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We study a biologically motivated model of overdamped, autochemotactic Brownian agents with concentration-
dependent chemotactic sensitivity. The agents in our model move stochastically and produce a chemical ligand at
their current position. The ligand concentration obeys a reaction-diffusion equation and acts as a chemoattractant
for the agents, which bias their motion towards higher concentrations of the dynamically altered chemical field.
We explore the impact of concentration-dependent response to chemoattractant gradients on large-scale pattern
formation, by deriving a coarse-grained macroscopic description of the individual-based model, and compare
the conditions for emergence of inhomogeneous solutions for different variants of the chemotactic sensitivity.
We focus primarily on the so-called receptor-law sensitivity, which models a nonlinear decrease of chemotactic
sensitivity with increasing ligand concentration. Our results reveal qualitative differences between the receptor
law, the constant chemotactic response, and the so-called log law, with respect to stability of the homogeneous
solution, as well as the emergence of different patterns (labyrinthine structures, clusters, and bubbles) via spinodal
decomposition or nucleation. We discuss two limiting cases, where the model can be reduced to the dynamics
of single species: (I) the agent density governed by a density-dependent effective diffusion coefficient and (II)
the ligand field with an effective bistable, time-dependent reaction rate. In the end, we turn to single clusters of
agents, studying domain growth and determining mean characteristics of the stationary inhomogeneous state.
Analytical results are confirmed and extended by large-scale GPU simulations of the individual based model.
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I. INTRODUCTION

Chemotaxis is defined as the directed motion of cells
along chemical concentration gradients (see, e.g., [1]). It
enables individual cells to bias their motion towards favorable
environmental conditions and is therefore essential for the
survival of a plethora of bacterial species. Furthermore, it
is an important principle in the dynamics of various other
biological systems, e.g., guidance of leukocyte cells in the
process of wound healing [1,2], cancer cell invasion [3–5],
and neuronal self-wiring [6,7].

In cases where the corresponding chemicals are produced
by the cells themselves as a reaction to environmental condi-
tions, chemotaxis has been interpreted as effective cell-to-cell
communication [8]. Such autochemotactic response, which
may be attractive or repulsive, plays an important role in
the aggregation and internal dynamics of bacterial colonies
(see, e.g., [9–12]). However, autochemotactic aggregation
is not only limited to bacteria; for example, it has been
observed in free-swimming zoospores of the water mould
Achlya [13] and is known to play an important role in the life
cycle of the social amoeba Dictyostelium discoideum [14,15].
Very recently it was shown that also artificial systems of
self-propelled colloids may resemble the behavior of living cell
by exhibiting chemotactic drift and chemical signaling [16,17].

Since the pioneering works of Patlak [18] and Keller and
Segel [19], huge progress has been made on developing and
analyzing various models of chemotaxis. Most modeling ap-
proaches are based on partial differential equations (PDEs) for
the density of cells and concentration of the chemoattractants
and/or repellents (see, e.g., [20,21]); however, also various
individual-based models (IBMs) were suggested, which reflect

the discrete and stochastic nature of the modeled system. A ma-
jor advantage of such models is the possibility to introduce in-
dividual features of cell behavior directly into the mathematical
model. The downside is the possible difficulties in deriving a
coarse-grained description in terms of a small number of PDEs,
which allows analytical predictions on stability and large-scale
behavior of the system. One should also note that with respect
to numerical integration, individual-based models have some
advantages over corresponding PDEs as they naturally account
for the low-density limit and may be less susceptible to
instabilities in situations with strong density inhomogeneities.
In particular for IBMs it is possible to massively reduce
simulation times by using GPUs due to the intrinsically parallel
hardware of GPUs. General purpose computing on GPUs has
been employed by a growing number of scientists during the
past decade. For models of noninteracting particles, speed-ups
by factor of 600 were reported [22]. A review on GPU
computation in the field of statistical physics is given in [23].
We designed an optimized simulation setup on GPUs for the ef-
ficient numerical integration of our IBM even at high densities.

In this work we will introduce and study a biologically
motivated model of active Brownian agents [24] with a
concentration-dependent chemotactic sensitivity, modeled by
the so-called receptor law (RL): The RL models a nonlinearly
decreasing chemotactic sensitivity with increasing ligand
concentration, a phenomenon observed in different bacteria
species as well as in neuronal growth cones [1,6,21,25–28].
The introduced model is related to our previous work in
individual-based modeling of autochemotactic agents [29,30].
Other microscopic models of chemotaxis (or autochemotaxis)
with constant chemotactic sensitivity have been studied in [31–
35]. Our microscopic model with a concentration-dependent
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chemotactic sensitivity reduces in a limiting case to the
constant sensitivity model originally studied by Schweitzer
and Schimansky-Geier [29,36]. Furthermore, in a different
limiting case, it may be related to the so-called log law
for chemotactic sensing. The nonlinear chemotactic drift
term discussed here was previously used in a model of
self-propelled particles in combination with additional local
velocity-alignment interaction [30]. We consider here an
overdamped model of chemotactic Brownian agents in order
to focus specifically on the impact of the RL on macroscopic
pattern formation. Hereby we show that in our model the
stability properties of the homogeneous solutions as well as
the emergent structures are qualitatively different from the
constant chemotactic response model introduced in [29].

After introducing our model (Sec. II), we will proceed with
the analysis of the corresponding coarse-grained equation.
Here we will perform a linear stability analysis of the homoge-
neous solution for different variants of chemotactic sensitivity
and show in particular that for a chemotactic drift according to
the RL, the homogeneous state is linearly stable at high and low
particle densities. At intermediate densities the homogeneous
solution becomes unstable and the system exhibits a wide
range of transient spatiotemporal patterns, which for t → ∞
converge towards a stable inhomogeneous state (Sec. III).
Two limiting cases of the model will be discussed: (i) fast
relaxation of the particle density and (ii) fast relaxation of
the chemical concentration field (Sec. IV). We will focus on
the inhomogeneous state, discussing domain growth and mean
stationary characteristics of single clusters (Sec. V).

II. MODEL SETUP: CONCENTRATION-DEPENDENT
CHEMOTAXIS OF ACTIVE BROWNIAN AGENTS

A. Microscopic model equations

We consider an ensemble of active autochemotactic
Brownian agents indexed with i = 1,2, . . . ,N , as a model for
bacteria that interact via chemotaxis. Different species of bac-
teria, e.g., Escherichia coli (E. coli), produce chemoattractants
(or chemorepellents) to interact and to “communicate” about
favorable or hostile environments [1,30]. Motivated by this ob-
servation, agents in our model produce a chemical ligand c(r,t)
at their time-dependent position ri(t) with a constant produc-
tion rate qc. The concentration field of the chemical c(r,t)
obeys a reaction-diffusion equation and acts as a chemoattrac-
tant for the agents: They move towards higher concentrations
of the dynamically altered chemical field. The movement of
agents in our model is characterized by the interplay of two
forces in the Langevin equations governing individual trajecto-
ries: (i) the chemotactic force Fchem determining the response
of agents to ligand field and (ii) a stochastic force Fstoch

modeling the random movement of agents. We consider a two-
dimensional system with N pointlike agents with mass m = 1
in the overdamped limit. This brings us to the following mi-
croscopic model equations for i = 1, . . . ,N Brownian agents:

dri

dt
= 1

γ
Fchem(ri ,t) +

√
2Dξ i(t), (1a)

∂c(r,t)
∂t

= qc

N∑
i=1

δ(r − ri(t)) − dcc(r,t) + Dc�c(r,t). (1b)

The first term on the right-hand side of Eq. (1a) describes
the overdamped chemotactic drift with a constant friction
coefficient γ and a force term Fchem, which will be specified in
the following [Eq. (5)]. The second term models the random
movement of agents with noise intensity D and Gaussian white
noise vector ξ i(t). Equation (1b) describes the evolution of the
chemical: We assume that the chemical is produced with a
constant production rate qc at the position ri(t) of every agent,
decomposes with a decay rate dc, and diffuses with a diffusion
coefficient Dc.

Biological agents, e.g., many forms of bacteria, are able
to sense local concentrations of a ligand by measuring the
relative occupation σi of its membrane receptors, which for
independent receptors can be expressed as

σi = No

No + Nf

= τo

τo + τf

. (2)

Here No describes the number of occupied receptors and
Nf the number of free receptors, which are assumed to be
proportional to the mean occupation time τo and the mean
free time τf of the receptors, respectively [1,6,8]. Following
[6,8,30], we assume that the unbinding rate of the receptor
ko→f = τ−1

o is independent of the ligand concentration c.
Thus there exists a constant characteristic mean occupation
time τo = const. In contrast, we assume the binding rate of the
receptors kf →o = τ−1

f to be directly proportional to the ligand
concentration. This yields the free time τf to be inversely
proportional to the space- and time-dependent concentration
of the field τf = ao

c(r,t) (where ao is a constant).
Eukaryotic cells are sufficiently large to sense differences

in ligand concentration along the cell body [37–39]. Their
chemotactic response can be assumed to be directly pro-
portional to the spatial gradient of σi . Bacterial cells, in
contrast, are in general too small to detect spatial gradients
directly and have to rely on temporal sensing of differences in
receptor occupation. However, assuming a finite stochastic
displacement of biological agents per unit time |δri/δt |,
combined with the ability to sense temporal changes in σi ,
leads to the effective measurement of spatial gradients of the
relative occupation of receptors on length scales larger than the
persistence length of cell motion [30,40]. Thus, on sufficiently
large length scales chemotactic bacteria can effectively be
described as Brownian agents with a net drift along gradients
due to an effective chemotactic force.

Based on the above considerations, we assume the chemo-
tactic force to be proportional to the gradient of the relative
occupation of membrane receptors and the corresponding time
constants, respectively,

Fchem ∝ ∇ No

No + Nf (c(ri ,t))
∝ ∇ τ0

τo + τf (c(ri ,t))
. (3)

In the case of spatial sensing this gradient can be related to
different occupations of receptors at different locations on the
surface of the cell. Here we emphasize that in our effective
description of biological agents as pointlike particles, we do
not explicitly consider details of directional sensing, e.g., the
effects of cell shape studied in [41]. If we consider our model
as a simplified coarse-grained description of chemotaxis based
on temporal sensing, the gradient has to be interpreted as the
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(infinitesimal) spatial difference vector of the expected recep-
tor occupation due to differences in the concentration field at
the center-of-mass position of the agent at different times. We
note that our approach does not into account details of temporal
sensing related to the adaptation kinetics (see, e.g., [42]).

This allows us to directly write the effective chemotactic
force acting on each agent i as a function of the concentration
of the chemical

Fchem(ri ,t) = χoK

[K + c(ri ,t)]2
∇c(ri ,t), (4)

where we calculated the gradient in Eq. (3) and introduced
χo as a proportionality factor and K = ao/τo as a constant
determined by the characteristic mean time of receptor occu-
pation. The resulting prefactor of the gradient on the right-hand
side of Eq. (4) is known as the receptor law [1,6,21,25–28].
Decades ago it was pointed out that the best agreement
between experimental results and models is obtained for a
concentration-dependent chemotactic sensitivity of the form
of the receptor law [25]. Throughout the past decades, this has
been used for modeling of bacteria in continuous macroscopic
models (in, e.g., [25–28]), but most of the microscopic
approaches have so far considered only constant chemotactic
drift. In a recent work Grima analyzed the diffusion properties
of single autochemotactic agents with logarithmic sensitivity
[43]. Here, in contrast, we focus on the collective behavior
resulting from different variants of concentration-dependent
sensitivity. By extending the right-hand side of Eq. (4) with
1/K2

1/K2 and defining the chemotactic drift coefficient κ = χo

K
and

the chemotactic saturation parameter β = 1
K

, we arrive at an
alternative formulation of the receptor-law drift

Fchem(ri ,t) = κ

[1 + βc(ri ,t)]2︸ ︷︷ ︸
χRL(c)

∇c(ri ,t), (5)

with κ,β � 0. For β > 0 the effect of the RL concentration-
dependent chemotactic sensitivity χRL(c) can qualitatively be
sketched as follows. For low c(r,t) (�β−1) the denominator of
Eq. (5) is approximately 1 and agents are maximally sensitive
to gradients of the chemoattractant. However, if the concen-
tration of the chemical increases, the denominator of the drift
term grows and the chemotactic force decreases nonlinearly.
In the biological picture, c � β−1 corresponds to situations
where almost all membrane receptors are occupied and agents
become insensitive to local chemoattractant gradients. The
rescaled version of the RL in Eq. (5) was used in [30]
and explicitly distinguishes between (a) chemotactic drift
(determined by κ) and (b) chemotactic saturation (determined
by β). We use it here for an intuitive comparison between
the model of (i) constant chemotactic sensitivity (β = 0)
studied in [29] and (ii) concentration-dependent chemotactic
sensitivity studied in this work.

In the limiting case β = 0 [or, rescaled according to
Eq. (4), c � K], the receptor-law sensitivity χRL(c) reduces
to constant chemotactic sensitivity

χo = κ. (6)

The receptor law is derived by assuming independent cellular
receptor dynamics, but it has been shown for E. coli bacteria

that adaptation dynamics of the intracellular chemotactic
signaling system violate these assumptions and that the
chemotactic response in E. coli strains is better described by
the so-called log-law (LL) sensitivity [44]:

χLL(c) = κ

c
. (7)

Following [1,26] it can be obtained as a special case of the RL
by considering c ≈ K (or rescaled β−1 ≈ c and κ−1 ≈ c). In
Sec. III we will compare the collective behavior that results
from the three chemotactic sensitivities χo, χLL, and χRL, but
further on we will focus on RL sensitivity.

The autochemotactic coupling between the agents implies
a positive feedback between the number of agents and the
concentration of the field c(r,t): The higher the number of
agents in a certain region, the more chemicals are produced
and therefore even more agents are attracted. In the special case
of β = 0, positive feedback finally leads to a collapse of all
agents into a single δ-peaked distribution [29]. In the following
sections we will show how a finite saturation parameter β > 0
effects the collective behavior of the Brownian agents.

B. Macroscopic description and global behavior

In order to analyze the system at large length scales, we use
a mean-field approximation and consider the coarse-grained
density of particles ρ(r,t) instead of the microscopic stochastic
description of single agents: We assume the factorization of
the N -particle probability distribution function (PDF) into a
product of N one-particle PDFs. This allows us to derive
directly a Smoluchovski equation for the one-particle PDF
P (r,t), corresponding to our overdamped Langevin equations
[Eq. (1a)]. Further on we will describe the system in terms of
the one-particle density function ρ(r,t) = NP (r,t), where N

is the total number of agents. Corresponding coarse graining
has to be performed with respect to the production term of the
reaction-diffusion equation governing c(r,t) [Eq. (1b)]. Here
we arrive at the macroscopic perspective via (see also [29,30])

qc

N∑
i=1

δ(r − ri(t)) → qcNP (r,t) → qcρ(r,t). (8)

This brings us to the following macroscopic model description
for the RL sensitivity:

∂ρ(r,t)
∂t

= ∇
(

− κρ(r,t)
γ [1 + βc(r,t)]2

∇c(r,t) + D∇ρ(r,t)
)

,

(9a)

∂c(r,t)
∂t

= qcρ(r,t) − dcc(r,t) + Dc�c(r,t). (9b)

This set of continuous partial differential equations can be seen
as a special realization of the well known Patlak-Keller-Segel
model [18,19] with a receptor-law chemotactic sensitivity. A
detailed discussion of general differences between individual-
based stochastic modeling approaches and coarse-grained
descriptions can be found in [45].

Throughout this work, we will use the following integral
operator to represent the global average of an arbitrary function
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g(r,t):

〈g〉(t) = 1

A

∫
A

g(r,t)dr, (10)

with A being the total area of the system. For no flux, or
periodic boundary conditions (as used in the simulations), the
diffusion of the chemical does not change its total amount in the
system (as N = 〈ρ〉A = const). The time-dependent global
mean chemoattractant concentration 〈c〉(t) therefore obeys

d〈c〉(t)
dt

= qc〈ρ〉 − dc〈c〉(t). (11)

The solution of the above ordinary differential equation reads

〈c〉(t) = qc

dc

〈ρ〉(1 − e−dct ). (12)

The total amount of chemoattractant increases continuously
and for t > 5τ with τ = 1

dc
it reaches more than 99% of its

final amount and thus can be considered constant

lim
t→∞〈c〉(t) = qc

dc

〈ρ〉. (13)

We can therefore distinguish between two temporal regimes
with respect to the global amount of chemoattractant in
the system: At short times, for 0 < t < 5τ , the system is
characterized by a global growth of 〈c〉(t), whereas at long
times and for t > 5τ only a local redistribution of c(r,t) takes
place, with the global amount of chemoattractant being well
approximated by its constant stationary limit given in Eq. (13).
If not stated otherwise, we will focus on the case of stationary
global field (t � 5τ ) with local redistribution.

In the following sections we will study the stability of
the homogeneous solution of Eqs. (9a) and (9b) and the
behavior of possible inhomogeneous states. Analytic results
will be compared to GPU simulations of the microscopic
model equations (1a) and (1b).

C. The GPU simulation setup

The Langevin equations governing the single trajectories
of agents were numerically integrated on GPUs based on a
combination of optimized algorithms introduced in [22,46]
and the reaction-diffusion equation was solved using the GPU
finite-difference algorithm described in [47]. For systems with
large ensembles of particles and large simulation grids this
simulation setup leads to significant speed-ups. No explicit

benchmarking was done as we concentrated on the characteris-
tics of our model, but an exemplary comparison gives an idea of
the powerful computational capabilities: The GPU (NVIDIA
Tesla M2050) needs 60 s for 104 discrete integrations of
4 × 105 agents on a 512 × 512 simulation grid, while the CPU
(DELL intel i7-3770) needs 2758 s. This corresponds to a
speed-up by a factor of 46. For smaller systems of 1000 agents
on a 256 × 256 grid, we observed a speed-up by a factor of only
2. All simulations described in this work where conducted in
two-dimensional systems on regular squared simulation grids
(grid length set to 1) with periodic boundary conditions.

III. PATTERN FORMATION

A. Linear stability analysis

In this section we perform a linear stability analysis of the
macroscopic equations (9a) and (9b) and compare the results
for the RL sensitivity with the corresponding results for LL
[Eq. (7)] and constant sensitivity [Eq. (6)]. Hereby we show
that RL sensitivity leads to two density regimes (high and
low 〈ρ〉), where the homogeneous solution remains stable,
and to an unstable regime at intermediate 〈ρ〉, where different
patterns emerge.

A simple solution of the macroscopic model equations (9a)
and (9b) is the stationary and spatially homogeneous solution

ρ = 〈ρ〉, c = lim
t→∞〈c〉(t). (14)

In general, 〈ρ〉 = N/A is an important parameter of the system
and only in the particular case of a homogeneous system does it
represent also a solution of the macroscopic equations. We note
that Eq. (13) yields a simple relation between the homogeneous
density and concentration

c = qcρ/dc, (15)

which will be frequently used.
Considering a spatially infinite system, we allow small

fluctuations around the stationary homogeneous solution (14),

ρ(r,t) = ρ + δρ with δρ = ε
∑

k

fk(t)e−ik·r, (16a)

c(r,t) = c + δc with δc = ε
∑

k

gk(t)e−ik·r, (16b)

with fk(t) and gk(t) being the Fourier amplitudes of the wave
vector k of the perturbations and ε � 1. Using the ansatz eλt

and Eq. (13), we derive the following dispersion relation:

λ+/−(k) = − (Dc + D)k2 + dc

2
±

√√√√√ [(Dc + D)k2 + dc]2

4
−

⎛
⎝DDck2 + Ddc − κρqc

γ
(
1 + β

qc

dc
ρ
)2

⎞
⎠ k2. (17)

For inhomogeneous fluctuations (finite k vectors) the homogeneous solution is only stable as long as

⎛
⎝DDck2 + Ddc − κρ qc

γ
(
1 + β

qc

dc
ρ
)2

⎞
⎠ � 0. (18)
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Considering the limit of perturbations with long wavelength
k → 0 and solving for ρ in order to obtain a stability condition
for the density of particles yields

ρ2 + ρ
dc

qcβ

(
2 − κ

Dγβ

)
+ d2

c

β2q2
c

� 0. (19)

The two solutions for which the term on the left-hand side of
Eq. (19) is equal to zero are

ρ± = κdc

2Dγβ2qc

[(
1 − 2Dγβ

κ

)
±

√
1 − 4Dγβ

κ

]
. (20)

These are the critical densities at which the stability of the
homogeneous solution changes. The condition

κ > 4Dγβ (21)

[or χo > 4Dγ , if we rescale according to Eq. (4)] defines
the parameter space in which the value inside the square root
in Eq. (20) is positive and we find two critical densities ρ±
with real, positive values. In this case, we obtain the following
stability conditions for the homogeneous solution ρ:

ρ � ρ− (stable), (22a)

ρ− < ρ < ρ+ (unstable), (22b)

ρ � ρ+ (stable). (22c)

The concentration-dependent RL results in two regimes
at high and low particle density, respectively, where the
homogeneous solution is stable. In between, there exists
an intermediate-density regime, where we expect growth of
inhomogeneities and emergence of patterns within the system.
For a fixed density of particles, we solve Eq. (18) for κ in
order to explicitly express the stability with respect to the
chemotactic drift coefficient κ and the chemotactic saturation
β. The homogeneous solution is stable against inhomogeneous
fluctuations as long as

κ � κcrit = Dγdc

ρqc

(
1 + β

qc

dc

ρ

)2

. (23)

Thus, for κ > κcrit it is unstable and we expect to see pattern
formation. In the special case of D = 0 (with other model
parameters positive), the system is unstable for all κ > 0. The
homogeneous solution can be stable only for finite diffusion
of the particle density.

In the special case of β−1 ≈ c, the RL reduces to the LL
sensitivity (compare, e.g., [1,26]). The linear stability analysis
of Eqs. (9a) and (9b), analogous to that described above but
with χLL(c) = κ

c
, leads to the stability condition

κ � Dγ. (24)

While the RL induces two density regimes in which the
homogeneous solution is stable, a LL sensitivity implies that
linear stability of the homogeneous state is independent of the
density of particles. For constant chemotactic sensitivity, as
the second special case of the RL with β = 0, we note that the
homogeneous solution is stable as long as

ρ � Dγdc

qcκ
(25)

and therefore depends on the density of particles but exhibits
only one stable density regime at lower densities [29].

We compared the above results of the linear stability
analysis for the different cases of chemotactic sensitivity (RL,
LL, and constant) to results of microscopic simulations (see
Fig. 1). For each type of response, we initialized a set of
systems with homogeneous particle densities varying over
several orders of magnitude. Starting from the lowest densities
of ρ = 0.0016 (26 agents) up to ρ = 30 (4.9 × 105 agents),
we evaluated the pattern formation at different values of the
chemotactic drift coefficient κ . Please note that the extremely
low number of agents in the lowest-density case makes
the coarse-graining approach questionable and therefore the
numerical results of the individual-based simulations are likely
to deviate from the analytic predictions resulting from the
macroscopic field equations.

As shown in Fig. 1(aI), numerical calculations for RL
sensitivity confirm that ρ± [Eq. (20)] distinguishes two regimes
of the particle density in which the homogeneous solution
is stable and an intermediate regime in which we observe
growing inhomogeneities of ρ(r,t) and c(r,t). The deviation
of the numerical results from the analytical description for
lower densities in Fig. 1(aI) can be understood by keeping in
mind that we integrated the microscopic equations of motion
for the single trajectories of the agents: At low particle densities
this can easily lead to fluctuations of the density that are
beyond the linear regime. At a fixed density of ρ = 0.031 we
tested the analytical expression for κcrit described in Eq. (23).
Figure 1(aII) shows the very good agreement between ana-
lytical and numerical results concerning the interdependence
of the chemotactic drift coefficient κ and the chemotactic
saturation parameter β. Here we emphasize that, in contrast
to the model with self-propelled particles [30], the matching
between theory and simulation results is obtained without any
fit parameter.

Figures 1(b) and 1(c) illustrate stability for LL sensitivity
and constant chemotactic drift. Numerical simulations confirm
that for χ (c) = κ

c
stability is independent of ρ and determined

by Eq. (24). For constant chemotactic drift, we validate the
stability condition given by Eq. (25), but note that for lower
densities of particles, we see deviations from the analytical pre-
dictions: Without chemotactic saturation, nonlinear feedback
between ρ(r,t) and c(r,t) during growth of inhomogeneities
is increased in comparison to the RL sensitivity, where
the chemotactic saturation reduces sensitivity with growing
c(r,t). Thus higher-order positional correlation become non-
negligible for the microscopic dynamics at low densities
and the coarse-grained approximation becomes invalid. This
results in large deviations of the simulation results from
the predictions of the linear stability analysis and is in
accordance with discrepancies between individual-based and
coarse-grained modeling approaches with linear sensitivity
discussed in [45].

B. Transient patterns

In the unstable regime, we observe a variety of transient
patterns. Figure 2 illustrates a selection of typical transients
for different densities of particles with RL sensitivity. All snap-
shots are taken from the simulations in Fig. 1(aI) for different
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FIG. 1. (Color online) Comparison of the results of linear stability analysis (red lines) and simulations (blue circles, no pattern formation;
orange crosses, pattern formation) for different chemotactic sensitivities χ (c). (a) RL sensitivity χRL(c) = κ

(1+βc)2 . (aI) Stability for different
values of κ and ρ: red line, ρ± [see Eq. (20)]; dashed line, κ = 4Dγβ [see Eq. (21)]. The simulation parameters are β = 1.5, D = 2,
γ = dc = 1, qc = 2.5, Dc = 5, and �t = 1 × 10−3. Black circles for κ = 32 mark simulations for different densities with snapshots shown
in Fig. 2. (aII) Stability with RL sensitivity for different chemotactic parameters κ, β > 0. The red line shows κcrit according to Eq. (23).
The simulation parameters are D = γ = qc = Dc = 1 and dc = 0.1. (b) Stability for log-law chemotactic sensitivity χLL(c) = κ

c
. The red line

shows the results of Eq. (24). (c) Stability for constant chemotactic sensitivity χo = κ . The red line shows the results of Eq. (25). The simulation
parameters for (b) and (c) are D = 0.5, dc = qc = 2, γ = 1, and Dc = 0.1.

homogeneous initial densities ρ at the same simulation time
and at a fixed value of κ = 32. Close to the critical line ρ+ in
the unstable regime we observe the formation of bubbles [see
Figs. 2(a) and 2(b)]. Decreasing the density of particles the
bubbles get larger and formation of labyrinthine structures
can be observed [see Fig. 2(c)]. With further decrease of
the particle density, the labyrinthine structures disappear and
we see a transition to large, rather asymmetric clusters [see
Fig. 2(d)]. At low densities the agents form radially symmetric
clusters [see Figs. 2(e)–2(h)]. The formation of clusters is
experimentally well known from the aggregation of bacterial
colonies as shown, e.g., in [10,48,49]. For very low values
of κ , only slightly above κcrit, we can observe initially the
emergence of large regions of slightly higher density of
particles instead of distinct clusters, which is indicative of a
long-wavelength instability. Furthermore, for parameter values
close to κcrit [Eq. (23)] single particles can dynamically move
between clusters and the structure of clusters can fluctuate

greatly. Qualitatively this resembles the behavior observed in
the dynamical clustering of artificial colloids with chemical
signaling studied in [17]. We also see the analogous dynamics
at high densities where insulated particles diffuse into bubbles.
For parameters well above the critical line κcrit, individual
agents are more strongly bound and the clusters (bubbles) show
only small fluctuations around a symmetric disklike shape.

We usually observed typical characteristics of nucleation
processes at high densities (close to ρ+) and at low densi-
ties (close to ρ−): Many small inhomogeneities grow and
decay before overcritical stable clusters (bubbles) emerge.
In contrast, labyrinthine structures at intermediate densities
start to grow immediately and are distributed over the entire
simulation space, strongly reminding us of spinodal decom-
position patterns. We therefore note that the overdamped
autochemotactic Brownian agents with RL sensitivity exhibit
a nonequilibrium phase transition that qualitatively resembles
equilibrium liquid-vapor phase transitions.
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FIG. 2. (Color online) Transient patterns emerging with RL
chemotactic sensitivity. All snapshots are taken at the same simulation
time from the simulations shown in Fig. 1(aI) (on a 128 × 128
simulation grid) for different mean densities of particles at a fixed
value κ = 32 with (a) ρ = 2.3, (b) ρ = 1.9, (c) ρ = 1.5, (d) ρ = 1.22,
(e) ρ = 0.7, (f) ρ = 0.26, (g) ρ = 0.1, and (h) ρ = 0.035.

Similar structures have been studied in systems of self-
propelled Brownian agents with density-dependent mobility
(see [50–54]) and experimental results in [55] show that active
colloids moving via diffusiophoresis also exhibit similar phase
transitions at high densities. Comparing the observed patterns
to experimental findings in biological systems, it can be noted
that in addition to the above-mentioned clustering of bacterial
colonies, e.g., studied in the well known experiments of
Budrene and Berg [10], a variety of patterns has been observed
in related systems of chemotactically interacting bacteria
(see, e.g., [12,56,57]), but experimental studies focusing
specifically on the effect of a concentration-dependent sen-
sitivity on pattern formation are lacking. The results presented
here underline the importance of a concentration-dependent
sensitivity as an essential factor in structure formation and
motivate the hypothesis that interesting decomposition pat-
terns can be expected. We would like to comment that
phase-separation phenomena have been shown to result in
similar patterns in systems of biological agents with density-
dependent mobility, e.g., tissue cells [58] or even ecological
systems [59].

For LL sensitivity and constant drift [Figs. 1(b) and 1(c)],
we observe neither spinodal decomposition patterns nor bubble
formation via nucleation. Clusters are formed, which are more
compact than those of agents with RL sensitivity and show
fewer fluctuations, due to the absence of nonlinear saturation
effects.

C. Long-term behavior

We will now focus on a system with RL sensitivity and
describe its typical long-term behavior at different particle
densities. In the limit t → ∞ we observe the decomposition
of the diverse transient patterns shown in Fig. 2. The system
evolves to a stationary inhomogeneous state, characterized
by one cohesive domain with a high density of particles
(ρ > ρ+), a transition region, and one domain with a low

FIG. 3. (Color online) Spinodal decomposition and nucleation
for autochemotactic Brownian agents with RL sensitivity. The long-
term behavior is shown at different mean densities of particles: (a)
ρ = 0.16 at (I) t = 20, (II) t = 3000, (III) t = 70 000, and (IV)
t = 3 × 105; (b) ρ = 1.5 at (I) t = 200, (II) t = 1000, (III) t = 3000,
and (IV) t = 70 000; and (c) ρ = 2.3 at (I) t = 1000, (II) t = 1500,
(III) t = 3000, and (IV) t = 70 000. All are in the same parameter
regime as shown in Figs. 1(aI) and 2. The numerical integration step
�t = 5 × 10−3. Please note the periodic boundary conditions in (b).

density (ρ < ρ−) of particles. Figure 3 shows the long-term
behavior of the model for three different initial homogeneous
densities: (a) low density rather close to the critical line ρ−,
(b) intermediate densities, and (c) high densities close to the
critical line ρ+. Figure 3(a) illustrates the growth and merging
of clusters that eventually lead to a single surviving cluster
at low mean density ρ = 0.16. Merging of clusters can be
interpreted as Ostwald ripening [29,30,60]; it is the typical
behavior for systems with low mean density in the unstable
parameter regime. At intermediate densities [Fig. 3(b)] we
see spinodal decomposition into two coexisting phases: The
labyrinthine structures that evolve at ρ = 1.5 decompose and
finally form one cohesive region of high density with a straight
transition region. Figure 3(c) shows a system of high mean
density ρ = 2.3 > 2.28 = ρ+. Even though linear stability
analysis predicts a stable homogeneous solution for ρ > ρ+,
in this case, for a mean density only slightly above ρ+, we
see pattern formation via nucleation. At high densities we
observe the growth and merging of bubbles (instead of clusters
at low densities) that eventually lead to one single bubble
embedded in a region with a high density of particles. The
concentration field c(r,t) in Fig. 3 illustrates that many smaller
inhomogeneities are formed in the region of high densities
(especially at early times), but only a few become stable
bubbles. Later in this paper we will return to the systems
shown in Fig. 3.
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FIG. 4. (Color online) Typical form of Deff (ρ) and �(c) obtained in the limiting cases ∂c

∂t
≈ 0 and ∂ρ

∂t
≈ 0 for different regimes of chemotactic

saturation β: (a) effective diffusion coefficient Deff and (b) local fitness �(c) compared to one exemplary value of the global fitness �global(c).
Both (a) and (b) are plotted for the same set of parameters ( qc

dc
= 1, κ = 20, and D = γ = 1) and different values of the chemotactic saturation

β (the local fitness for the case β = 0 is obtained from [29]). For 0 < β < βc = κ

4Dγ
[see Eq. (21)] the effective diffusion coefficient Deff

enters the regime where it changes its sign and correspondingly two extrema appear in the local fitness. The densities ρ± and concentrations
c± at which Deff (ρ) changes its sign and we find the extrema of �(c) are related by c± = qc

dc
ρ± [see Eq. (39)] and are in accordance with the

critical densities obtained from the linear stability analysis.

IV. DISCUSSION OF LIMITING CASES

In this section we will assume that the concentration of
the field c(r,t) and the particle density ρ(r,t) relax to their
stationary states at significantly different time scales (similar
approach as in [29] for the model with β = 0). This allows us
to go beyond the results of the linear stability analysis.

A. Fast relaxation of the field

In the limiting case of a fast relaxation of the field into
its stationary state, we assume that c(r,t) directly follows the
particle density so that the time evolution of ρ(r,t) governs
the coupled system. Assuming a quasistationary state of the
field ( ∂c

∂t
≈ 0) allows us to rewrite the macroscopic density

equation (9a) as an ordinary diffusion equation (as done in [29]
for β = 0)

∂ρ

∂t
= ∂

∂r

(
Deff(r,t)

∂ρ

∂r

)
, (26)

with the effective diffusion coefficient

Deff(r,t) = D − κρ(r,t)
γ [1 + βc(r)]2

∂c

∂ρ
. (27)

If we additionally consider the case of small diffusion of the
field (Dc ≈ 0), fast relaxation of c to its stationary state justifies
the approximation that at every position r the field c is directly
proportional to the particle density

c(r,t) = qc

dc

ρ(r,t). (28)

Using this local relation allows us to simplify the effective
diffusion coefficient and rewrite it as a function of the particle
density

Deff(r,t) = D −
κ

qc

dc
ρ(r,t)

γ
(
1 + β

qc

dc
ρ(r,t)

)2 (29)

or [using Eq. (28)] as a function of the chemoattractant
concentration, respectively. Figure 4(a) shows a plot of
Deff(ρ) for different values of the saturation coefficient β.
For β = 0, the effective diffusion coefficient monotonically
decreases with growing density of particles. However, for
0 < β < βc = κ

4Dγ
[see Eq. (21)] it is interesting to note that

Deff changes its sign at two densities ρ±: For small ρ < ρ− it is
positive, for intermediate densities ρ− < ρ < ρ+ it is negative,
and for high densities ρ+ < ρ it is positive again. A positive
effective diffusion coefficient corresponds to the spreading of
the particle density while Deff < 0 leads to the agglomeration
of particles. Setting Deff = 0 shows that the two densities
where the effective diffusion coefficient changes its sign
correspond to the densities ρ± obtained from the linear stability
analysis of the homogeneous solution [see Eq. (20)]. The
density regime in which the homogeneous solution is unstable
corresponds to the density regime where the effective diffusion
coefficient is negative. Very recently it was shown in [53,54]
that active Brownian particles with density-dependent motility
can exhibit phase-transition characteristics that resemble
those observed here.

Figure 5 shows the numerical calculation of the spa-
tiotemporal evolution of the binary effective diffusion coef-
ficient of a system initialized in the homogeneous state with
parameters in the clustering regime. Ringlike regions of a
negative effective diffusion coefficient can be observed in the
outer regions of the clusters. Only in these local transition
regions ρ− < ρ(r,t) < ρ+ do we find particle densities (field
concentrations) corresponding to negative values of Deff . In
contrast, the effective diffusion coefficient for β = 0 is strictly
negative throughout entire clusters (see [29]).

Interestingly, a detailed analysis of E. coli trajectories
within autochemotactic clusters reveals an increase of tum-
bling frequency in outer regions of a cluster [48]. This can be
related to a decrease of the effective diffusion coefficient at the
boundary, in relation to the cluster center, suggesting effective
diffusion profiles similar to those shown in Fig. 5.
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FIG. 5. (Color online) Numerical calculation of the spatiotempo-
ral evolution of the binary (black, negative; white, positive) effective
diffusion coefficient Deff [based on Eq. (29) with c = qc

dc
ρ and c(r,t)

from simulations] at times (I) t = 100, (II) t = 500, and (III) t = 4990
(the simulation parameters are κ = 80, β = 4, D = 1.5, dc = 0.2,
and γ = qc = Dc = 1).

B. Fast relaxation of the particle density

In the limiting case of a fast relaxation of the particle
density, the time evolution of c(r,t) governs the coupled
system. Following [29] we assume a quasistationary state of
the particle density ρstat with ∂ρstat

∂t
≈ 0. With respect to Eq. (9a)

this yields

D
∂ρstat

∂r
− κρstat

γ (1 + βc)2

∂c

∂r
= 0 (30)

for no flux or periodic boundary conditions. The corresponding
normalized quasistationary solution reads

ρstat = ρ
exp[−α(β + β2c)−1]

〈exp[−α(β + β2c)−1]〉 (31)

with α = κ
Dγ

.
By plugging Eq. (31) into Eq. (9b), we obtain

∂c(r,t)
∂t

= dcc(r,t)
(

�(c(r,t))
�global(c(r,t))

− 1

)
︸ ︷︷ ︸

f (c(r,t))

+Dc�c(r,t)

= f (c(r,t)) + Dc�c(r,t). (32)

Here we defined a reaction rate f (c(r,t)) that is mainly
determined by two terms: The numerator of the first term
in large parentheses in Eq. (32) will be called the local fitness

�(c(r,t)) = 1

c(r,t)
exp

(
− α

β + β2c(r,t)

)
(33)

and the denominator is the global fitness

�global(c(r,t)) = 1

c

〈
exp

(
− α

β + β2c(r,t)

)〉
. (34)

Hereby we replaced ρ from Eq. (31) using Eq. (15).
The names of the terms above are motivated by a structural

analogy of Eq. (32) (for Dc ≈ 0) to the selection equations
of Eigen-Fisher type (see, e.g., [29,61]): A single spot of
high concentration (cluster of particles) emerging in a system
with low mean density can be interpreted as a species j ,
characterized by a fixed concentration cj instead of spatially
extended concentration profile c(r,t), with a local fitness given

by Eq. (33). From this perspective, the time evolution of spots
of high concentration represents a selection process. We will
return to this interpretation further on and proceed now with
the analysis of the behavior of Eqs. (32)–(34).

While �(c(r,t)) can be different at every position r and
every time step t [corresponding to the local concentration
c(r,t)], the global fitness �global(c) is in general a time-
dependent global quantity, which depends on the spatial
distribution of c(r,t) in the system. As the global fitness
depends on the spatial integral over the area A of the system, it
is reasonable to assume that it only changes slowly compared
to local changes in c(r,t). For a homogeneous distribution c

[see Eq. (14)] we note that

�global(c) = 1

c
exp

(
− α

β + β2c

)
= �(c). (35)

Considering small perturbations δc(r,t) around the homo-
geneous concentration c, we linearize Eq. (32) around c. With
δc ∼ eλt+ik·r we obtain

λ = dcc

�(c)

(
∂�(c)

∂c

∣∣∣∣
c=c

− ∂�global(c)

∂c

∣∣∣∣
c=c

)
− k2Dc. (36)

If we assume long-wavelength perturbations, we can neglect
changes in the global fitness

�global(c + δc) ≈ �global(c). (37)

Therefore, stability around the homogeneous state depends
only on the sign of the derivative of the local fitness.
Figure 4(b) shows that for 0 < β < βc = κ

4Dγ
local fitness

has one minimum at c− followed by one maximum at c+. This
implies the following stability conditions:

c < c− (stable), (38a)

c− < c < c+ (unstable), (38b)

c > c− (stable). (38c)

For small perturbations around c > c+ or c < c−, the ho-
mogeneous solution is stable and global fitness remains
stationary with �global(c) = �(c). However, in the unstable
regime for c− < c < c+, fluctuations around the homogeneous
distribution will grow and according to the temporal evolu-
tion of the pattern, the global fitness will change in time.
Calculating the extrema of the local fitness, we get

c± = qc

dc

ρ±, (39)

where ρ± are the densities obtained from the linear stability
analysis [see Eq. (20)], which correspond also to the values
where the effective diffusion coefficient changes its sign. The
correspondence of ρ± obtained from the effective diffusion
coefficient and c± obtained from the local fitness is illustrated
in Fig. 4. Figure 4(b) shows a plot of the local fitness �(c)
for different values of the saturation coefficient β compared
to one exemplary value of the time-dependent global fitness
�global(c). Please note that for the limit β = 0 we used the
corresponding expression from [29].

Without chemotactic saturation (β = 0) we see one min-
imum of �(c) and only one density at which the effective
diffusion coefficient changes its sign. For 0 < β < βc, in
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1
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FIG. 6. (Color online) Typical forms of the reaction rate f (c) [see
Eq. (32)] for different regimes of chemotactic saturation β. The case
β = 1 is plotted with the same parameters and the same exemplary
value of �global(c) as shown in Fig. 4(b). In this regime with 0 < β <

βc = κ

4Dγ
[see Eq. (21)] we typically find three zeros ci of f (c). As

the global fitness is time dependent, we note that the zeros of f (c)
are in general time dependent, i.e., ci(t). For β = 0 there are typically
two zeros and for β > βc only one zero can be found. For a locally
vanishing concentration c(r,t) = 0 the reaction rate f (c) approaches
a finite value f (c) = dc

�global
exp(−α/β), which depends on the global

fitness.

contrast, there are two extrema �(c±) and the concentrations
c± correspond to the densities ρ± [via Eq. (39)] where we find
the two zeros of the effective diffusion coefficient Deff(ρ±).
With increasing chemotactic saturation β the maximum of
the local fitness �(c+) shifts towards lower concentrations
of c(r,t). This corresponds to a shift of the critical value
ρ+ where the effective diffusion coefficient changes its sign.
If, in contrast, one increases κ , the maximum of �(c) shifts
towards higher values of c(r,t). For β > βc the local fitness
monotonically decreases with increasing concentration c and
correspondingly there is no change of sign of the effective
diffusion coefficient [see Fig. 4(a)].

Neglecting the diffusion of the field (Dc ≈ 0) in Eq. (32)
allows us to get a closer look at the reaction rate f (c) defined
in Eq. (32),

∂c(r,t)
∂t

= dcc(r,t)
�global(c(r,t))

{�(c(r,t)) − �global(c(r,t))}. (40)

We can directly see that f (c) > 0 for �(c) > �global(c) and
f (c) < 0 for �(c) < �global(c) (for dc > 0). The reaction
rate is zero if �(c) = �global(c). For a locally vanishing
concentration c(r,t) = 0 it approaches a finite value f (c) =

dc

�global
exp(−α/β), which depends on the global fitness at the

corresponding time.
Figure 6 illustrates typical forms of f (c) for different

regimes of chemotactic saturation. For β = 0 we typically
have two zeros and for β > βc only one zero occurs. In the
case of finite chemotactic saturation with 0 < β < βc we find
three zeros of f (c) as long as

�(c−) < �global(c(r,t)) < �(c+). (41)

Please note that f (c) with β = 1 as depicted in Fig. 6
corresponds directly to the local and global fitness shown in

Fig. 4(b). The zeros of f (c), corresponding to the dynamical
fixed points of the selection equation, are in general time
dependent [c1(t), c2(t), and c3(t)] because �global(c(r,t)) is
time dependent. For t → ∞ the system reaches a stationary
inhomogeneous state in which only small fluctuations of the
global patterns occur. This corresponds to small fluctuations of
the global fitness around a stationary value and implies that for
t → ∞ the fixed points ci(t) evolve toward stationary values
c01, c02, and c03. During the evolution of the system, the values
of ci(t) fulfill the relations

c1(t) < c−, c− < c2(t) < c+, c+ < c3(t)

with respect to the extrema of the local fitness as long as
Eq. (41) holds. If we consider a perturbation around ci(t), linear
stability depends on the sign of the derivatives of local and
global fitness [linearization of Eq. (40) around the zeros leads
to an expression with a structure similar to that of Eq. (36), but
without the diffusion term]. With the same arguments as above,
we assume that the global fitness remains constant for small
perturbations, so only the sign of the derivative of the local
fitness determines stability around the zeros. This brings us to

c1(t)
t→∞→ c01 < c− (stable), (42a)

c− < c2(t)
t→∞→ c02 < c+ (unstable), (42b)

c3(t)
t→∞→ c03 > c+ (stable). (42c)

Motivated by the qualitative analogy of the patterns shown in
Sec. III to equilibrium liquid-vapor phase transitions, we may
use this to distinguish two different regimes.

(i) Spinodal decomposition. For c− < c < c+ we are in an
unstable regime with respect to the linear stability analysis
(and obtain a negative effective diffusion coefficient).

(ii) Metastability. For c < c− or c+ < c the homogeneous
solution is stable with respect to the linear stability analysis,
but if �(c−) < �global(c) < �(c+), we find two stable zeros
c1(t) and c3(t) of the reaction rate f (c) and are therefore still
in a metastable regime where c(r,t) can evolve from c1 to c3

for supercritical fluctuations.
The above-introduced regimes are not meant as exact

definitions but as a semiquantitative extension of the results
of the linear stability analysis; The bubbles shown in Fig. 3(c)
emerge for a mean density ρ = 2.3 (c = 5.75) slightly above
the critical density ρ+ = 2.28 (c+ = 5.7) obtained from the
linear stability analysis and show typical behavior of a phase
transition via nucleation; however, in general, bubbles may
also occur for densities ρ < ρ+, in the vicinity of ρ+. We
performed a number of numerical simulations with initial
conditions corresponding to finite nuclei (bubbles). Hereby
we observed that these bubbles remain stable in systems with
an overall mean density ρ clearly above ρ+. This additionally
indicates the metastable character. The labyrinthine structures
in Fig. 3(b) in contrast emerge only within the unstable regime
and show typical behavior of phase separation via spinodal
decomposition. The clusters at low densities are formed within
the unstable regime but also partly for ρ < ρ− (see Fig. 1),
as the microscopic simulations can easily lead to nonlinear
fluctuations at very low mean densities and can lead to a fast
growth of localized structures.
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FIG. 7. (Color online) Numerical calculation of the global fitness �global(c(r,t)) [see Eq. (34)] and reaction rate f (c(r,t)) [see Eq. (32)]
for the long-time simulations shown in Fig. 3: (a) low mean concentration with cluster formation, (b) intermediate mean concentration with
labyrinthine patterns, and (c) high mean concentrations with bubble formation. On the left-hand side (I) black dots denote numerically calculated
values of the global fitness, the blue dashed line denotes �(c), and the dark cyan line denotes �(c+). On the right-hand side (II) the reaction
rate f (c) is shown at the times of the snapshots shown in Fig. 3. The simulation parameters are α = κ

Dγ
= 16, β = 1.5, dc = 1, qc = 2.5,

and Dc = 5.

Returning to the expression in Eq. (32), we note that
we deal with a reaction-diffusion equation with a bistable
reaction rate f (c) with two time-dependent stable attractors
c1(t) and c3(t) that evolve towards the stable fixed points
c01 and c03 as the stationary inhomogeneous state is reached.
For the three different initial densities shown in Fig. 3, we
calculated the time evolution of the global fitness and f (c)
numerically. Figures 7(aI)–7(cI) show the time evolution of
�(c(t)) compared to �(c+) and �(c) and Figs. 7(aII)–7(cII)
show the corresponding reaction rate f (c) at the times of
the snapshots in Fig. 3. Recalling the different global time
scales of our model, we note that all times shown in Fig. 7
correspond to times t > 5τ with an approximately constant
total amount of chemoattractant and only a local redistribution
of c(r,t). In the system with low mean initial concentrations,
spots of high concentration (particle clusters) grow and merge
[see Fig. 3(a)]. The spatial redistribution of the concentration
c(r,t) that goes along with the merging of the clusters leads to
an increase in the global fitness, which eventually approaches
a stationary value below �(c+) [see Fig. 7(a)].

The time periods of nearly constant global fitness in
Fig. 7(a) for 20 000 < t < 150 000 correspond to states where
only a few clusters are left; for large systems with only few

clusters very long times may be necessary until two clusters
merge and in these time windows there is no significant change
in global fitness. From the perspective of the analogy of
Eq. (40) to the Eigen-Fisher selection equation (introduced
above), these time windows of nearly stationary global fitness
may be interpreted as punctuated equilibria [62] known from
evolutionary biology: Evolution leads to selection and the
survival of the fittest (selection equation of Eigen-Fisher type
finally leads to an inhomogeneous stationary state) and the
evolution of the system is characterized by long periods with no
significant changes (stationary global fitness) and short, rather
sudden periods in which new species evolve (when two clusters
merge). Similar characteristics can be observed in evolutionary
learning processes of small recurrent networks [63]. The
analogy to evolutionary biology of course has its limits, as
we are not looking at the formation of new species (spots) but
rather an inverse process of merging of distinct chemotactic
spots.

At higher densities, corresponding to the labyrinthine
structures in Fig. 3(b), the global fitness shows only small
fluctuations [see Fig. 7(b)] during the temporal evolution of
the pattern [shown in Fig. 3(b)]. Thus, in this regime, the
selection dynamics remains in an evolutionary equilibrium.
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For even higher densities of particles, close to the critical
line ρ+, where bubbles form and merge [see Fig. 3(c)], we ob-
serve that the global fitness (slightly) decreases to a stationary
value below c+ [see Fig. 7(c)]. For all three initial densities
the global fitness approaches a stationary value around �(c+)
and the systems evolve into a stationary inhomogeneous state
of one single cohesive domain of high (low) concentration
embedded in a region of low (high) concentration.

We will now consider growth of a single domain of high
concentration (cluster of particles). Recalling the bistable
reaction rate f (c), we interpret growth of a cluster in radial
direction from the center as a frontlike growth from the higher
stable fixed point c3(t) to the lower stable fixed point c1(t). In
analogy to domain growth in nonequilibrium bistable systems
(see, e.g., [64,65]), we calculate a time-dependent critical
radius of the cluster. We change into polar coordinates and
consider a system with a single cluster at the origin. Assuming
a radially symmetric cluster in a two-dimensional system, we
continue to investigate the reaction-diffusion equation (32) that
results from the quasistationary assumption for the particle
density and rewrite it in polar coordinates

∂c

∂t
= f (c) + Dc

r

∂c

∂r
+ Dc

∂2c

∂r2
. (43)

Here the reaction rate f (c) is given by Eq. (32). According to
the zeros of the reaction rate [see Eq. (42a)], we formulate the
boundary conditions

c(0,t) = c3(t) > c+, (44a)

c(∞,t) = c1(t) < c−. (44b)

The radius of the saturated domain (single cluster) R(t) can be
implicitly defined by

c(R(t),t) = c∗, (45)

where c− < c∗ < c+ is a fixed concentration in the unstable
transition region connecting both of the stable states. Taking
the derivative of Eq. (45) with respect to time

∂c(R(t),t)
∂t

+ ∂c(r,t)

∂r

∣∣∣∣
r=R(t)

dR

dt
= 0, (46)

we obtain an expression for the time evolution of the radius of
the cluster

dR

dt
= − ∂c(r,t)/∂t

∂c(r,t)/∂r

∣∣∣∣
r=R(t)

. (47)

If we assume a frontlike profile of c(r,t) with a sharp transition
region at each time step such that ∂c

∂r
= 0 for r = 0 and for

r → ∞, we can use methods for domain growth in bistable
systems (see, e.g., [64,65]) and obtain

dR

dt
= Dc

(
1

Rk(t)
− 1

R

)
, (48)

where the time-dependent critical radius is given by

Rk(t) = Dc

∫
A

(
∂c
∂r

)2
dr∫ c3(t)

c1(t) f (c)dc
. (49)

Here the time dependence of Rk(t) is due to the temporal
evolution of the global fitness, which results in a time

dependence of ci(t). Please note that the critical radius diverges
for vanishing denominator [Rk(t) → ∞ for

∫ c3(t)
c1(t) f (c)dc →

0] and may change its sign depending on the sign of the
denominator. We decompose the integral in the denominator
according to the zeros of the reaction rate

∫ c3(t)

c1(t)
f (c)dc =

∫ c2(t)

c1(t)
f (c)dc +

∫ c3(t)

c2(t)
f (c)dc (50)

in order to clarify that for the typical form of f (c) we obtain
a negative contribution from the first integral and a positive
contribution from the second integral on the right-hand side
of Eq. (50) (compare to Figs. 6 and 7). Both terms are time
dependent due to the time dependence of the global fitness:
If global fitness increases, c3(t) decreases and c2(t) increases
(compare to Fig. 4 for different values of �global or see Fig. 7).
This leads to a decreasing integral over the reaction rate
[Eq. (50)] and therefore an increasing critical radius. For
decreasing global fitness, in contrast, c3(t) increases and c2(t)
decreases and so the integral over the reaction rate increases
and the critical radius decreases.

Numerical calculations show that growth of a single cluster
goes along with an increase of �global and therefore the critical
radius increases until the stationary state is reached. In the sta-
tionary state the denominator of the critical radius is given by∫ c03

c01

f (c)dc =
∫ c02

c01

f (c)dc +
∫ c03

c02

f (c)dc. (51)

These calculations may also be applied to the growth of bub-
bles instead of clusters. For that we only have to set the origin of
polar coordinates in the center of a bubble and interpret growth
of the bubble as a frontlike growth from c1 to c3 [as bubbles
grow, c3(t) shifts towards higher concentrations; see Fig. 7].
Thus we identify a positive Rk(t) in Eq. (49) with a high-
density cluster and a negative Rk(t) with a low-density bubble,
whereas a diverging critical radius corresponds to straight
domain boundaries between high- and low-density regions.

The above considerations were confirmed numerically:
We computed the integral over the reaction rate in the
different stationary inhomogeneous states—clusters, bubbles,
and labyrinthine structures—that are illustrated in Fig. 3. For
the clusters shown in Fig. 3(a) (as well as for the cluster in
Fig. 8) integration over the reaction rate (51) from c01 to c03

leads to a positive value and therefore a positive critical radius.
For the bubble in Fig. 3(c) we obtain a negative critical radius;
for the pattern with a straight transition region at intermediate
densities [see Fig. 3(b)], the integral over the reaction rate is
approximately zero. This confirms our expectation of a positive
boundary curvature for clusters, a negative one for bubbles,
and a vanishing curvature (diverging critical radius) for the
inhomogeneous pattern with a straight transition region.

V. SINGLE CLUSTERS

A. Domain growth

If a single cluster is initialized with a density of particles
well beyond ρ+, the chemotactic drift is small (due to the
saturation for β > 0) compared to the diffusion of the particle
density and thus the particles spread out and thus the cluster
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(a) (b)

FIG. 8. (Color online) Simulation of growth of single clusters: (a) snapshots at different times (detail of a 256 × 256 simulation grid) and
(b) ensemble averages of the cluster profiles 〈ρ(r,t)〉e and 〈c(r,t)〉e at the times corresponding to the snapshots (the simulation parameters
are κ = 300, β = 4, D = 2.5, qc = 0.1, dc = 0.05, and Dc = 0.8). The value of the stationary fixed point c03 of the reaction rate f (c) was
calculated numerically. Please note that the density ρ03, which corresponds to c03 via ρ03 = c03dc/qc [see Eq. (28)], is also indicated.

area grows. As N is constant cluster growth is limited and we
expect the cluster to finally reach a stationary state.

The snapshots in Fig. 8(a) illustrate a typical time evolution
of a single cluster initialized with a density of particles well
beyond ρ+. As expected, the cluster grows until it finally
reaches a stationary state.

The snapshots are taken from the simulations in Fig. 8(b),
which show the time evolution of the mean profiles 〈ρ(r,t)〉e
and 〈c(r,t)〉e in radial direction from the center of the cluster.
Here 〈· · · 〉e represents the ensemble average over 1000
realizations. Initial supersaturation decreases with increasing
radius of the cluster until a stationary state is reached. As
illustrated in Fig. 8(b), numerical calculations of the stationary
fixed point c03 of the reaction rate f (c) [see Eqs. (40) and (42a)]
show that in the stationary state the mean concentration
〈c(r)〉e in the inner region of the cluster approaches the
value c03.

In Fig. 8(b) the density ρ03, which corresponds to c03 via
ρ03 = c03/a [see Eq. (28)], is also indicated. With increasing
distance r from the cluster center, the concentration and density
of particles in the stationary profiles decrease and finally
approach zero for large r . In the parameter regime we used,
the lower stable fixed point is at very small concentrations

(c01 � 1), so the microscopic simulations lead to vanishing
values outside the cluster.

B. Stationary characteristics of single clusters

The reaction rate f (c) has two stationary fixed points, one
at c01 < c− and one at c03 > c+, and as Fig. 8 confirms, we
can expect a stationary value 〈c(r)〉e = c03 in the inner regions
of the cluster. In the transition region we can expect c01 <

〈c(r)〉e < c03 and in the surrounding system 〈c(r)〉e = c01.
However, in order to calculate the values of the fixed points,
we need to know the stationary value of �global(c(r)), which
so far we were only able to calculate numerically. However,
based on the discussions of the limiting cases (see Sec. IV),
we can assume that the stationary profiles 〈ρ(r)〉e [〈c(r)〉e] will
be distributed around the values ρ+ (c+) where the effective
diffusion coefficient changes its sign (and we find a maximum
of the local fitness).

In order to get an approximation of the mean stationary
particle density ρmean (as well as the mean stationary concen-
tration cmean) of single clusters, we neglect the actual form of
the stationary profiles 〈ρ(r)〉e and 〈c(r)〉e and treat a cluster as
a disklike structure of radius R0 with a homogeneous particle

(a) (b)

FIG. 9. (Color online) Comparison of ρ+ and c+ to numerical calculations of (a) mean density ρmean and (b) mean concentration cmean of
single clusters in the stationary state for different values of the chemotactic saturation parameter β (the simulation parameters are qc/dc = 2,
κ = 300, D = 2.5, and γ = 1; for the numerical calculation of the mean values we included the transition region in the outer parts of a cluster).
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FIG. 10. (Color online) Single clusters in the stationary state for
different values of the saturation coefficient β (snapshots are taken
from the simulations shown in Fig. 9).

density that is given by ρmean = ρ+ (cmean = c+) and a sharp
transition to a region where the particle density (concentration
of the field) vanishes:

〈ρ(r)〉e ≈ ρ+θ (R0 − r), (52a)

〈c(r)〉e ≈ c+θ (R0 − r). (52b)

In order to evaluate this approximation, we simulated single
clusters in the stationary state for different values of the
saturation parameter β and numerically calculated ρmean and
cmean. Hereby we defined the radius of the cluster by including
the transition region. As shown in Fig. 9, we obtain very
good quantitative agreement between the analytical approx-
imation and numerical results: The average density (concen-
tration) of single clusters, including the transition region, can
be approximated by ρ+ (c+). The snapshots in Fig. 10 illustrate
clusters in the stationary state for different values of β. The
cluster size grows with increasing values of β and for large
β single particles start to leave the cluster and its shape and
transition region become irregular. When we looked closer at
the profile of single clusters in the stationary state, we observed
dynamic growth and decay of smaller inhomogeneities in the
inner regions of the clusters as well as fluctuations in the outer
transition region. This underlines the stochastic nature of the
stationary clusters. For example, we calculated the mean-
square displacement of the center of mass of single clusters
of different sizes (numbers of agents) and note that (i) the
clusters show normal diffusive behavior and (ii) the diffusion
coefficient of large clusters (N ≈ 25 000) approaches the value
that one would expect for the center of mass of an ensemble
of free particles without chemotactic coupling.

VI. CONCLUSION

In this work we have studied the effects of concentration-
dependent chemotactic sensitivity on the collective behavior
of autochemotactic Brownian agents. We compared different

chemotactic drift functions and showed that the nonlinear
receptor-law sensitivity leads to two distinct density regimes
where the homogeneous solution is stable: a low-density
regime (〈ρ〉 < ρ−) and a high-density regime (〈ρ〉 > ρ+). At
intermediate densities for (ρ− < 〈ρ〉 < ρ+) and sufficiently
strong chemotactic coupling, the homogeneous solution be-
comes unstable. A variety of spatiotemporal patterns, namely,
bubbles, labyrinthine structures, and clusters, can be observed
and for t → ∞ the system approaches a stable inhomogeneous
state with two coexisting phases. In the linearly unstable
regime these show characteristics of phase transition via spin-
odal decomposition, while close to ρ± nucleation processes
can be observed.

The analysis of the limiting cases ∂ρ

∂t
≈ 0 and ∂c

∂c
≈ 0

motivates, on the one hand, the introduction of an effective
density-dependent diffusion coefficient and, on the other
hand, the introduction of a local (and global) fitness in an
equation analogous to a Fisher-Eigen selection equation. Both
limits confirm the general result of the linear stability analysis
and allow further insights into the dynamical behavior of the
system.

For the receptor-law response, the limiting case ∂c
∂c

≈ 0
leads to an effective diffusion coefficient that is negative
only for a finite range of densities ρ− < ρ(r,t) < ρ+, which
correspond to the densities in the transition regions found in the
outer parts of large chemotactic clusters. Interestingly, agents
in the inner regions of such clusters behave as free Brownian
particles with a positive effective diffusion coefficient, in
contrast to the case of constant chemotactic response.

The limiting case ∂ρ

∂t
≈ 0 allows the formulation of an

effective bistable time-dependent reaction-diffusion equation,
which was used to obtain results beyond a linear stability
analysis. We discussed a metastable regime described by the
two stable zeros of the reaction rate and derived the time-
dependent critical radius of a single rotationally symmetric
domain, which allows one to distinguish stationary patterns,
such as high-density clusters, low-density bubbles, and phase-
separated structures with straight domain boundaries. We
furthermore showed excellent quantitative predictions of mean
stationary characteristics of such structures, for example, the
average density of single clusters.

Our results show that already for the simple case of
motile chemotactic agents a concentration-dependent chemo-
tactic response will strongly affect the emerging large-scale
patterns [9,10]. In many experimental system the details
of the chemotactic response, in particular its concentration
dependence, are not yet fully understood. Here our approach
allows us to explore the large-scale behavior for different
chemotactic response functions and to derive quantitative and
qualitative predictions on the expected patterns, which in turn
can be compared to experimental observations.
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