical simulation are characterized by sets
{nl} of polymer populations where l runs over species in the
network.

(1) Choose a food set of initial polymer populations. In our
simulations, the set of species in the food set is the same as
the set in the firing disk of the network generating algorithm
though in general it does not need to be. We have not yet
explored the effects of varying the choice of food set on the
results numerically but plan to do so in the future. We do not
anticipate large qualitative effects of such a variation, as long
as both the food set and the firing disk consist of polymers
of length much less than Lmax. The populations {nl} for these
polymers in the food set are initialized.

(2) From the reactions in the network with reactants and
enzymes that consist of polymer species that have finite
populations, select one without bias. Carry out the reaction
with probability indicated in the master equation and adjust
the numbers {nl} accordingly. The time elapsed is computed
as described in Ref. [21].

(3) Calculate the total number of polymers. If it exceeds
a target Nmax (fixed at the outset), then choose polymers at
random from the set and remove them until the number is less
than or equal to Nmax.

(4) Return to (2).

APPENDIX C: CONFIGURATIONAL ENTROPY

We consider the configurational entropy associated with a
coarse-grained prescription of the state given by the number
of polymers NL for each length L between L = 1 and L =
Lmax. Using the fact that, in the model, there are 2L possible
polymers of length L, counting possible states for a given state
specification {NL} is the same problem that occurs in the boson
statistics problem [16] (though of course this is not to imply
that this model has any quantum features). The result is

S/kB =
[

Lmax∑
L=1

ln
(2L + NL − 1)!

NL!(2L − 1)!

]
. (C1)

Denoting N̄L = NL/2L and using Stirling’s approximation for
the factorials, one finds the familiar form

S/kB =
Lmax∑
L=1

2L[(1 + N̄L) ln(N̄L + 1) − N̄L ln N̄L]. (C2)

This form was used to calculate the entropy of the polymer
systems during the dynamics simulations.

To find the equilibrium configurational entropy for a system
(which depends only on the total number of polymers N at a
given time during the dynamics simulation), we maximize
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FIG. 7. Self-correlation function [Eq. (4)] for one trajectory,
calculated by the two methods described in Appendix D.

the free energy S/kB + Nμ/kBT , where N = ∑Lmax
L=1 NL is

the total number of polymers within the system. We find
(with β = 1/kBT ) that the extremum value for NL is N

eq
L =

2L/(e−μβ − 1). Substituting this extremum value back into
N = ∑Lmax

L=1 NL, for fixed N , we may eliminate the (e−μβ − 1)
term and solve for the equilibrium value N

eq
L explicitly in

terms of N . This yields N̄
eq
L (=N

eq
L /2L) = N/[2(2lmax − 1)].

Substituting this into the above equation for entropy yields the
maximal equilibrium configurational entropy:

Seq(N ) =
Lmax∑
L

2L
[(

1 + N̄
eq
L

)
ln

(
N̄

eq
L + 1

) − N̄
eq
L ln N̄

eq
L

]
,

(C3)

which was used in the calculations to evaluate the value of
S/Seq(N ). The validity of the Stirling approximation for the
N ’s of interest here was evaluated by direct computation and
was adequate.

APPENDIX D: DETAILS OF DYNAMICS CUTOFF
AND ERROR ESTIMATION

The error bars in Fig. 3 were obtained as follows: the
standard deviations associated with the averaging giving the
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FIG. 8. Fourier transform of the functions shown in Fig. 7.

data in Figs. 1, 4, and 5 were determined. Denoting them
�Pnet, �PS , and �Pdyn, and the corresponding averages as
Pnet, PS , and Pdyn, the error bars in Fig. 3 were (conser-
vatively) determined as ±[Pnet(�PS + �Pdyn) + PS(�Pnet +
�Pdyn) + Pdyn(�Pnet + �PS)].

The time dependence of the populations in our simulations
is determined at variable time intervals because of our use
of the Gillespie algorithm [21]. To avoid numerical issues
associated with calculation of the Fourier transform of data
provided at variable times, we explored two approaches.
The least computationally expensive, but also least accurate,
approach was to treat each data point as if it were equally
spaced in time with time intervals between successive data
points equal to the average time step in the simulation. In a few
cases, to test if this method gave a good approximation to the
self-correlation function, we also found an approximation to
the self-correlation function by linearly interpolating between
the unequally spaced data points in the time-dependent
population record and evaluating the populations at equally
spaced times using the interpolations. We compare results of
the two approaches for one case in Figs. 7 and 8. The results
are nearly identical so we used the less expensive method in
our screening algorithm.
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