
PHYSICAL REVIEW E 89, 022723 (2014)

Unified description of solvent effects in the helix-coil transition
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We analyze the problem of the helix-coil transition in explicit solvents analytically by using spin-based models
incorporating two different mechanisms of solvent action: explicit solvent action through the formation of solvent-
polymer hydrogen bonds that can compete with the intrinsic intra-polymer hydrogen bonded configurations
(competing interactions) and implicit solvent action, where the solvent-polymer interactions tune biopolymer con-
figurations by changing the activity of the solvent (non-competing interactions). The overall spin Hamiltonian is
comprised of three terms: the background in vacuo Hamiltonian of the “Generalized Model of Polypeptide Chain”
type and two additive terms that account for the two above mechanisms of solvent action. We show that on this level
the solvent degrees of freedom can be explicitly and exactly traced over, the ensuing effective partition function
combining all the solvent effects in a unified framework. In this way we are able to address helix-coil transitions for
polypeptides, proteins, and DNA, with different buffers and different external constraints. Our spin-based effective
Hamiltonian is applicable for treatment of such diverse phenomena as cold denaturation, effects of osmotic pres-
sure on the cold and warm denaturation, complicated temperature dependence of the hydrophobic effect as well as
providing a conceptual base for understanding the behavior of intrinsically disordered proteins and their analogues.
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I. INTRODUCTION

The inside of biological cells is a crowded and complex
environment composed of chemically different low- and
high-molecular weight compounds dissolved in the aqueous
solvent. In order to model this internal cellular milieu in vitro,
biopolymers, such as polypeptides, proteins, and DNA, are
usually studied in aqueous solutions of different composition
and with different imposed constraints [1,2]. In this compli-
cated solution environment there are multiple ways that solute
molecules can interact with one another and with the aqueous
solvent. The hydrogen-bonding (HB) network between water
molecules, accounting for much of the anomalies present in its
still contentious phase diagram [3], stabilizes various distinct
conformations of biopolymers providing short- and long-range
interactions among the non-contiguous parts of the polymer
chain. Obviously, there is a strong competition between the
polymer-polymer and the polymer-water hydrogen bonding,
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which must be properly taken into account in order to describe
the biopolymer conformational space or its modifications as a
consequence of the action of co-solutes and solvents. In general
a solute molecule can have a double effect on biopolymer
conformations [4]: i) it can directly bind to a biopolymer,
therefore competing with intrinsic intra-polymer hydrogen
bond configurations—we dub these competing interactions,
but also ii) it can indirectly affect biopolymer conformation
through changes in the activity of water, that then acts
osmotically in tuning biopolymer configurations—we dub
these non-competing interactions. For different systems it is
often possible to choose between the two frames of reference
depending on the nature of the macromolecular system, the ex-
perimental design, and the properties that are being observed.

Consistent with these different perspectives there are also
a number of different theoretical approaches to biopolymer
conformational changes, most notably the helix-coil transition,
which will be the focus of our discussion here. Historically
they have been quite often formulated in the context of spin
models and can thus creatively engage the whole repertoire
of the theoretical methodology devised in that context [6–16].
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However, these different models are not equally conducive to
a straightforward inclusion of solvent effects. For instance,
the original Zimm-Bragg (ZB) model [5] makes it difficult to
account for microscopic details of the polymer-solvent inter-
action, and thus even a qualitative agreement with experiment
is sometimes rather difficult to achieve [17]. In the ZB theory
there are in fact two major parameters, the stability, s, and the
cooperativity, σ , that can be affected by the solvent [18]. While
the cooperativity parameter is assumed to be independent
of the temperature, the stability parameter is temperature
dependent. In fact it can be expressed through the free
energy difference between the helix and coil conformations,
�F as s = exp [�F/T ] = exp [�U/T − �S], where T is
temperature, U is the energy and S the entropy [19], so that the
transition temperature is determined from the condition s = 1,
implying a compensation between the energetic and entropic
changes [18]. This decoupling into the energy and entropy
contributions is even more straightforward for other types of
helix-coil transition models. In the Lifson-Roig (LR) approach
the entropic and energetic parameters are in fact explicitly
decoupled [12–14]. The transition temperature is here obtained
from the condition exp [�U/T ] = Q, where again �U is the
energy change at the transition and Q the entropic penalty
for the formation of hydrogen bonds. In both approaches the
solute molecule can affect biopolymer conformations through
the dependence of the entropic and energetic parameters on
the solvent properties. Since the ZB and LR models can be
alternatively formulated through the microscopic Hamiltonian
of a more general type [12–14], dubbed the Generalized
Model of Polypeptide Chain (GMPC), that also depends
on an entropic parameter Q and an energetic parameter
W (= exp [�U/T ]), the consideration of solvent effects on
the level of the GMPC model level could be of paramount
importance and can have far reaching consequences.

A major issue for the spin models of the aqueous solvent
is to take proper account of the explicit tetrahedral HB
network geometry, as well as the correct orientation of water
molecules in close proximity to different molecular moieties
along the biopolymer chain. Optimally the spin-like model
of the solvent with hydrogen bonding ability should be rich
enough to describe the specific intra-polymer H-bonding, as
well as take into account the non-specific osmotic action of
the solutes and thus exhaustively characterize the dual action
of the solutes. As we show in what follows, the specific
solvent-polymer H-bonding interaction inevitably redefines
the temperature-dependent energetic parameter W [14,20] of
the GMPC model, and on the other hand the non-specific
type of interaction, as exemplified by polyethylene glycol
(PEG) [17,21,22], leads to the renormalization of the entropic
parameter Q (no direct analog with ZB model, since both
s and σ effectively include the entropy of coil Q), which
becomes temperature-dependent. Obviously the equilibrium
between the different biopolymer conformations can be altered
by changing either W or Q, so that both solvent mechanisms
are relevant.

We will demonstrate that within the GMPC framework
both mechanisms of solvent action can be dealt with on
the same footing by tracing over the solvent degrees of
freedom explicitly and exactly, so that the ensuing effective
partition function combines all the solvent effects in a unified

framework with renormalized values of the parameters W and
Q. While this in itself is a major formal advance we also
demonstrate how it can be used in the context of various
problems involving conformational transitions of biopolymers
in the aqueous solvent.

The paper is organized as follows. We first summarize
the solvent-free GMPC model of the helix-coil transition and
briefly describe the methods we apply. Then, to account for
both mechanisms of solvent action we complement the basic,
in vacuo Hamiltonian [13,14] with two additive terms. Each of
these terms has been treated separately before [20,21], but the
detailed description of simultaneous effect of both has not been
reported yet. In the Appendix we show how the solvent-related
parts of Hamiltonian, that describe different mechanisms of
action can be both traced over in the partition function to reduce
the problem to the basic GMPC model with renormalized
parameters. The proposed strategy allows us to generalize the
problem of solvent description in such a way that both mech-
anisms of solvent-polymer interaction are described properly.
The current paper is a logical extension of Ref. [21] and
complements the line of research presented in Refs. [13,14,20].
Finally we show that many biopolymer properties and pecu-
liarities in their behavior, such as the hot and cold denaturation,
the temperature dependence of the hydrophobic effect and the
unusual behavior of intrinsically disordered proteins can be
explained within the unified framework proposed in this work.

II. SOLVENT-FREE GMPC MODEL

The helical structure of biopolymers is stabilized mainly
by intermolecular hydrogen bonding between repeat units; the
presence of hydrogen bonds is a necessary prerequisite for the
formation of the helix. Statistical description of the helix-coil
transition requires three parameters: the energy parameter
W = V + 1 = exp(U/T ), where U is the energy of the hy-
drogen bond; the entropy parameter Q, that stands for the ratio
between the number of all accessible states versus the number
of states available for the repeat unit in the helical conforma-
tion; and a geometric parameter �, that describes the geometry
of hydrogen bond formation. Hydrogen bond formation in
polypeptides is known to affect three successive repeat units,
thus � = 3 in any solvent. This parameter controls the size of
the transfer matrix, dictating the transfer matrix size of the LR
model to be 3 × 3 [10]. Instead, the other two parameters, W

and Q, can be altered by the presence of solvent. The Hamil-
tonian of the solvent-free GMPC model [13,14] reads [13]

− βH0 ({γi}) = J

N∑
i=1

δ
(�)
i . (2.1)

Here β = T −1, N is the number of repeat units, and J =
U/T is the temperature-reduced energy of hydrogen bonding
between polymeric units. We use a short-hand notation, e.g.,
δ

(�)
j = ∏�−1

k=0 δ(γj+k,1), where δ(x,1) stands for the Kronecker
symbol and γl = 1, . . . ,Q. The spin variable γ describes the
state of each repeat unit by assigning to each of them one of Q

possible conformations, number 1 corresponds to the helical
conformation, and the remaining Q − 1 to the coil conforma-
tions. In this way the important degeneracy of the coil state is
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taken into account. The partition function is then obtained as

Z0(V,Q) =
Q∑

{γi=1}
e−βH0({γi }) =

Q∑
{γi=1}

N∏
i=1

[
1 + V δ

(�)
i

]
. (2.2)

Alternatively, we may make use of the transfer-matrix
formalism and write

Z0(V,Q) = Trace ĜN = Trace Â �̂N B̂ =
�∑

k=1

λN
k , (2.3)

where

Ĝ(�×�) =

⎛⎜⎜⎜⎜⎜⎝
eJ 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 Q− 1
1 1 1 · · · 1 1 Q− 1

⎞⎟⎟⎟⎟⎟⎠ ,

(2.4)

with Â and B̂ being the corresponding left and right
eigenvectors of matrix Eq. (2.4), while � is the diagonal
matrix of eigenvalues. The characteristic equation for solving
the eigenvalue problem finally reads (see Ref. [13])

λ�−1(λ − W )(λ − Q) = (W − 1)(Q − 1). (2.5)

Its solution provides � eigenvalues λk [λ = −1 eigenvalue
has been added to write Eq. (2.5) in compact form and has no
physical meaning]. The form of Eq. (2.5) tells us that changes
in both entropic parameter Q and energetic parameter W

affect the equilibrium properties in the same way and, in
principle, the same effect on polypeptide conformations can
be achieved by changing either one of these parameters. In
the thermodynamic limit, the problem simplifies, it is enough
to study the temperature dependence of the two largest
eigenvalues of Eq. (2.5). Eigenvalues come closest together at
a point where the asymptotes W (T ) and Q cross (Fig. 1). This
is in accordance with the general physical considerations: the
transition takes place at the point where entropy and energy
compensate each other. The distance of minimal approach
of eigenvalues can be estimated as Q1−� (see [14]) and is

FIG. 1. (Color online) The temperature dependence of two
largest eigenvalues. Dimensionless units and the following set of
parameters is used: Q = 60, � = 3.

related to the final transition interval. Parameter � in our
model plays the role of the spatial scale of the many-body
interactions. For nearest neighbor interactions � = 2, for
next-nearest neighbor interactions � = 3. We consider � = 3
for polypeptides and � = 10 for DNA, so � < ∞ to mimic
the short-range character of hydrogen bonding.

If, instead, long-range interactions are assumed to act in
the system, � → ∞ and the distance of minimal approach of
eigenvalues would tend to zero so that the lowest two eigen-
values would be degenerate. In the spin language this signals
the presence of a phase transition in the system. However,
since we keep �s finite, no phase transition sensu stricto can
happen in our model. To quantify the above, it is useful and
informative to introduce the spatial correlation length [23] as

ξ = ln−1

(
λ1

λ2

)
, (2.6)

where λ1 and λ2 are the first and second leading eigenvalues
of the characteristic equation. Temperature-dependent ξ has a
maximum at the transition point. The height of the maximum
is related to the transition interval as �T ∼ ξ−1

max ∼ Q
1−�

2

[13,14]. It turns out that the correlation function allows one to
study both the stability and cooperativity of transition. Addi-
tionally, we can also easily calculate the degree of helicity as

θ = 〈
δ

(�)
i

〉 = 1

N

∂ ln Z

∂J
= 1

λ1

∂λ1

∂J
, (2.7)

where 〈· · · 〉 stands for the Boltzmann-weighted averaging.
Armed with this model and the methods of its solution we can
proceed to generalize the original formulation by including
the effects of the solvents.

III. SOLVENT EFFECTS WITHIN THE GMPC MODEL

A. Hydrogen bonding solvents (competing interactions)

We assume the repeat units that are not bonded by intra-
molecular H-bonds are free to form polymer-solvent inter-
molecular bonds and some solvents, such as water and urea,
are able to form hydrogen bonds with nitrogen bases of DNA
or with peptide groups of protein amino-acids [1,2,8,24,25].
Such a model was considered in detail in Refs. [13] and [20]
using the following assumptions:

(1) Only those repeat units of the polymer that do not
participate in intra-molecular hydrogen bonding are available
for hydrogen bond formation with solvent.

(2) Polymer-solvent interactions depend on the state
(orientation) of solvent molecules with respect to the repeat
unit; there are q possible discrete orientations of each solvent
molecule.

(3) A spin variable μi , with values from 1 to q, is assigned
to each solvent molecule near repeat unit i. Orientation number
1 is the bonded one, with energy Ups ; all other q − 1 orienta-
tions correspond to non-bonded configuration and zero energy.

(4) When intramolecular hydrogen bonding is broken in a
polypeptide repeat unit, two binding sites become available. In
the case of DNA there are two (A-T) or three (G-C) hydrogen
bonds in one repeat unit, resulting in four or six binding
sites available for solvent molecules. To generalize, we will
consider 2m solvent spin variables per repeat unit. Here m is
the number of hydrogen bonds.
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(5) The reduced energy J of the solvent-free Hamiltonian
in Eq. (2.1) is adjusted to J = m

(Upp+Uss )
T

, where Upp and Uss

are the energies of intra (polymer-polymer) and intermolecular
(solvent-solvent) H-bonds, respectively.

The Hamiltonian for such a model of competing solvent
(CS) reads

− βHCS
({γi},

{
μ

j

i

}) = I

N∑
i=1

(
1 − δ

(�)
i

) ·
2m∑
j=1

δ
(
μ

j

i ,1
)
, (3.1)

where I = Ups

T
is the reduced energy of a polymer-solvent

H-bond. Due to the presence of the term 1 − δ
(�)
i in Eq. (3.1), as

opposed to the δ
(�)
i term in Eq. (2.1), the solvent is competing

with the polymer for H-bond formation, depending on the
ratio J/I .

B. Solvents affecting the available conformational space
(non-competing interactions)

There are many solvents or co-solutes that do not affect the
hydrogen bonding directly, but do modify the polypeptide con-
formations by changing the chemical potential or the osmotic
pressure of the solvent. A classical example of such a co-solute
is PEG, which can act as an osmoticant and as a depletion
agent [26]. Because of their size, PEG molecules are depleted
from the proximal regions of the polypeptide chain, exerting
an osmotic pressure that changes the energetic cost of certain
conformations at the expense of others. We have introduced
a model that describes these effects in [21]. However, other
types of solvents may exist besides the osmolytes. To cover
all possible cases of non-H-bonding solvent, we model the
solvent using the following assumptions.

(1) Solvent can interact with (affect) both helical and coil
units of polymer.

(2) Interaction with a solvent molecule changes the energy
of repeat unit depending on its conformation (Eh if the repeat
unit is helical and Ec otherwise).

(3) Polymer-solvent interaction depends on the orientation
of the solvent molecule around the repeat unit; the number
of solvent orientations being p > 2 to account for solvent
entropy.

(4) A spin variable νi ∈ [1,p] is assigned to describe
the state (orientation) of a solvent molecule and orientation
number 1 is set to correspond to the case where binding takes
place.
The �E = Eh − Ec difference mimics the effect of the sol-
vent. The larger this difference, the stronger is the stabilization
of the helical state vs. the coil. Therefore we may qualitatively
assume that �E models the effects of increased concentration
of solvent. The corresponding Hamiltonian of non-competing
solvent (NCS) reads

−βHNCS({γi},{νi})

=
N∑

i=1

(
Ic

(
1 − δ

(1)
i

)
δ(νi,1) + Ihδ

(1)
i δ(νi,1)

)
, (3.2)

where Ih,c = Eh,c/T .

C. Solvent with combined dual interactions

Interactions between some solvents (e.g., urea), and a
polymer have certainly an additional component besides the
simple H-bonding. It may therefore happen that the same
solvent affects polymer conformations through both effects:
direct H-bonding and non-H-bonding mechanisms. Thus it
seems to be a better idea to discuss the mechanisms of action
and not specifically the solvent types.

In general, the solvent can interact with the biopolymer
by both mechanisms. In that case the general form of the
Hamiltonian reads

− βHtotal =
N∑

i=1

⎧⎨⎩Jδ
(�)
i + I

(
1 − δ

(�)
i

) 2m∑
j=1

δ
(
μ

j

i ,1
)

+ Ic

(
1 − δ

(1)
i

)
δ(νi,1) + Ihδ

(1)
i δ(νi,1)

⎫⎬⎭ , (3.3)

resulting in the partition function

Ztotal =
∑
{γi }

∑
{μj

i }

∑
{νi }

exp
(−βHtotal

({γi},
{
μ

j

i

}
,{νi}

))
. (3.4)

Although the final Hamiltonian and the corresponding parti-
tion function look very complicated, all the solvent degrees
of freedom can be analytically and explicitly summed out,
without any assumptions, yielding the simple expression

Ztotal = (q + eI − 1)2mN (p + eIh − 1)NZ0(eJ̃ ,Q̃). (3.5)

Here

W̃ = Ṽ + 1 = exp [J̃ ] = exp [Ũ/T ]

= q2meJ

(q + eI − 1)2m
=
(

q e1/2t

q + e
1+α

2t − 1

)2m

(3.6)

and

Q̃= 1 + (Q− 1)
p + eIc − 1

p + eIh − 1
= 1 + (Q− 1)

p + eαc/t − 1

p + eαh/t − 1
.

(3.7)

Above we have used the following notation: t = 2T/(Upp +
Uss), α = 2Ups−(Upp+Uss )

Upp+Uss
, αh,c = 2Eh,c

Upp+Uss
. For the formal details

of transformations that result in Eq. (3.5), see Appendix.

IV. RESULTS

Equation (3.5) is the key result of our paper and means that
the renormalization W −→ W̃ and Q −→ Q̃ in the transfer
matrix (2.4), the partition function (2.3), and the characteristic
equation (2.5) of the solvent-free GMPC model provides a
full description of both types of solvent effects. To clarify the
obtained results, it is informative to note that the characteristic
equation that defines the thermodynamics,

λ�−1(λ − W̃ (T ))(λ − Q̃(T )) = (W̃ (T ) − 1)(Q̃(T ) − 1),

(4.1)

is similar to Eq. (2.5). This means that even after the
renormalization of the model parameters, the transition point
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FIG. 2. (Color online) Temperature dependence of W̃/Q in di-
mensionless units and with Q = 60, � = 3. Curves are colored
according to the values of α.

(temperature) can still be determined from the intercept(s)
between W̃ and Q̃. The two renormalized parameters with the
changed temperature dependencies also lead to the changes in
the phase diagram of the model.

We first consider temperature dependencies of W̃ and
Q̃ explicitly. From the their definitions it is clear that W

is exponentially decaying and that Q is constant in the
solvent-free model, as shown in Fig. 1.

Figures 2 and 3 illustrate how the inclusion of solvent effects
significantly changes the behavior of the model parameters
which serve as asymptotes for the eigenvalues. To simplify
these complicated dependencies, we will consider qualitatively
different cases, controlled by energies of polymer-solvent
interactions.

There are three constants that tune the temperature behavior
of W̃ and Q̃ and reflect the relative strength and sign of
solvent-polymer interactions, namely, α = 2Ups−(Upp+Uss )

Upp+Uss
and

αh,c = 2Eh,c

Upp+Uss
. For convenience, the last two constants will

be further grouped into �α = αh − αc = 2(Eh−Ec)
Upp+Uss

. Combining

FIG. 3. (Color online) Temperature dependence of Q̃/Q in di-
mensionless units and with Q = 60, � = 3. Curves are colored
according to the values of �α.

TABLE I. Encoding four possible cases for the α, �α couple of
parameters into the letter code.

�α < 0 �α > 0

α < 0 a) b)
α > 0 c) d)

representative curves from Figs. 2 and 3 we can identify the
transitions by looking for intercepts. As shown in Table IV,
when describing the combined effect of the two mechanisms
of solvent-polymer interactions, it is convenient to consider
four possible cases, encoded into the letter code in Table I.

Physically, these four cases correspond to situations when
(a) Polymer-polymer hydrogen bonding dominates, coil

conformation is stabilized;
(b) Polymer-polymer hydrogen bonding dominates, heli-

cal conformation is stabilized;
(c) Polymer-solvent hydrogen bonding dominates, coil

conformation is stabilized;
(d) Polymer-solvent hydrogen bonding dominates, helical

conformation is stabilized.
Pure cases, when there is only one mechanism of action
have been considered in our previous publications: �α = 0
in Ref. [20] and α = −1 in Ref. [21].

Representative plots for each of the four cases of Table IV
are presented in Figs. 4, 5, 6, 7. As a direct consequence of
main results, summarized by Eq. (3.5), even after redefinition,
W̃ and Q̃ still remain to serve as asymptotes of two largest
eigenvalues. These asymptotes intersect around the point of
closest approach of eigenvalues.

At α < 0, in the absence of a non-competing solvent,
there can only be one direct helix-coil transition (also see
Ref. [20]). As we see in Fig. 4, the presence of destabilizing
non-hydrogen bonding solvent with �α < 0 [case a)] on
top of the destabilizing hydrogen bonding solvent, gives rise
to an additional coil-helix transition at low temperatures.
The reentrant transition wouldn’t arise without the presence

FIG. 4. Case a). Temperature dependence of two largest eigen-
values of Eq. (4.1) in dimensionless units at α < 0, �α < 0. The
following set of parameters used: Q = 60, � = 3, α = −0.01,
�α = −0.03.
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FIG. 5. Case b). Temperature dependence of the two largest
eigenvalues of Eq. (4.1) in dimensionless units at α < 0, �α > 0;
for Q = 60, � = 3, α = −0.01, �α = 0.03.

of the destabilizing non-hydrogen bonding solvent and cor-
responding low-temperature intercept appears due to the
renormalization of Q̃.

At α < 0, �α > 0 [Fig. 5, case b)], additional stabilization
of helical conformation by non-hydrogen bonding solvent
(e.g., PEG) does not qualitatively change the picture. There is
only one, direct helix-coil transition at elevated temperature.

At α > 0, �α < 0 [Fig. 6, case c)] there are again two
transitions. Polymer-solvent H-bonds dominate; addition of
destabilizing non-hydrogen bonding solvent does not qualita-
tively change the situation.

Finally, when α > 0, �α > 0 [Fig. 7, case d)], polymer-
solvent H-bonding dominates, and non-competing solvent sta-
bilizes the system. This is probably the most interesting case.
It qualitatively corresponds to a water solution of polypeptides
under the action of PEG osmotic stress. There are normally
two transitions, but situations are possible, when another
two transitions appear at lower temperatures. They are very
unstable against small changes of α and �α. Such behavior
for spin models is not unusual and has been reported before
[27]. The experimental observation of these low-temperature
transitions is however difficult, since they will mostly appear
at temperatures below the freezing point of water.

FIG. 6. Case c). Temperature dependence of the two largest
eigenvalues of Eq. (4.1) in dimensionless units at α > 0, �α < 0;
for Q = 60, � = 3, α = 0.01, �α = −0.03.

FIG. 7. Case d). Temperature dependence of the two largest
eigenvalues of Eq. (4.1) in dimensionless units at α > 0, �α > 0;
for Q = 60, � = 3, α = 0.014, �α = 0.03.

The overall behavior of the system is thus very rich, ranging
from the case when there is no transition at all to the case when
there are four transitions. For example, in case d) at α = 0.014,
�α = 0.03 there are four transitions, at α = 0.5, �α = 1.0
there are two transitions, while at α = 0.5, �α = 0.5 there
are no transitions at all and the system is always found in a
disordered coil state.

For better understanding of the situation we plot the “phase”
diagrams. Namely, we wish to study how does the transition
temperature change as a function of α for some fixed �α’s
(Fig. 8) and as a function of �α for some fixed α’s (Fig. 9).
These diagrams of states have been obtained graphically as
lines of intercepts of asymptotes W̃ and Q̃ (which are surfaces
in three-dimensional space formed by the temperature, �α

and α) and correspond to the points of closest approach of
two largest eigenvalues, as we have already illustrated in
Figs. 4,5,6,7. Temperatures, where two largest eigenvalues
come into the closest approach, correspond to the maxima
of spatial correlation length, as obvious from its definition
Eq. (2.6). The information from the curves can be extracted
as follows. To withdraw the information for instance, from
α = 0.5,�α = 2.0 case we draw the α = 0.5 line in Fig. 8

FIG. 8. (Color online) Phase diagrams as temperature vs. α in di-
mensionless units for some fixed �α values shown on corresponding
curves.
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FIG. 9. (Color online) Phase diagrams as temperature vs. �α in
dimensionless units for some fixed α values shown on corresponding
curves.

(perpendicular dashed line) and look for its intercepts with
the �α = 2.0 curve. If there are intercepts, we project them
onto the temperature axis (horizontal dashed lines) to find the
transition temperatures (if any), see Fig. 9.

The curves in Fig. 8 indicate that at negative α’s there
is a transition from the helical to the coil conformation. At
close to zero values of α, more than one transition is possible;
normally, there are two, but for small negative �αs situations
are possible, when there are four transitions. In the case
of only two existing transitions, the first transition point at
low temperatures is from the coil to helix conformation and
corresponds to the cold denaturation, while the second, higher
temperature point is for the regular transition from the helix to
coil at elevated temperature. After some positive α there exists
no transition point and the system will always be found in the
coil conformation. This maximal value of α increases with
increased �α. Thus the presence of non-competing solvent
doesn’t alter the phase diagram of polypeptides qualitatively,
but can only shift the transition point to lower or higher tem-
peratures. Phase diagrams shown on Fig. 9 look qualitatively
different for the α > 0 and α < 0 cases. For negative α’s there
is always at least one, helix-coil ordinary transition. Transition
point of the transition grows almost linearly with �α. At small
negative or zero α the second branch may appear in the region
of negative �αs of phase diagram, indicating the presence of a
reentrant transition. For positive αs phase diagrams are limited
from the left and there exists a minimal value of �α, below
which there is no transition at all, and above which there
are two transitions. The transition temperature of ordinary
helix-coil transition grows almost linearly with increased �α’s
at positive α’s, like in the case of the negative α’s. Interestingly
enough, the transition point of the low temperature reentrant
(coil-helix) transition is independent of �α.

The cases considered can be additionally visualized with the
help of temperature dependencies of the degree of helicity θ

and the spatial correlation length ξ . If only a direct, helix-coil
transition is present, there will be one step of the helicity
degree and only one peak in the correlation length (Fig. 10),
while if there is an additional, reentrant transition, two steps
and two peaks appear (Fig. 11). An important result follows
from Fig. 11. While in the absence of non-hydrogen bonding
solvent the maxima of the correlation lengths are equal for both
the reentrant and direct transitions (see Fig. 2 of Ref. [20]),
resulting in similar cooperativities and transition intervals, ex-

FIG. 10. (Color online) Degree of helicity and correlation length
(in reduced and dimensionless units) plotted at fixed α,�α (values
shown in legend) indicate direct helix-coil transition.

perimental results indicate that the cooperativities and intervals
of heat and cold denaturations do differ [28]. In the language of
the correlation length this means different values of maxima,
see Fig. 11. Depending on the signs and values of α and �α

it could even happen that the maximum at low temperatures is
larger or smaller than the high temperature one.

Besides the simple cases shown above, more complex
situations are possible, including the case of four transitions
(Fig. 12) for which the helical content does not reach one
or zero. Cases when the helical content does not reach
saturation are potentially interesting for studies of Intrinsically
Disordered Proteins (IDP), which normally have a low number
of secondary structure elements. Effectively, it means that IDPs
have lower rigidity as compared to “normal”, ordered proteins,
and therefore, cannot fold at conditions when other proteins
are folded. Our results allow us to explain many regularities in
the behavior of IDPs and to determine their place in the general
phase diagram. It appears, that IDPs at room temperature are
in the region below cold denaturation point, so that they gain
order upon heating; for some of them, however, the normal
unfolding transition is preempted by the water boiling point.

FIG. 11. (Color online) Degree of helicity and correlation length
(in reduced and dimensionless units) plotted at fixed α,�α (values
shown in legend) indicate reentrant coil-helix at low temperatures
followed by direct helix-coil transition at higher temperatures.
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FIG. 12. (Color online) The degree of helicity (in dimensionless
units) plotted for α = 0.048 and �α = 0.12 indicates the possibility
of four transitions.

V. CONCLUSION

Due to the complex character of interactions between the
biopolymers and the aqueous solvent, with few advances in
the theory of HB liquids (because of the absence of small
parameter), finding and linking together proper models for
both the solvent and the polymer is not a simple task. Since
directional HB interactions play the most important role in the
system, it seems natural to rely on spin models which abound
in the literature. The coupled Ising-Potts model [27] was quite
successful in describing the lower critical solution points in
hydrogen-bonded mixtures. The Potts spin framework has
been implemented successfully in order to describe the cold
and the warm swelling of hydrophobic polymers in water [29],
as well as the general case of chaotropic and hydrophobic
solvents [30]. The nature and description of the solvent itself
can be a major issue since the water phase diagram can be quite
baroque with unusual phase structure possibly involving a
second critical point [31]. However, even these exotic scenarios
could be modeled within the spin-model Hamiltonian, e.g.,
in the context of a Bell-Lavis spin model, that allows for a
reentrant phase diagram involving low and high density phases
of water as was recently pointed out [32].

However, because we are mostly interested in the influence
of the solvent on the biopolymer conformations and not
vice versa, it would seem that a detailed description of the
bulk solvent is of a lesser relevance [20,21]. Excluding the
extremophiles, biological systems thrive at temperatures
between the freezing point and the boiling point of water.
Therefore, there is no real need to describe the critical
properties of solvents in this context. On the other hand,
water is actively rearranging its H-bonding network even at
(and below) room temperature, so that it cannot be described
as some solid and unresponsive medium. Additionally, the
polymer-solvent interactions that we take into account are
short ranged in space and thus allow to significantly simplify
the description of solvent-induced effects on the polymer and
to reduce the solvent description from a three-dimensional
one to a one-dimensional one.

By considering two separate models of solvents we
described two different mechanisms of solvent-biopolymer

interaction, corresponding to explicit and implicit interactions,
simultaneously and on the same footing. For instance, PEG
molecules of intermediate length are big enough to act implic-
itly as osmolytes creating osmotic stress, while at the same
time the hydrogen bonding ability of low molecular ethylene
glycol could still be affecting the interactions explicitly. For
PEG molecules of ∼100 repeat units the hydrogen bonding
activity could be disregarded, since fluctuations will destroy
any direct H-bonds between large PEG molecules and the
polypeptides, but for shorter PEG molecules both mechanisms
can play a role. In general, it becomes an interesting and
still open question what is the most important mechanism
of action for solvents like urea and guanidine in solution
with water and polypeptides. Is cold denaturation in solutions
with urea or guanidine arising due to increased preference of
polymer-solvent hydrogen bonding (increased α), or is it due
to osmotic stabilization (increased �α), or in fact both?

The possibility of having both heat and cold denaturation is
a property that results from the directionality of H-bonding
interactions and this is a feature shared by both polypep-
tides and polynucleotides. Often, however, cold denaturation
temperature appears at temperatures below the water freezing
point, making the experimental observation impossible. The
situation for DNA is even worse. In fact the smaller the entropy
of the coil state, the lower is the reentrant transition tempera-
ture (see Fig. 3 of Ref. [20]), so that the cold denaturation of
DNA would be very difficult to observe. These facts make our
theoretical considerations of great importance, since adding a
non-competing solvent to the solution may potentially make
the observation of cold denaturation possible even for systems
where such observations would be difficult otherwise.

While skepticism has been voiced in the literature that an
implicit description of the solvent is unlikely to account for for
both cold and heat denaturation unless the model parameters
are fitted to thermodynamic properties (e.g., temperature-
dependent energetics) [33], our implicit models of solvent
do exactly what has been deemed as “unlikely”. Also the
conviction that only explicit solvent models can describe
the heat and cold denaturation naturally from first principles
[33] does not seem to so self-evident as it would appear
from the example of, e.g., the popular Mercedes-Benz (MB)
model of water [34–37]. In fact our model of a solvent
with H-bonding interactions is conceptually very close to the
explicit water models with directional interactions, like the MB
model. Indeed, the most natural analytic way to describe the
orientational interactions on the Hamiltonian level is through
the multivalued spin variables [38], like what we did for the
GMPC model. It might thus be appropriate to rather adjust
the strict statement on the explicit solvent models into a
softer statement that the proper model of the solvent need to
exhibit explicitly only the directional interaction of the solvent
in order to recover both the heat and the cold denaturation
naturally from first principles.

Another potentially fruitful research area where the pro-
posed theory may be of great importance, is the “unusual”
behavior of Intrinsically Disordered Proteins. First, although
disordered, they are functional and resistant to cold treatment
[39], so we are still missing some crucial info about the basics
of the folding event itself. Many IDP’s also gain structure
upon increasing temperature in the range from 3 to 50 degrees
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Celsius or decreasing pH from 5.5 to 3.0 [40]. Also of note
is that some IDP’s in crowded environment are folding, while
others remain unfolded [41]. These facts, coupled with our
results, summarized in phase diagrams Figs. 8 and 9, show that
the disordered state of IDP’s belongs to the low-temperature
region of the phase diagram, so that decreasing temperature
does not have any effect, while increasing it results in cold
denaturation and/or refolding. This transition takes place at
conditions where globular proteins usually loose structure,
while IDP’s gain it. Resistance to crowding is nicely visible in
Fig. 9, where the low-temperature part of the curve describing
cold denaturation is almost parallel to the x-axis that describes
the crowding in the system (�α). In the same figure it is also
visible that the more pronounced is the competition between
the inter- and the intra-molecular hydrogen bonding (larger α

values), the higher is the temperature of cold denaturation,
which explains why some IDP’s gain order in crowding
conditions while others do not.

The present study of solvent effects has important impli-
cations on both polypeptides and DNA and the qualitative
picture that we derived is very reach, including the possibility
for both the reentrant as well as direct helix-coil transitions,
enabling situations when only a certain amount of helicity
is lost or gained. Such effect might share light on changes
of disordered protein conformations and DNA replication
and explain how these processes are regulated by solvents
inside a cell. Our theory also allows for explanations of the

unusual behavior of the Intrinsically Disordered Proteins, thus
showing a strong potential for future studies in this vastly
developing research field. While we have limited ourselves to
the helix-coil transition phenomenon, the approach advocated
is extendable to any spin-based theory of conformational
transitions in polymers.
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APPENDIX: EXACT INTEGRATION OF THE SOLVENT
DEGREES OF FREEDOM

Equation (3.4) reads

Ztotal =
∑
{γi }

N∏
i=1

[
1 + V δ

(�)
i

] × LCS({γi}) × MNCS({γi}),

(A1)

where

LCS({γi}) ≡
∑
{μj

i }

2m∏
j=1

[
1 + R(1 − δ

(�)
i ) · δ

(
μ

j

i ,1
)]

=
q∑

μ1
i =1

q∑
μ2

i =1

· · ·
q∑

μ2m
i =1

⎧⎨⎩1 + R(1 − δ
(�)
i )

2m∑
j=1

δ
(
μ

j

i ,1
) + R2(1 − δ

(�)
i )

∑
j<k

δ
(
μ

j

i ,1
)
δ
(
μk

i ,1
)

+ R3(1 − δ
(�)
i )

∑
j<k<l

δ
(
μ

j

i ,1
)

δ
(
μk

i ,1
)
δ
(
μl

i,1
) + · · · R2m(1 − δ

(�)
i )δ · (μ1

i ,1
) · δ

(
μ2

i ,1
) · · · · δ

(
μ2m

i ,1
)⎫⎬⎭

= q2m + (1 − δ
(�)
i )

[
2mRq2m−1 + C2

2mR2q2m−2 + C3
2mR3q2m−3 + · · · + R2m

]
= q2m + (1 − δ

(�)
i )[q + R]2m − (1 − δ

(�)
i )q2m = (q + R)2m

[
1 − δ

(�)
i + q2mδ

(�)
i

(q + R)2m

]
. (A2)

V = eJ − 1 and R = eI − 1 have been introduced as in the
main text. Above we have just summed out degrees of freedom
of competing solvent, used the properties of the binomial
coefficients Cm

n = n!/(m!(n − m)!) and rearranged the terms.
In its turn, MNCS can be simplified without assumptions too:

MNCS({γi})
≡
∑
{νi }

[
1 + Rc

(
1 − δ

(1)
i

)
δ(νi,1)

][
1 + Rhδ

(1)
i δ(νi,1)

]
= (p + Rc)

(
1 + ρδ

(1)
i

)
, (A3)

where ρ = Rh−Rc

p+Rc
.

Inserting LCS into Eq. (A1) results in

Ztotal = (q + R)2mN
∑
{γi }

N∏
i=1

[1 + Ṽ δ
(�)
i ] × MNCS({γi}), (A4)

where

Ṽ + 1 = exp (J̃ ) = (V + 1)q2m

(q + R)2m

= exp
(
m

(Upp+Uss )
T

) · q2m[
q − 1 + exp

(Ups

T

)]2m
. (A5)
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Further insertion of Mnon-hbsol({γi}) and summation over
non competing solvent degrees of freedom gives us

Ztotal = (q + R)2mN (p + Rh)N
∑
{γi }

N∏
i=1

[Ai + Ṽ δ
(�)
i ]. (A6)

The last expression is up to (unimportant) constants similar
Eq. (2.2) of solvent-free case, with the only difference that the
function to be summed contains

Ai = 1 + ρδ
(1)
i

1 + ρ
, (A7)

on the place of 1. The product inside Eq. (A6) results
in polynomial of degree N of parameter V with coef-
ficients, that contain different combinations of Ai . Sum-
mation over all γi’s of each of terms of this polynomial
gives us the partition function of the model with solvent.
In solvent-free case we had

∑Q
γk=1 1 = Q which is

now
∑Q

γk=1 Ak = Q+ρ

1+ρ
= 1 + (Q − 1) p+Rc

p+Rh
= Q̃. By chang-

ing the summation limit,
∑Q̃

γk=1 1 = Q̃ Eq. (3.5) is
obtained.
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