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Avian photoreceptor patterns represent a disordered hyperuniform solution
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Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in perfectly
regular arrays in two dimensions. Examples of such perfect arrays in nature include the compound eyes of
insects and the nearly crystalline photoreceptor patterns of some fish and reptiles. Birds are highly visual animals
with five different cone photoreceptor subtypes, yet their photoreceptor patterns are not perfectly regular. By
analyzing the chicken cone photoreceptor system consisting of five different cell types using a variety of sensitive
microstructural descriptors, we find that the disordered photoreceptor patterns are “hyperuniform” (exhibiting
vanishing infinite-wavelength density fluctuations), a property that had heretofore been identified in a unique
subset of physical systems, but had never been observed in any living organism. Remarkably, the patterns of
both the total population and the individual cell types are simultaneously hyperuniform. We term such patterns
“multihyperuniform” because multiple distinct subsets of the overall point pattern are themselves hyperuniform.
We have devised a unique multiscale cell packing model in two dimensions that suggests that photoreceptor
types interact with both short- and long-ranged repulsive forces and that the resultant competition between the
types gives rise to the aforementioned singular spatial features characterizing the system, including multihy-
peruniformity. These findings suggest that a disordered hyperuniform pattern may represent the most uniform
sampling arrangement attainable in the avian system, given intrinsic packing constraints within the photoreceptor
epithelium. In addition, they show how fundamental physical constraints can change the course of a biological
optimization process. Our results suggest that multihyperuniform disordered structures have implications for the
design of materials with novel physical properties and therefore may represent a fruitful area for future research.
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I. INTRODUCTION

The purpose of a visual system is to sample light in such
a way as to provide an animal with actionable knowledge of
its surroundings that will permit it to survive and reproduce
[1]. In most cases, this goal is achieved most effectively by a
highly regular two-dimensional (2D) array of photoreceptors
that evenly sample incoming light to produce an accurate
representation of the visual scene. Classical sampling theory
[2,3] as well as more recent studies [4–6] have demonstrated
that the optimal arrangement of a 2D array of detectors is a
triangular lattice (i.e., a hexagonal array). Indeed, modeling
studies suggest that any deviation from a perfectly regular
arrangement of photoreceptors will cause deterioration in the
quality of the image produced by a retina [7]. Accordingly,
many species have evolved an optimal sampling arrangement
of their photoreceptors. For example, the insect compound
eye consists of a perfect hexagonal array of photoreceptive
ommatidia [8,9]. In addition, many teleost fish [10–12] and
some reptiles [13] possess nearly crystalline arrangements of
photoreceptors. These and other examples attest that a perfect
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or nearly perfectly ordered arrangement of photoreceptors can
be realized in a biological system.

Diurnal birds have one of the most sophisticated cone visual
systems of any vertebrate, consisting of four types of single
cone (violet, blue, green, and red) which mediate color vision
and double cones involved in luminance detection [14–16]
(see Fig. 1). Despite the presence of numerous evolutionary
specializations in the avian eye, the overall arrangement of
bird cone photoreceptors is not perfectly ordered but rather
is irregular [17,18]. The five avian cone types exist as five
independent, spatial patterns, all embedded within a single
monolayered epithelium. The individual cone patterns in the
bird’s retina are arranged such that cones of one type almost
never occur in the near vicinity of other cones of the same
type [18]. In this way, the bird achieves a much more uniform
arrangement of each of the cone types than would exist in a
random (Poisson) pattern of points.

Given the utility of the perfect triangular-lattice arrange-
ment of photoreceptors for vision [7], the presence of disorder
in the spatial arrangement of avian cone patterns is puzzling.
It is crucial to ascertain whether the apparent “disordered”
photoreceptor arrangements correspond to a different optimal
solution because of constraints, such as cell size polydispersity,
that are not present in the aforementioned insect retinas. By an-
alyzing the chicken cone photoreceptor system using a variety
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FIG. 1. (Color online) Spatial arrangements of chicken cone photoreceptors. The leftmost panel shows a flatmount preparation of a
post-hatch day 15 chicken retina with colored oil droplets within the inner segments of the five cone photoreceptor types. Size bar = 10 μm.
The additional panels (from left to right) depict the same field of view under illumination with ultraviolet, blue, and green light, respectively.
Oil droplet autofluorescence permits subtype classification of the individual photoreceptor cells and determination of their spatial coordinates.
These figures derive from Ref. [18].

of sensitive microstructural descriptors that arise in statistical
mechanics and particle-packing theory [19], we show here that
the avian system possesses a remarkable type of correlated
disorder at large length scales known as hyperuniformity
[20], which has heretofore not been observed in a living
organism. A disordered hyperuniform many-body system is
an exotic state of matter that behaves like a perfect crystal or
quasicrystal in the manner in which it suppresses large-scale
density fluctuations and yet, like a liquid or glass, is statistically
isotropic with no Bragg peaks. Moreover, in a departure from
any known physical system, the photoreceptor patterns of both
the total population and the individual cell types are simulta-
neously hyperuniform, which we term multihyperuniformity.
We subsequently determine effective interactions between the
photoreceptors on multiple length scales that could possibly
explain their unusual disordered hyperuniform state. Specifi-
cally, we consider two types of interactions that have compet-
ing effects in determining the degree of order in the system. In-
deed, we show via computer simulations that the local-energy
minimizing configurations of such a many-particle interacting
system quantitatively capture, with high accuracy, the unique
spatial characteristics, including multihyperuniformity. The
fact that the aforementioned competing interactions lead to
disordered hyperuniform systems suggests that the photore-
ceptor patterns may represent the most uniform sampling
arrangement attainable in the avian system due to intrinsic
packing constraints associated with the photoreceptor cells.

The rest of the paper is organized as follows: In Sec. II,
we provide definitions of fundamental concepts used in our
analysis including various statistical microstructural descrip-
tors, order metrics, as well as the concept of hyperuniformity.
In Sec. III, we quantitatively investigate structural charac-
teristics of avian photoreceptor patterns containing multiple
cell species and show that both the overall pattern and
the arrangements of individual species are hyperuniform.
In Sec. IV, we determine the effective interactions between
the photoreceptors and devise a unique multiscale packing
model incorporating such interactions. We show that our
multiscale packing model can lead to point configurations that
are virtually indistinguishable from the actual photoreceptor
arrangements. In Sec. V, we provide concluding remarks.

II. DEFINITIONS AND FUNDAMENTAL CONCEPTS

Before presenting our analysis of the avian photoreceptor
system, we first briefly review the “hyperuniformity” concept
and its quantification, which plays a central role in this paper. In

addition, we introduce the order metrics that will be employed
to characterize the avian patterns.

A. Hyperuniform systems

The ensemble-averaged structure factor of infinite point
configurations in d-dimensional Euclidean space at number
density ρ is defined via

S(k) = 1 + ρh̃(k), (1)

where h̃(k) is the Fourier transform of the total correlation
function h(r) = g2(r) − 1 and g2(r) is the pair-correlation
function of the system. Note that definition (1) implies that
the forward scattering contribution to the diffraction pattern is
omitted. For statistically homogeneous and isotropic systems,
the focus of this paper, g2 depends on the radial distance
r ≡ |r| between the points (cell centers) as well as the number
density ρ. In two dimensions, the quantity ρg2(r)2πr dr is
proportional to the conditional probability of finding a cell
center at a distance between r and r + dr given that a cell
center is at the origin, where ρ is the number of cell centers
per unit area.

The small-k behavior of the structure factor S(k) encodes
information about large-scale spatial correlations in the system
and in the limit k → 0 determines whether the system is
hyperuniform. Specifically, an infinite point configuration in
d-dimensional Euclidean space is hyperuniform if

lim
k→0

S(k) = 0, (2)

which implies that the infinite-wavelength density fluctuations
of the system (when appropriately scaled) vanish [20].

For computational purposes, the structure factor S(k) for a
given finite point configuration can be obtained directly from
the positions of the points rj [21], i.e.,

S(k) = 1

N

∣∣∣∣∣∣
N∑

j=1

exp(ik · rj )

∣∣∣∣∣∣
2

(k �= 0), (3)

where N is the total number of points in the system (under
periodic boundary conditions) and k is the wave vector.
Note that the forward scattering contribution (k = 0) in (3)
is omitted, which makes relation (3) completely consistent
with the definition (1) in the ergodic infinite-system limit. For
statistically homogeneous and isotropic systems, the focus
of this paper, the structure factor S(k) only depends on
the magnitude of the scalar wave number k = |k| = 2πn/L,
where n = 0,1,2 . . . and L is the linear size of the system.
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A hyperuniform point configuration has the property that
the variance in the number of points in an observation window
� grows more slowly than the volume of that window [20].
In the case of a spherical observation window of radius R,
this definition implies that the local number variance σ 2(R)
grows more slowly than Rd in d dimensions. The expression
for the local number variance of a statistically homogeneous
point configuration in a spherical observation window is given
exactly by

σ 2(R) = ρv(R)

[
1 + ρ

∫
Rd

h(r)α(r; R)dr
]

, (4)

where v(R) is the volume of a spherical window of radius R and
α(r; R) is the scaled intersection volume, i.e., the intersection
volume of two spheres of radius R separated by a distance r

divided by the volume of a sphere v(R). We remark that the av-
erage number of points in an observation window is 〈N (R)〉 =
ρv(R) for any statistically homogeneous point configuration.

It has been shown that the number variance (4), un-
der certain conditions, admits the following asymptotic
scaling [20]:

σ 2(R) = 2dφ

{
A

(
R

D

)d

+ B

(
R

D

)d−1

+ O
[(

R

D

)d−3]}
,

(5)

where

A = 1 + ρ

∫
Rd

h(r)dr = lim
‖k‖→0

S(k), (6)

and D is a characteristic microscopic length associated with
the point configuration (e.g., the average nearest-neighbor
distance between the points). Clearly, when the coefficient
A = 0, i.e., limk→0 S(k) = 0 satisfies the requirements for
hyperuniformity. The relation in (6) then implies that hyperuni-
form point patterns do not possess infinite-wavelength density
fluctuations (when appropriately scaled) and hence from (5)
the number variance scales as the surface area of the window
for large R, i.e., σ 2(R) ∼ Rd−1 in the large-R limit. This
result is valid for all periodic point patterns (including perfect
crystals), quasicrystals, and disordered systems in which the
pair-correlation function g2 decays to unity exponentially fast
[20]. The degree to which large-scale density fluctuations are
suppressed enables one to rank order crystals, quasicrystals,
and special disordered systems [20,21]. Disordered hyperuni-
form structures can be regarded as new states of disordered
matter in that they behave more like perfect crystals or
quasicrystals in the manner in which they suppress density
fluctuations on large length scales, and yet are also like liquids
and glasses in that they are statistically isotropic structures with
no Bragg peaks. Thus, hyperuniform disordered materials pos-
sess a “hidden order” that is not apparent on short length scales.

For disordered hyperuniform systems with a total correla-
tion function h(r) that does not decay to zero exponentially
fast, other dependencies of the number variance on R may be
observed. For example, it is known that if S(k) for k → 0 or,
equivalently, if the total correlation function h ∼ −r−(d+1) for
large r , then σ 2(R) ∼ (a0 ln R + a1)Rd−1. More generally, for
any reciprocal power law,

S(k) ∼ kα (k → 0) (7)

or, equivalently,

h(r) ∼ − 1

rd+α
(r → +∞), (8)

one can observe a number of different kinds of dependencies
of the asymptotic number variance σ 2 on the window radius
R for R → ∞ [20–22]:

σ 2(R) ∼
⎧⎨
⎩

Rd−1 ln R, α = 1
Rd−α, α < 1
Rd−1, α > 1.

(9)

Note that in all cases, the number variance of a hyperuniform
point pattern grows more slowly than Rd .

B. Order metrics

The local bond-orientational-order metric q6 is defined
as [23]

q6 =
∣∣∣∣∣∣

1

Nb

∑
j

∑
k

exp(6iθjk)

∣∣∣∣∣∣ , (10)

where j runs over all cells in the system, k runs over all
neighbors of cell j , θjk is the angle between some fixed
reference axis in the system and the bond connecting the
centers of cells j and k, and Nb is the total number of such
bonds in the system. This quantity indicates the degree of
orientational order in the local arrangement of the immediate
neighbors of a cell and it is maximized (i.e., q6 = 1) for the
perfect hexagonal arrangement.

To characterize translational order of a configuration, we
use the following translation order metric T introduced in
Ref. [24] and further applied in Ref. [25]:

T = 1

ηc

∫ ηc

0
|g2(r) − 1|dr = 1

ηc

∫ ηc

0
|h(r)|dr, (11)

where g2(r) is the pair-correlation function, h(r) = g2(r) − 1
is the total correlation function, and ηc is a numerical cutoff
determined by the linear size of the system. The translational
order metric measures the deviation of the spatial arrangement
of cell centers in a pattern from that of a totally disordered
system (i.e., a Poisson distribution of points). The greater
the deviation from zero, the more ordered is the point
configuration.

III. STRUCTURAL PROPERTIES OF EXPERIMENTALLY
OBTAINED PHOTORECEPTOR PATTERNS

The chicken retina contains five different cone cell types of
different sizes: violet, blue, green, red, and double. Each cell
type of this multicomponent system is maximally sensitive to
visible light of a different wavelength. The spatial coordinates
of each cell can be determined by the presence of a colored
oil droplet in the cell’s inner segment (Fig. 1). Since the
oil droplets used to identify the locations of individual
photoreceptors are not always in exactly the same plane [18],
pairs of real photoreceptors sometimes appear to be closer to
one another than they are in actuality and in the simulations.
In addition, the original slightly curved retina epithelium was
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FIG. 2. (Color online) Experimentally obtained configurations
representing the spatial arrangements of chicken cone photoreceptors.
Upper panels: The configurations shown from left to right, respec-
tively, correspond to violet, blue, green species. Lower panels: The
configurations shown from left to right, respectively, correspond to
red, double species, and the overall pattern.

flattened for imaging purposes [18]. These effects introduce
small errors in the intercell small-distance behavior but do not
affect the overall statistics, especially on large length scales.
The spatial coordinate data sets of post-hatch day 15 chicken
(Gallus gallus) cone photoreceptors were obtained from a
published study [18]. Each data set contains approximately
4430 photoreceptors, and the average number of violet, blue,
green, red, and double species are, respectively, 350, 590, 880,
670, and 1840. To clearly illustrate the photoreceptor patterns
of different species, only a portion of the entire system is shown

in Fig. 2. We compute a variety of the associated statistical
structural descriptors and order metrics to quantify the degree
of spatial regularity (or disorder) of the cell arrangements.

A. Disordered hyperuniformity

As discussed in Sec. II B, a point pattern is hyperuniform
if the number variance σ 2(R) within a spherical sampling
window of radius R (in d dimensions) grows more slowly
than the window volume for large R, i.e., more slowly
than Rd [20]. The property of hyperuniformity can also be
ascertained from the small wave number behavior of the
structure factor, i.e., S(k = 0) = 0 of the pattern [20], which
encodes information about large-scale spatial correlations
(see Sec. II B for details). We find that S(k) for the cell
configurations associated with both the total population and the
individual photoreceptor species are hyperuniform and each of
these structure factors vanishes linearly with k as k tends to
zero, i.e., S(k) ∼ k (k → 0) (see Fig. 3). As discussed in Sec.
II B [cf. Eq. (9)], such a linear behavior indicates a power-law
decay for large-r values in the pair-correlation function [i.e.,
g2(r) − 1 ∼ −1/r3] instead of an exponential decay and
therefore quasi-long-range correlations in the system. We will
elaborate on this point in the ensuing discussion.

We have directly computed the number variance σ 2(R)
for the individual and overall patterns and verified that they
are also consistent with hyperuniformity, i.e., the “volume
term” in σ 2(R) is several orders of magnitude smaller than
the other terms [cf. Eq. (5)]. Specifically, for each R value,
2500 windows are randomly placed in the system without
overlapping the system boundary. The finite system size L

imposes an upper limit on the largest window size, which

FIG. 3. (Color online) Structure factors S(k) of the experimentally obtained point configurations representing the spatial arrangements of
chicken cone photoreceptors. The experimental data were obtained by averaging 14 independent patterns. The estimated values of S(k = 0)
by extrapolation for violet, blue, green, red, double, and the overall population in the actual pattern are respectively given by 2.11 × 10−3,
6.10 × 10−4, 1.06 × 10−3, 5.72 × 10−4, 1.38 × 10−4, and 1.13 × 10−3.
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FIG. 4. (Color online) The number variance σ 2(R) associated with the photoreceptor patterns in chicken retina as well as the associated
fitting function of the form σ 2(R) = AR2 + BR ln(R) + CR. We found that the values of the parameter A are several orders of magnitude
smaller than the other two parameters, indicating that the associated patterns are effectively hyperuniform. Also shown in each plot is the
“surface term” CR for purposes of comparison. The window radius R is normalized with respect to the mean nearest-neighbor distance d0 of
the corresponding point configurations.

is chosen to be Rmax = L/2 here. Figure 4 shows the
experimental data as well as the associated fitting functions
of the form

σ 2(R) = AR2 + BR ln(R) + CR, (12)

where A = S(k = 0) and B,C > 0. Note that in the plots, the
window size R is normalized by the corresponding nearest-
neighbor distance d0 for each species. Also shown in each
plot is the corresponding “surface term” CR for purposes of
comparison. The numerical values of the fitting parameters
for both the overall pattern and the individual species are
given in Table I. It can be clearly seen that the values of the
parameter A are several orders of magnitude smaller than the
other two parameters, indicating that the associated patterns
are effectively hyperuniform. These values are also consistent
with the numerical values of S(k = 0) obtained by directly
fitting S(k) for small-k values [26].

The fact that the photoreceptor patterns display both overall
hyperuniformity and homotypic hyperuniformity implies that
if any subpopulation of the individual species is removed
from the overall population, the remaining pattern is still
hyperuniform. We term such patterns multihyperuniform

because distinct multiple subsets of the overall point pattern
are themselves hyperuniform. These are highly unusual and
unique structural attributes. Until now, the property of overall
hyperuniformity was identified only in a special subset of dis-
ordered physical systems [27–38]. The chicken photoreceptor
patterns provides the first example of a disordered hyperuni-
form biological system. In addition, the photoreceptor patterns
possess quasi-long-range (QLR) correlations as indicated by
the linear small-k behavior in S(k). We will elaborate on these
points in Sec. V.

B. Pair-correlation functions

We find that each cell is associated with an effective
exclusion region (i.e., an area in 2D) with respect to any
other cells, regardless of the cell types. The size of these
exclusion regions roughly corresponds to the size of the cells
themselves [18]. In addition, cells belonging to the same
subtype (i.e., like-cells) are found to be mutually separated
from one another almost as far as possible, leading to a
larger effective exclusion region associated with like-cells of
each species. The exclusion effects are quantitatively captured
by the associated pair-correlation functions (Fig. 5). The

TABLE I. The numerical values of the fitting parameters for both the overall pattern and the individual species.

Violet Blue Green Red Double Overall

A 2.53 × 10−4 9.24 × 10−4 1.07 × 10−3 1.77 × 10−3 4.46 × 10−3 1.93 × 10−3

B 0.203 0.198 0.169 0.146 0.122 0.127
C 1.22 1.14 1.03 1.09 1.17 1.06
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FIG. 5. (Color online) Pair-correlation functions g2(r) of the experimentally obtained point configurations representing the spatial
arrangements of chicken cone photoreceptors. The experimental data were obtained by averaging 14 independent patterns. The distance
is rescaled by the average nearest-neighbor distance dn in the system.

hard-core exclusion effect is manifested in g2(r) as an interval
of r for which g2(r) = 0 (i.e., an “exclusion gap”) and g2(r)
approaches its large-r asymptotic value of unity very quickly,
indicating the absence of any long-range spatial ordering. This
is to be contrasted with ordered systems, such as crystals,
whose pair-correlation functions are composed of individual
Dirac delta functions at specific r values.

C. Order metrics

A bond-orientational order metric q6 [23] and a translational
order metric T [25] were used next to quantify the degree of
spatial regularity in the photoreceptor patterns (see Table II),
each of which are maximized by the triangular lattice and min-
imized by a spatially uncorrelated point pattern. Interestingly,
the q6 and T values for the total population are close to the
corresponding values for polydisperse hard-disk packings we
obtained, implying that the local cell exclusion effect plays

TABLE II. Bond-orientational and translational order metrics
q6 and T , respectively, of the chicken photoreceptor patterns. The
experimental data were obtained by averaging 14 independent
patterns.

Species q6 T

Violet 0.150 0.304
Blue 0.158 0.411
Green 0.130 0.278
Red 0.147 0.254
Double 0.184 0.390
All 0.058 0.096

a primary role in determining the overall pattern. In contrast,
the higher-q6 and -T values for individual cell species suggest
that like-cells interact with one another on a length scale larger
than the size of a single cell, which tends to increase the degree
of order in the arrangements of like-cells.

From a functional point of view, photoreceptor cells
of a given type maximize their sampling efficiency when
arranged on an ordered triangular lattice, as in the case of
the compound eye of insects [8,9]. Importantly, the triangular
lattice has been shown to be the most hyperuniform pattern
[20], i.e., it minimizes the large-scale density fluctuations
among all 2D patterns. However, this most hyperuniform
pattern may not be achieved if other constraints (e.g., cell
size polydispersity) are operable. We therefore hypothesize
that the disordered hyperuniformity of avian photoreceptor
patterns represents a compromise between the tendency of
the individual cell types to maximize their spatial regularity
and the countervailing effects of packing heterotypic cell
types within a single epithelium, which inhibits the spatial
regularity of the individual cell types. In other words, the avian
photoreceptors are driven to achieve the most “uniform” spatial
distribution subject to heterotypic cell packing constraints.

IV. COMPUTATIONAL MODEL THAT YIELDS
MULTIHYPERUNIFORM PATTERNS

Our initial attempt to model the avian photoreceptor cell
patterns employed classic packing models of polydisperse hard
disks that are driven to their “jammed states” [19]. However,
these models failed to generate patterns with multihyperuni-
formity. Such standard jamming models involving interactions
on a single length scale are insufficient to represent the two
competing effects leading to the photoreceptor patterns and
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motivated us to develop a unique multiscale packing model as
described in the following.

In the experimental data representing the spatial arrange-
ments of chicken cone photoreceptors, each cell is represented
by a point. We refer to these points as “cell centers,” although
they may not correspond to the actual geometrical centers of
the cells.

In order to modify a simple hard-core interaction, we
consider two types of effective cell-cell interactions: isotropic
short-range hard-core repulsions between any pair of cells
and isotropic long-range soft-core repulsions between pairs
of like-cells (i.e., cells of the same subtype). The multiscale
nature of the model results from the multiple length scales
involved in these interactions for different species, as we
discuss now. The strength of the hard-core repulsion is
characterized by the radius Ri

h of a hard-disk exclusion region
associated with a cell type i. This interaction imposes a
nonoverlap constraint such that the distance between the cells
i and j can not be smaller than (Ri

h + R
j

h), which mimics
the physical cell packing constraint. In this regard, Ri

h will
also be referred to as the radius of a cell i in the ensuing
discussions. The relative magnitudes of Ri

h are estimated from
an electron micrograph showing photoreceptor cell packing
at the level of the inner segment [17]. The characteristic
radius Rs of the soft-core repulsion is associated with the
mean nearest-neighbor distance of the cells of the same type.
Specifically, the pair potential between two like-cells is given
by

E(r) =
{ α

β + 1
(2Rs − r)β+1, r � 2Rs

0, r > 2Rs

(13)

where the parameters α > 0 and β > 0 set the scale of the
interaction energy [39]. In our simulations, we require that
the value of Rs be uniquely determined by the associated cell
number density ρ, i.e., Rs = 1

2

√
2/[

√
(3)ρ]. This implies that

a system composed of cells of the same type (i.e., a single-
component system) interacting via a pair potential given by
Eq. (13) at number density ρ (i.e., the number of cells per
unit area) possesses the triangular-lattice ground state, i.e., an
arrangement associated with a minimal total energy (sum of
the total interaction energy between any pairs of like-cells).
In other words, when the total energy in a single-component
system is reduced to its minimal value (e.g., zero), sufficiently
slowly from an arbitrary initial configuration, the cells will
reorganize themselves into a triangular-lattice arrangement.

When the system contains multiple species, the hard-
and soft-core interactions represent two competing effects
in determining the packing arrangement of the cells (see
Fig. 6). Specifically, the polydisperse hard-disk exclusion
regions induce geometrical frustration in the packing, i.e., in
this five-component system, it is not possible for the subset of
disks with the same size, surrounded by disks with different
sizes to be arranged on a perfect triangular lattice. On the
other hand, the long-range soft interaction between like species
tends to drive the cells of the same type to arrange themselves
on a perfect triangular lattice. Note that although the relative
magnitudes of Ri

h for different species (i.e., the ratio between
any two Ri

h) are fixed, the actual values of Ri
h are variable and

used as a tuning parameter in our model. As stated above, the

FIG. 6. (Color online) Illustration of the hard- and soft-core
interactions in a two-species system containing black and red (or light
gray in the print version) cells. The left panel shows the exclusion
regions (circular disks with two distinct sizes) associated with the
two types of cells, which are proportional to the actual sizes of the
cells. The black cells have a larger exclusion region than the red cells.
The middle panel illustrates the soft-core repulsive interaction (large
concentric overlapping circles of the solid black disks) between the
black cells. Such a repulsive interaction will drive the black cells
to arrange themselves in a perfect triangular lattice in the absence
of other species. The right panel illustrates the soft-core repulsive
interaction (large concentric overlapping circles of the solid red disks)
between the red cells.

ratios between Ri
h are estimated from a previously published

study [17]. Specifically, the relative sizes of the violet, blue,
green, red, and double species are 1.00, 1.19, 1.13, 1.06, and
1.50, respectively. Given the number of cells of each species,
the values of Ri

h can be uniquely determined from the packing
fraction φ of the cells (i.e., the fraction of space covered by
the cells) and vice versa:

φ = 1

A

∑
i

Niπ
(
Ri

h

)2
, (14)

where Ni is the number of cells of species i and A is the area
of the system.

Our Monte Carlo algorithm, which involves iterating
“growth” and “relaxation” steps, works as follows:

(1) Initialization. In the beginning of the simulation, cell
centers of each species are generated in a simulation box
using the random-sequential-addition (RSA) process [19].
Specifically, for each species i, Ni cell centers are randomly
generated such that these cell centers are mutually separated
by a minimal distance μRs (0 < μ < 1). In addition, the
newly added cell can not overlap any existing cells in the
box (determined by the hard-core radius Rs), regardless of
cell types. The initial covering fraction φI associated with the
hard-core exclusion regions is determined by Ri

h via Eq. (14),
and is about 80% of the RSA saturation density [19].

(2) Growth step. At each stage n, the cells are allowed
to randomly move a prescribed maximal distance (∼0.25Ri

h)
and direction such that no pairs of cells overlap. After a certain
number (≈1000) of such random movements for each cell, the
radius Ri

h of each cell is increased by a small amount such that
the size ratios of the cells remain the same. This leads to an
increase of the packing fraction φn at this stage by an amount of
about 1%–3%. Note that in this “growth” step, the long-range
soft interactions between the like-cells are turned off.

(3) Relaxation step. At the end of the “growth” step,
the soft interactions are then turned on, and the cells are
allowed to relax from their current positions to reduce the
total system energy subject to the nonoverlap condition. The
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steepest descent method is used to drive the system to the
closest local energy minimum (i.e., the inherent structure [19])
associated with the starting configuration. This is referred to
as the “relaxation” process.

(4) Statistics. After the relaxation process, structural statis-
tics of the resulting configuration of cell centers are obtained
and compared to the corresponding experimental data. To
ensure that the simulations match the data for the pair statistics
to the best extent possible, we introduce a deviation metric
�. Specifically, � is the normalized sum of the squared
differences between the simulated and experimental S(k) and
g2(r) associated with the simulated and actual patterns, i.e.,

� = 1

nS

nS∑
i

∑
r

[
g

(i)
2 (r) − ḡ

(i)
2 (r)

]2

+ 1

nS

nS∑
i

∑
k

[S(i)(k) − S̄(i)(k)]2, (15)

where nS = 6 is the total number of species including both
the five individual species and the overall pattern, g

(i)
2 (r) and

S(i)(k) are the simulated functions associated with species i,
and ḡ

(i)
2 (r) and S̄(i)(k) are the corresponding experimentally

measured functions.
(5) The growth and relaxation steps described in the bullet

items (2) and (3), respectively, are repeated until φn reaches a
prescribed value φF . Specifically, the configuration obtained
by relaxation at stage n is used as the starting point for the
growth step at stage n + 1. The best simulated pattern (i.e., that
with the smallest deviation metric �min) and the associated φ∗
value are then identified.

At a given packing fraction φ (or equivalently a set of
Ri

h), the polydispersity of the exclusion regions associated
with different species and the resulting nonoverlap constraints
frustrate the spatial order in the system. For example, the
long-range soft interaction drives a single-species system to
the triangular-lattice arrangement in the absence of other
species. On the other hand, for any φ > 0, it is impossible
for cells of a particular species, surrounded by cells of other
species, to sit on a perfect triangular lattice [18]. Therefore,
the disordered point configurations obtained by minimizing the
energy associated with the soft repulsive interactions subject to
the hard-core packing constraints are the local energy minima
(i.e., inherent structures) of the system. The extent to which
the structure deviates from that of a perfect triangular lattice
(i.e., global energy minimum) is determined by the parameter
φ (or, equivalently, Ri

h). Therefore, by tuning this parameter
in our algorithm, one can, in principle, generate a continuous
spectrum of configurations of cell centers with varying degrees
of spatial order (see Appendix). Note that in the limit Ri

h → 0,
triangular-lattice arrangements for individual species are ac-
cessible again and the resulting configuration is a superposition
of five triangular-lattice arrangements of the cell centers.

We note that the order of the aforementioned growth and
relaxation steps can be interchanged without affecting the
final configuration. In addition, instead of starting from a
disordered RSA arrangement of cell centers as described
above, we have also used ordered initial configurations (i.e.,
superposition of triangular-lattice arrangements), leading to
the same configuration at a given number density ρ. However,

the initial packing density φI associated with ordered initial
configurations is very low and, thus, it is computationally
inefficient to start from such initial configurations. By
tuning the “strength” of the hard-core interactions via the
packing fraction associated with the exclusion regions, our
multiscale packing model enables us to produce disordered
point configurations with various degrees of hyperuniformity,
examples of which are provided in the Appendix for a
three-component system for illustrative purposes.

A. Modeling avian photoreceptor system
via multiscale particle packing

By using the multiscale packing model, we were able to
accurately reproduce the unique features of the native avian
photoreceptors. We modeled the aforementioned two compet-
ing effects as two types of effective interactions between the
cells: a long-range soft-core repulsion between the cells of the
same type (that would lead to an ordered triangular-lattice
arrangement in the absence of packing constraints) and a
short-range hard-core repulsion (with polydisperse exclusion
regions associated with different cell species) between any pair
of cells that frustrates spatial ordering in the system. Given
the sizes of the hard-core exclusion regions associated with
each cell species (or equivalently the packing fraction φ of
the exclusion regions), the system is allowed to relax to a
state that is a local energy minimum for the long-range soft-
core repulsive interactions between like-species. Such long-
range interactions would drive each of the five cell species
in the multicomponent system to the associated triangular-
lattice arrangement (global energy minimum) in the absence
of the hard-core repulsions. As we increase the strength of the
hard-core repulsions by increasing φ, the degree of order in
the system, which is quantified by the order metrics q6 and T ,
decreases (see Fig. 7). It is important to emphasize that these
disordered hyperuniform avian photoreceptor patterns are not
simple random perturbations of a triangular-lattice pattern.
Statistically equivalent disordered hyperuniform patterns have
also been obtained from disordered initial configurations (e.g.,
RSA packings). Thus, the unique structural features in these
patterns are not attributed to particular initial configurations
but rather arise from the two competing effects, which are
well captured by our multiscale packing model.

FIG. 7. (Color online) Left panel: The bond-orientational order
metric q6 of the individual species as a function of the packing fraction
φ associated with the exclusion regions. Right panel: The translational
order metric T of the individual species as a function of the packing
fraction φ associated with the exclusion regions.

022721-8



AVIAN PHOTORECEPTOR PATTERNS REPRESENT A . . . PHYSICAL REVIEW E 89, 022721 (2014)

FIG. 8. (Color online) Simulated point configurations represent-
ing the spatial arrangements of chicken cone photoreceptors. Upper
panels: The configurations shown from left to right, respectively,
correspond to violet, blue, and green species. Lower panels: The
configurations shown from left to right, respectively, correspond to
red, double species, and the overall pattern. The simulated patterns
for individual photoreceptor species are virtually indistinguishable
from the actual patterns obtained from experimental measurements.

The simulation box contains 2600 cell centers and the
numbers of violet, blue, green, red, and double species are,
respectively, 210, 355, 530, 405, and 1100. The relative sizes
of the violet, blue, green, red, and double species are 1.00,
1.19, 1.13, 1.06, and 1.50, respectively. The initial packing
fraction associated with the hard cores is φI = 0.45 and
the simulation stops at φF = 0.7. At φ ≈ 0.58, the resulting
configurations (see Fig. 8) are virtually indistinguishable from

the actual photoreceptor patterns, as quantified using a variety
of descriptors. Specifically, the associated structure factors
(see Fig. 9) and pair-correlation functions (see Fig. 10) match
the experimental data very well, as quantified by the minimum
deviation metric value of �min ≈ 0.4 [cf. Eq. (15)]. We note
that the major contributions to �min are the large fluctuations
in the experimental data due to a limited number of samples.
(The initial value of � is roughly 3.16.) The order metrics
q6 and T of the simulated pattern also match those of the
experimental data very well (see Table III). This is a stringent
test for the simulations to pass. The success of the simulations
strongly suggests that the disordered hyperuniform photore-
ceptor patterns indeed arise from the competition between
cell packing constraints and the tendency to maximize the
degree of regularity for efficient light sampling, suggesting
that the individual photoreceptor types are as uniform as they
can be, given the packing constraints within the photoreceptor
epithelium.

V. CONCLUSIONS AND DISCUSSION

By analyzing the chicken cone photoreceptor patterns using
a variety of sensitive microstructural descriptors arising in sta-
tistical mechanics and particle-packing theory, we found that
these disordered patterns display both overall and homotypic
hyperuniformity, i.e., the system is multihyperuniform. This
singular property implies that if any subset of the individual
species is removed from the overall population, the remaining
pattern is still hyperuniform. Importantly, it is highly nontrivial
to devise an algorithm that would remove a large fraction of the
points from a disordered hyperuniform system while leaving

FIG. 9. (Color online) Comparison of the structure factors S(k) of the experimentally obtained and simulated point configurations
representing the spatial arrangements of chicken cone photoreceptors. The simulation data were obtained by averaging 50 independent
configurations.
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FIG. 10. (Color online) Comparison of the pair-correlation functions g2(r) of the experimentally obtained and simulated point
configurations representing the spatial arrangements of chicken cone photoreceptors. The simulation data were obtained by averaging 50
independent configurations. The distance is rescaled by the average nearest-neighbor distance dn in the system.

the remaining point pattern hyperuniform, and yet Nature has
found such a design.

Until now, the property of overall hyperuniformity was
identified only in a special subset of disordered physical
systems, including ground-state liquid helium [34], one-
component plasmas [35], Harrison-Zeldovich power spectrum
of the density fluctuations of the early Universe [36], fermionic
ground states [37], classical disordered ground states [38],
and maximally random jammed packings of equal-sized
hard particles [32,33]. All of these examples involve single-
component systems. More recently, disordered multicompo-
nent physical systems such as maximally random jammed
(MRJ) hard-particle packings [27–29] have been identified that
possess an appropriately generalized hyperuniformity property
ascertained from the local volume fraction fluctuations. How-
ever, the multicomponent photoreceptor avian system pattern,
which represents the first example of a disordered hyperuni-

TABLE III. Comparison of the bond-orientational and transla-
tional order metrics q6 and T of the experimental and simulated point
configurations. The simulation data were obtained by averaging 50
independent configurations.

q6 T

Species Expt. Sim. Expt. Sim.

Violet 0.150 0.148 0.304 0.327
Blue 0.158 0.164 0.411 0.395
Green 0.130 0.134 0.278 0.266
Red 0.147 0.149 0.254 0.263
Double 0.184 0.189 0.390 0.363
All 0.058 0.063 0.096 0.108

form system in a living organism, is singularly different from
any of these hyperuniform physical systems in that in the
pattern each species and the total population are hyperuniform,
i.e., the avian patterns are multihyperuniform. Although it is
not very difficult to construct an overall hyperuniform system
by superposing subsystems that are individually hyperuniform,
the reverse process (i.e., decomposing a hyperuniform system
into individually hyperuniform subsets) is highly nontrivial. It
will be of interest to identify other disordered hyperuniform
biological systems. It is likely that some other epithelial
tissues and phyllotactic systems [19] possess such attributes.
Interestingly, it has been shown that the large-scale number-
density fluctuations associated with the malignant cells in brain
tumors are significantly suppressed, although the cell patterns
in such brain tumors are not hyperuniform [40].

In addition, the photoreceptor patterns possess quasi-long-
range (QLR) correlations as indicated by the linear small-k
behavior in S(k). Such QLR correlations are also observed in
the ground-state liquid helium [34], the density fluctuations
of the early Universe [36], fermionic ground states [37], and
MRJ packings of hard particles [27–29]. In the MRJ particle
packings, it is believed that the QLR correlations arise from the
competition between the requirement of jamming and maximal
disorder in the system [27–29]. As we showed employing the
unique multiscale packing model, the multicomponent avian
system that is both homotypic and overall hyperuniform, i.e.,
multihyperuniform, can result from two competing interac-
tions between the photoreceptors.

It is noteworthy that while hard-core exclusion and
high density in a disordered particle packing are necessary
conditions to achieve a hyperuniform state, these are not
sufficient conditions. Figure 11 shows a nonequilibrium
random-sequential-addition (RSA) packing of hard circular
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FIG. 11. (Color online) Left panel: A random-sequential-
addition (RSA) packing of hard, identical circular disks in two
dimensions with a packing fraction φ = 0.54, which is close to
the saturation state. Right panel: An equilibrium system of hard,
identical disks at φ = 0.54. The fact that neither of these systems
is hyperuniform, as discussed in the text, indicates that hard-core
exclusion effects alone are not sufficient to induce hyperuniformity.

disks in two dimensions with a packing fraction φ = 0.54
(left panel), which is generated by randomly and sequentially
placing hard disks in a domain without overlapping existing
disks, until there is no room for additional disks [41]. The
right panel of Fig. 11 shows an equilibrium system of
hard disks at φ = 0.54 (right panel). The structure factor
values at k = 0 for the RSA and equilibrium systems are
respectively given by S(0) = 0.059 [41] and S(0) = 0.063
[42–44]. Although hard-core exclusion plays a central role
in these two distinct high-density packings, neither packing
is hyperuniform, as indicated by the relatively large positive
values of the corresponding S(0).

To understand the origin of the unique spatial features of
the avian photoreceptor patterns, we have devised a unique
multiscale cell packing model that suggests that photoreceptor
types interact with both short- and long-ranged repulsive forces
and that the resultant competition between the types gives
rise to the singular cell patterns. The fact that a disordered
hyperuniform pattern corresponds to a local optimum associ-
ated with the multiscale packing problem indicates that such a
pattern may represent the most uniform sampling arrangement
attainable in the avian system, instead of the theoretical optimal
solution of a regular hexagonal array. Specifically, our studies
show how fundamental physical constraints can change the
course of a biological optimization process. Although it is
clear that physical cell packing constraints are the likely
cause of the short-range hard-core repulsion, the origin of
the effective longer-range soft-core repulsion is less obvious.
We hypothesize that repulsive forces of this type occur
during retinal development and may be secondary to cell-cell
interactions during photoreceptor neurogenesis. However, a
comprehensive test of this hypothesis is beyond the scope
of this investigation, and therefore its resolution represents a
fascinating avenue for future research.

Recent studies have shown that disordered hyperuniform
materials can be created that possess unique optical properties,
such as being “stealthy” (i.e., transparent to incident radiation
at certain wavelengths) [38]. Moreover, such disordered
hyperuniform point patterns have been employed to design
isotropic disordered network materials that possess complete
photonic band gaps (blocking all directions and polarizations
of light) comparable in size to those in photonic crystals

[45,46]. While the physics of these systems is not directly
related to the avian photoreceptor patterns, such investigations
and our present findings demonstrate that a class of disordered
hyperuniform materials are endowed with novel photonic
properties.

Aside from capturing the unusual structural features of pho-
toreceptor patterns, our multiscale packing model represents
a unique algorithm that allows one to generate multihyperuni-
form multicomponent systems with varying degrees of order
by tuning the packing fraction φ of the hard-core exclusion re-
gions (see Appendix for additional examples). This knowledge
could now be exploited to produce multihyperuniform disor-
dered structures for applications in condensed matter physics
and materials science. For example, it would be of interest to
explore whether colloidal systems can be synthesized to have
such repulsive interactions in order to self-assemble into the
aforementioned unique disordered arrangements and to study
the resulting optical properties. It is noteworthy that it has
already been demonstrated that three-dimensional disordered
hyperuniform polymer networks can be fabricated for photonic
applications using direct laser writing [47].
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APPENDIX: MULTIHYPERUNIFORM DISORDERED
POINT CONFIGURATIONS VIA THE MULTISCALE

PACKING MODEL

In this appendix, we provide additional examples of
multihyperuniform disordered point configurations obtained
via the multiscale packing model for the case of three
components (red, blue, and green species). These examples
illustrate the versatility and capacity of our model to generate
multicomponent systems with varying degrees of hyperuni-
formity (see discussion below), apart from modeling the
avian system. Specifically, we will show that the degree of
hyperuniformity of the overall patterns can be controlled by
tuning the overall final packing fraction φ associated with the
hard-core exclusion regions for different species in the system.
Note that in our model, in the infinite-dilute limit φ → 0, i.e.,
in the absence of the hard-core exclusion effects, the inherent
structures associated with the remaining long-range soft-core
repulsion are triangular-lattice arrangements of points, which
are in fact the most hyperuniform point configurations in two
dimensions [15]. As the hard-core exclusion regions for each
species grow in size (i.e., φ increases), the degree of spatial
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order will be gradually reduced due to the aforementioned
geometrical frustrations caused by the hard cores, while the
system remains hyperuniform and disordered up to some
packing fraction φC . Therefore, our algorithm is robust in
producing multihyperuniform systems with a varying degree
of disorder over a wide range of packing fractions. However,
we emphasize that there exists a threshold packing fraction
φC , above which the system ceases to be hyperuniform.

In our simulations, the numbers of particles for different
species are chosen to be the same, i.e., nR = nB = nG = 500,
where the subscripts “R,” “B,” “G” indicate the red, blue, and
green species, respectively. The three species possess the same
number density and thus, the same size Rs for the homotypic
repulsion [cf. Eq. (13)]. The relative sizes of the hard core are,
respectively, 1.0, 1.5, and 2.0 for red, blue, and green species.
Initial configurations with an overall packing fraction φ = 0.3
are generated using the random sequential addition process.
Then, the growth and relaxation procedure is employed to
generate disordered inherent structures associated with the soft
interactions at different packing fractions.

The resulting patterns are multihyperuniform, i.e., both
the individual species and the overall patterns are hyperuni-
form. However, here we will only focus on the degree of
hyperuniformity in the overall pattern. Figure 12 shows the
configurations and associated S(k) of the overall system for
selected φ values. At φ = 0.35, the structure factor S(k) = 0
for k < K∗, indicating that the system is stealthy [38] (i.e.,
the pattern completely suppresses scattering of the incident
radiation associated with wave numbers smaller than K∗
and, thus, is transparent at the corresponding wavelengths)
and yields a higher degree of order. At φ = 0.55, the structure
factor is quadratic in k, i.e., S(k) ∼ k2 for small-k values,
which indicates that number variance grows with the surface

FIG. 12. (Color online) Configurations and the associated S(k)
of a three-component system for selected φ values. Left panel: At
φ = 0.35, the structure factor S(k) = 0 for k < K∗ which indicates
the system is stealthy. Right panel: At φ = 0.55, the structure factor
S(k) ∼ k2 for small-k values, which indicates that number variance
σ 2(R) ∼ R for large window sizes. The system possesses different
degrees of hyperuniformity that can be ascertained from the small-k
behavior of S(k).

of the observation window, i.e., σ 2(R) ∼ R for large window
sizes (i.e., large-R values). This is to be contrasted with the
large-R behavior of σ 2(R) for the photoreceptor patterns in
chicken retina, i.e., σ 2(R) ∼ R ln R, which indicates that the
number variance grows more rapidly than that in the three-
component system associated with φ = 0.55. In other words,
the three-component system at φ = 0.55 possesses smaller
local number density fluctuations than those in the chicken
retina, indicating that the former is more uniform on large
length scales (i.e., displays a higher degree of hyperuniformity)
than the latter.
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