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Relationships between the winding angle, the characteristic radius, and the torque
for a long polymer chain wound around a cylinder: Implications for RNA winding

around DNA during transcription
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Long polymer chains are ubiquitous in biological systems and their mechanical properties have significant
impact upon biological processes. Of particular interest is the situation in which polymer chains are wound around
each other or around other objects. We have analyzed the parameters of a long Gaussian polymer chain wound
around a cylinder as a function of the torque applied to the ends of the chain. We have shown that for sufficiently
long polymer chains, an average winding angle and a characteristic radius of the chain can be determined
from a modified Bessel function of purely imaginary order, in which the value of the order is equivalent to the
applied torque, normalized to the product of the absolute temperature and the Boltzmann constant. The obtained
results are consistent with a simplified interpretation in terms of “torsional blobs,” and this could be extended to
nonideal chains with excluded volumes. We have also extended our results to the case of a polymer chain rotating
in viscous medium. Our results could be used to estimate the mechanical strains that appear in DNA and RNA
during transcription, as these might initiate formation of unusual DNA structures, invasion of RNA into the DNA
duplex (R-loop formation), and modulation of the interactions of DNA and RNA with proteins.
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I. INTRODUCTION

The winding of random walk trajectories around a given
domain in space, for example, an impenetrable obstacle, has
received significant attention and has multiple implications
for polymer physics ([1,2], and references therein). In general,
the winding of a polymer chain around an obstacle decreases
the chain entropy and consequently creates forces directed to
unwinding; if the unwinding is impossible (for example, due
to anchoring of the chain’s ends), these forces would create
mechanical strains and deformations within the system. We
have suggested that this effect might appear during DNA
transcription, if the nascent RNA becomes anchored to the
DNA [Fig. 1(a)] [3]. In this case, because RNA polymerase
rotates relative to DNA during transcription, the nascent RNA
becomes wound around DNA. Winding-induced mechanical
strain within the nascent RNA exerts a torque upon the double-
stranded DNA region over which the nascent RNA is wound,
which would cause negative supercoiling in this DNA region;
that, in turn, could cause a number of biologically important
phenomena such as unusual DNA structure formation, RNA
invasion into the DNA (R-loop formation), modulation of
protein binding, etc. This strain would also be expected
to destabilize the transcription complex, thereby increasing
the probability of transcription termination. Importantly, the
anchoring-induced “static” supercoiling depends only upon
the number of turns (per RNA length), which the nascent RNA
has made around the DNA between the anchoring point and
the RNA polymerase; in contrast to “dynamic” transcription-
driven supercoiling (see below), anchoring-induced supercoil-
ing does not depend upon the viscosity of the medium, or
upon the absolute rotational rates of RNA polymerase and
DNA during transcription. Thus, it does not matter whether
the RNA polymerase is actually revolving around the DNA, or
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whether it is fixed while the DNA is rotating, as suggested in
the “transcription factory” model [4].

In previous calculations we primarily considered the situa-
tion of “tight wrapping,” in which the anchoring occurs close
(in terms of length of the nascent RNA) to the transcribing
RNA polymerase. In that case the estimated torque appeared
to be so large that it would cause either disruption of the
anchoring and/or the transcription complex, or, more likely,
the nascent RNA invasion into the double-stranded DNA
(i.e., R-loop formation) [3].

In the present work, we consider the more general case
that includes a “loose” wrapping of the polymer chain around
an obstacle. In the case of transcription, this situation could
appear when anchoring has occurred at a later time after the
start of transcription, when a sufficiently long transcript has
already been produced. A very large size and slow synthesis
of certain transcripts (e.g., [5]) could facilitate this scenario.

Upon continuation of transcription, the relative contribution
from the initial RNA “slack” to RNA winding around DNA de-
creases, the winding becomes tighter, and the winding-induced
negative supercoiling increases (in the limit approaching a
very high value for the tight wrapping without initial slack,
estimated in [3]), and eventually this negative supercoiling
would be large enough to trigger R-loop formation.

R loops have a number of important biological functions
(e.g., [6–9]), but they are also a source of genomic instabilities
(e.g., [10,11]) and they are implicated in partial transcription
blockage by certain nucleotide sequences [12–14], which
makes them possible substrates for a “gratuitous” form of
transcription-coupled DNA repair ([15], reviewed in [16]). The
probability of R-loop formation by a given sequence is usually
defined by the stability of the RNA-DNA hybrids formed by
this sequence [17]. However, the nascent RNA anchoring by
the mechanism shown in Fig. 1(a) would facilitate R-loop
formation in any transcribed sequence regardless of the
stability of RNA-DNA hybrids formed by this sequence.
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FIG. 1. Cotranscriptional nascent RNA winding around DNA.
(a) Nascent RNA winding around DNA caused by RNA anchoring.
RNA polymerase (gray oval) is transcribing DNA (shown by a thick
gray line) producing a nascent transcript (shown by a thinner black
line). White block arrows with black borders show directions of
translational movement and rotation of RNA polymerase relative to
DNA during transcription. Next, nascent RNA becomes anchored
to DNA by some anchoring agent (for example, bivalent RNA-DNA
binding protein) shown by a gray hexagon. Because RNA polymerase
rotates relative to DNA, further transcription would cause RNA
wrapping around DNA, which is tightening upon continuation of
transcription. This tightening wrapping would produce growing
negative supercoiling in the wrapped region of DNA [3], which would
eventually cause RNA invasion into the DNA duplex producing an
R loop (not shown). In the case of a sufficiently long wrapped DNA
region wrapping-induced supercoiling could produce plectonemic
supercoils in this region (not shown). (b) Nascent RNA winding
around DNA caused by viscous resistance against nascent RNA
rotation during transcription. Rotation of RNA polymerase relative
to DNA causes nascent RNA to rotate in the same direction. Viscous
resistance against this rotation creates a torque acting in a direction
opposite to rotation (shown by block arrow with gray borders),
which tends to wind nascent RNA around DNA. Because RNA
winding around DNA is energetically unfavorable due to decrease in
RNA entropy upon winding, RNA resists winding, and consequently,
winding would become pronounced only when the transcript would
reach sufficiently large length to create viscous torque sufficient to
counteract spontaneous entropy-driven RNA unwinding. Because a
given region of the RNA chain experiences viscous torque created
by all RNA regions localized between this region and the free end
of the nascent RNA, the farther this region is from the free end
(i.e., the closer it is to RNA polymerase), the larger the torque,
and, consequently, the tighter the RNA winding. Note that for easier
visualization of RNA regions with different degrees of winding, linear
stretching of the nascent RNA along the direction of transcription is
strongly exaggerated (see Sec. II C).

The anchoring could be performed by a “bivalent” protein,
which is capable of binding RNA and DNA simultaneously.
An important example of such a protein is transcription factor
YY1, for which simultaneous cotranscriptional binding to
nascent RNA and to DNA has been implicated in the regulation
of gene silencing [18,19]. Similar modes of protein-mediated

cotranscriptional nascent RNA binding to DNA have been
suggested for the regulation of the dihydrofolate reductase
gene [20] and for the Z-DNA binding protein (which at the
same time is an RNA-editing enzyme so it should be able to
bind RNA, at least transiently) (review in [21,22]). In general,
there is a growing number of examples of protein-mediated
RNA-DNA binding (e.g., reviewed in [19]); thus, one could
expect that cotranscriptional nascent RNA anchoring might
also be common in living cells. Other forms of RNA-DNA
interactions, including triplex formation [23,24], could also
produce this type of anchoring. Some unusual DNA structures,
such as H-DNA (reviewed in [25,26]), contain single-stranded
regions which could readily hybridize with the nascent tran-
script provided that they have sufficient homology. Yet another
example of this type of anchoring is the “hybrid” quadruplex
between RNA and DNA, which has been implicated in R-
loop-mediated replication initiation in mitochondria [27].

Another important phenomenon in which the effect of
nascent RNA winding around DNA could have a significant
contribution is dynamic transcription-induced supercoiling
caused by viscous resistance against the relative rotation of
transcription machinery (together with nascent RNA) and
DNA ([28], reviewed in [29]). In this case, although the
distal end of the nascent RNA is not anchored to DNA, the
torque induced by viscous resistant forces could be sufficient
to cause nascent RNA winding around DNA [Fig. 1(b)]; this
would decrease the effective gyration radius of the RNA, thus
decreasing its apparent friction coefficient, and consequently
decreasing the torque. This “negative feedback” due to RNA
winding should be taken into account when estimating the
transcription-induced supercoiling. However, in the absence
of anchoring, a sufficiently large viscous resistance for nascent
RNA motion is essential for RNA winding, because the
mechanical strains in the wound RNA would facilitate its
spontaneous unwinding via random thermal motions, and if the
viscous resistance to those motions were small, the unwinding
would occur very rapidly without accumulated winding. Thus,
in the absence of anchoring, the nascent RNA winding would
become pronounced only after some sufficiently large length of
transcript had been generated; the estimation of this “critical”
length would be important for evaluation of the mechanical
strains that appear in DNA and RNA during transcription.

The interdependence between torque, winding, and charac-
teristic size for the polymer chain is of significant importance.
We have rigorously analyzed these dependences for the model
of a very long ideal Gaussian polymer chain, and have
also made approximate estimations for nonideal chains with
excluded volume and for chains rotating in viscous media.

II. RESULTS AND DISCUSSION

A. Ideal Gaussian chain wound around a cylinder

Under a constant torque, a very long ideal Gaussian chain
wound around a cylinder is described by a modified Bessel
equation of purely imaginary order, where the absolute value
of the order is equivalent to the torque normalized upon the
thermal energy kT.

In the continuous approximation, the statistical weight W

of the Gaussian chain comprising N segments is described by
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the diffusionlike equation ([2] and references therein),

∂W

∂N
= l2

2
∇2W. (1)

Here l is the length of the chain segments divided by the square
root from the system dimensionality (e.g., by

√
3 in the case

of three dimensions).
In general, we are interested in simultaneous chain winding

around a cylinder and the chain stretching along the cylindrical
axis, but because the Gaussian chain deformations in different
directions are independent, we can consider these two defor-
mations separately. To analyze the chain wrapping around a
cylinder, we consider a two-dimensional version of Eq. (1) in
the polar coordinates:

∂W

∂N
= l2

2

(
∂2W

∂r2
+ 1

r

∂W

∂r
+ 1

r2

∂2W

∂φ2

)
, (2)

where r is the distance from the cylinder axis, and φ is the
winding angle around this axis. If a constant torque M is
applied to the chain, then the average winding angle would be

〈φ〉 =
∫ +∞
−∞ φWexp

(
Mφ

kT

)
dφ∫ +∞

−∞ Wexp
(

Mφ

kT

)
dφ

= ∂ (lnWM )

∂
(

M
kT

) , (3)

where

WM =
∫ +∞

−∞
Wexp

(
Mφ

kT

)
dφ

=
∫ +∞

−∞
exp

(
kT lnW + Mφ

kT

)
dφ. (4)

Note that the convergence of this integral for ϕ → ∞ is
ensured by a finite value of the cylinder radius, because for
sufficiently tight winding around a cylinder, the energy of the
chain deformation becomes quadratic upon φ , thus growing
faster than the torque-dependent term Mφ.

Multiplying Eq. (2) by exp(Mϕ

kT
) and integrating over −∞ <

ϕ < +∞, we obtain

∂WM

∂N
= l2

2

(
∂2WM

∂r2
+ 1

r

∂WM

∂r
+

(
M
kT

)2

r2
WM

)
. (5)

We are interested in the solution for very long chains, for
which the distribution of the segments’ positions relative to the
cylinder as well as an average winding per segment does not
depend upon the length of the chain and upon initial conditions,
but depends only upon torque.

We will look for such a solution in the form

WM (N,r) = g(r)exp

(
a2N

2

)
, (6)

where g(r) is some finite function. Equation (6) cannot account
for the condition in which the end segments of the chain are
attached to the surface of the cylinder; rather, their distance
from the cylinder axis would be distributed as g(r), as for
all other segments. However, for sufficiently long chains the
precise manner of attachment should not affect the results.

It is also important to note that although our derivations
below are performed for the chain under a fixed torque, for
sufficiently long chains the torque-winding dependence would

be the same as for the chain with a fixed winding density, which
is defined by the equation

M = −∂ kT lnW

∂φ
. (7)

This equation corresponds to the condition in which the
function under the integral in Eq. (4) reaches a maximum. The
sharpness of this maximum would grow with increasing N , and
thus the value of φ, at which the under-integral function reaches
the maximum, would provide the predominant contribution to
the average value of φ.

Substituting Eq. (6) into Eq. (5), and designating

x ≡ r
a

l
, (8)

q ≡ M

kT
, (9)

we obtain

x2 d2g

dx2
+ x

dg

dx
+ (q2 − x2)g = 0. (10)

This is a modified Bessel equation of purely imaginary order
iq.

Characteristic parameters of the chain can be obtained
from the dependence of the largest zero of the modified Bessel
function of the second kind of purely imaginary order, upon
the absolute value of the order.

In our case, the solution of Eq. (10) must reach zero at the
surface of the cylinder (i.e., for r = R), be positive for r > R,
and approach zero when r approaches infinity rapidly enough
that the integral

∫ ∞
R

g(r)rdr is finite.
The solution that satisfies these requirements is the modified

Bessel function of the second kind (also known as the modified
Hankel function, the modified Bessel function of the third kind,
and some other designations) of purely imaginary order Kiq(x)
([30], and references therein).

In the interval between x = 0 and a certain positive value
x = x1(q) (further referred to as the largest zero of the
function), this function is oscillating between negative and
positive values an infinite number of times until it switches
from negative to positive value for the last time at x = x1(q),
and then remains positive, first reaching a local maximum, and
then monotonically decreasing, approximately as e−x

x1/2 .
Because g(r) is positive, and must be zero at the surface of

the cylinder (r = R), the largest zero of the function should
correspond to the surface of the cylinder. Thus, from Eq. (8)
we obtain

x1 = R
a

l
. (11)

The dependence x1(q) (for which the general analytical
expression is unknown, but numerical estimations and asymp-
totics are available; see below), defines all physical parameters
for a sufficiently long Gaussian chain to which a torque
M = kT q is applied.

From Eq. (6), the free energy of the chain is

−kT lnWM ≈ −kT
a2N

2
= −NkT

l2

R2

x2
1

2
. (12)
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From Eqs. (3) and (12), the average winding per segment
(referred to further as the average winding density) is

u ≡ 〈φ〉
N

= ∂ (lnWM )

∂
(

M
kT

) 1

N
≡ ∂ (lnWM )

∂q

1

N
≈ 1

2

(
l

R

)2 d
(
x2

1

)
dq

.

(13)
The above equation provides a general expression for

winding-torque dependence [u = u(q), or q = q(u)] for a
sufficiently long Gaussian chain wound around a cylinder.
(Below, unless otherwise indicated, we will consider only
sufficiently long chains, for which the results obtained for
infinitely long chains are good approximations, and use “=”
instead of “≈” if we imply the limit for N→infinity).

Characteristic distance scale of the chain could be inter-
preted as a “torsional blob” size. From Eqs. (8) and (11) it
follows that the value

rb = l

a
= R

x1
(14)

defines some characteristic distance scale for the infinitely long
chain under a given torque. Substituting Eq. (14) into Eq. (12)
for free energy, we obtain

−kT lnWM ≈ −kT

2

Nl2

r2
b

∼ −kT
r2
N

r2
b

, (15)

where rN is the size of an unperturbed random coil containing
N segments. From Eq. (15) it is seen that when the size of
the unperturbed coil is equivalent to rb, the free energy of
the coil under applied torque is about kT (i.e., the energy of
random thermal fluctuation). From that, we could interpret rb

as the size of the coil at which perturbations caused by forces
applied to the coil are of the same magnitude as random thermal
fluctuations of the coil. For the coils of sizes below this size,
perturbations caused by applied forces could be neglected,
while for the coils of sizes above this size, the effect of applied
forces upon the coil deformation is stronger than the effect of
thermal fluctuations. A coil of this threshold size is referred
to as a blob (reviewed in [31]). Sometimes we will refer to it
as a torsional blob, by analogy with “tensile blob” defined by
the linear stretching force [32]. We will discuss a simplified
blob-based analysis as applied to polymer chain winding in
more detail in Secs. II B and II C, in which we consider
nonideal chains and chains rotating in viscous medium.

Analysis based upon asymptotic expressions for the largest
zero of the modified Bessel function of the second kind of purely
imaginary order for small and for large orders, shows that
at small torques the torque-winding dependence is nonlinear,
and the characteristic distance scale is much larger than the
radius of the cylinder; while at large torques, torque-winding
dependence is linear, and the characteristic distance scale is
much smaller than the radius of the cylinder.

As already mentioned, the general analytic expression for
x1(q) is unknown. However, asymptotic expressions have been
obtained for large and small values of q [30]:

For q < 1 (i.e., small torque M < kT ), from Eq. (8) from
the above cited manuscript,

x1(q) ≈ Cexp

(
−π

q

)
, (16)

where the numerical constant C = 2exp(−γ ) = 1.1 · · · (γ =
0.57 · · · is the Euler-Mascheroni constant) is close to 1 and
can be omitted in further analysis.

Substituting Eq. (16) into Eq. (13), we obtain the winding-
torque interdependence for small torques:

u ≈ π

(
l

R

)2 1

q2
exp

(
−2π

q

)
, (17)

or taking the logarithm of this equation, and taking into account
that for q < 1, 1/q > ln(1/q),

M ≈ 2πkT

ln 1
u

. (18)

This dependence is nonlinear, because in this regime the
characteristic distance from the axis of the cylinder, which
defines the lever arm for deformational forces, strongly
depends upon the chain winding (see below).

Substituting Eq. (16) into Eq. (14), we obtain the size of
the blob for small torques:

rb ≈ R exp

(
π

q

)
. (19)

Because for q < 1 this value is significantly larger than
the radius of the cylinder, it can be considered as the only
characteristic scale describing the distance from the chain to
the cylinder, and it could be used as an estimate for both
distance from the surface of the cylinder and from its axis.
Combining Eqs. (17) and (19), we obtain

u ≈
(
ln rb

R

)2

π

l2

r2
b

, (20)

or, up to smaller logarithmic terms,

ln
1

u
∼ ln

r2
b

l2
. (21)

For the large torque approximation M/kT ≡ q > 1, Eq. (16)
is replaced by

x1(q) ≈ q (22)

(Eq. (18) in [30]).
Substituting Eq. (22) into Eq. (13) we obtain “Hooke’s”

direct proportionality between the torque and the average
winding density:

u ≈
(

l

R

)2

q =
(

l

R

)2
M

kT
. (23)

For the blob size for large torques we obtain

rb ≈ R

q
= R(

M
kT

) ≈ l2

Ru
. (24)

As expected, for finite R, upon M → ∞, rb → 0, which is
consistent with the chain becoming tightly wound around the
cylinder. Note, however, that for the tight winding, the blob
size is not equivalent to the characteristic distance hc from the
chain to the surface of the cylinder, which also approaches
zero at finite R and M → ∞, but scales differently than rb
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with these parameters:

hc ∼ R(
M
kT

)2/3 ∼ l4/3

u2/3R1/3
(25)

(for derivation, see Appendix A).
Because at large torque, the distance from the surface hc

is significantly smaller than the radius of the cylinder, the
stretching of the segment in the direction of the winding
l↑ = u(R + hc) ≈ uR, and the stretching force F = M/(R +
hc) ≈ M/R. Consequently, at large torques Eq. (23) ap-
proaches the well-known expression for the relative extension
of the ideal Gaussian chain in the direction of the force:
l↑/l = (F l)/kT , and Eq. (24) approaches the expression for
the tensile blob size for one-dimensional force F : rb = kT /F

[32].
Using the torque-winding dependence obtained in this

section, we can estimate the amount of supercoiling induced
by the nascent RNA winding around DNA (see Appendix B).

B. Simplified analysis of the nonideal chains
with excluded volume

For the simplified analysis of nonideal chains, we will use a
notion of a blob, which is the coil where the characteristic sizes
of directed distortions created by some external force are of the
same magnitude as the random distortions produced by thermal
fluctuations in the absence of an external force. Consequently,
all average geometric parameters of the blob-size coil are of
the same magnitude, as that for the coil with the same number
of segments in the absence of external forces. For example,
for one blob, the relationship between the characteristic size
rb and the number of the segments Nb, is roughly the same as
for an unperturbed coil:

rb ∼ lNν
b , (26)

where ν is the Flory exponent (here and below we assume
for simplicity that the segment of the chain has only one
characteristic size l , and this size is about the same as the
radius of the cylinder R).

For the blob-size coil, distortions induced by external forces
are of the same magnitude as the respective geometrical
parameters of an unperturbed coil with the same number of
segments. Thus, for one blob, the value of the average winding
angle 〈φ〉 generated by the torque is roughly the same as
the characteristic absolute value φ0 of the winding angle for
the random winding of a coil containing the same number of
segments in the absence of torque. Thus,

u ≡ 〈φ (Nb)〉
Nb

∼ φ0 (Nb)

Nb

. (27)

From the analogy with tensile blobs (where torque is an
analog of force, and winding angle is an analog of the linear
coordinate),

1

q
≡ kT

M
∼ 〈φ (Nb)〉 ∼ φ0 (Nb) . (28)

For sufficiently large Nb (which in our case means large blob
size, or small torque),

φ0 (Nb) ∼ (lnNb)κ , (29)

where the parameter κ for an ideal Gaussian chain = 1
(reviewed in [2]). For two-dimensional chains with excluded
volume κ = 0.5 (reviewed in [33]); for three-dimensional
chains with excluded volume, the analytically predicted value
is also 0.5 [34], but computer modeling produced κ = 0.75
[35].

Combining Eqs. (26)–(29), we obtain

lnNb ∼ 1

q1/κ
, (30)

ln
1

u
≈ lnNb − ln (lnNb)κ ∼ 1

q1/κ
+ ln q ≈ 1

q1/κ
, (31)

ln
rb

l
≈ lnNν

b ∼ ν

q1/κ
, (32)

ln
1

u
≈ ln

( rb

l

)1/ν

. (33)

(Here “∼” implies “up to numerical coefficients about unity,”
and “≈” means “up to smaller terms”). For an ideal Gaussian
chain, for which ν = 0.5, κ = 1, the results of Eqs. (31)–
(33) coincide with approximations for results obtained from
more rigorous model analysis [Eqs. (18), (19), and (21),
respectively].

In the large torque limit, the wound chain could be
approximated by a one-dimensionally stretched chain (see
comments below Eq. (25) in previous subsection), for which
force-extension dependences for various polymer chain mod-
els are available; thus we are not analyzing that case in this
subsection.

C. Analysis of the rotating polymer chain in viscous medium

In the this subsection, we will extend our analysis to the
polymer chain for which one end is free, while the other end is
attached to the surface of the cylinder, and can rotate relative
to the axis of the cylinder while remaining attached to the
surface. As mentioned in the Introduction, this could model
the behavior of the nascent RNA chain during transcription
[Fig. 1(b)].

In the steady state, the entire chain would rotate with the
same angular velocity as the attached end. During rotation
the chain would experience a torque generated by viscous
friction, which would tend to wind the chain around the
cylinder. The closer the region of the chain to the attachment
point, the larger the local torque applied to the ends of this
region, and, consequently, the tighter would be its wrapping
around the cylinder; i.e., the characteristic distance between
the chain and the cylinder decreases from the free end to
the attachment point. A similar situation appears when the
polymer is dragged by the end in viscous medium, where it
forms either a “trumpet” or “stem-flower” profile [36–39].

We are going to evaluate the profiles of the characteristic
distance and the torque as a function of the distance along
the chain for the rotating polymer chain, using the results
developed in the previous section.

Similar to the analysis of the chain dragged by a force
in viscous medium, we will use the notion of the blob size
rb = rb(M), which is the characteristic size below which
deformation of the coil by torque M can be neglected. The
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larger the torque, the smaller the size of the blob. (Note that,
rigorously speaking, the relationship rb(M), which we are
going to use in this analysis, is derived for the torque applied
to the ends of the chain, while in the case of a rotating chain,
viscous forces are acting upon each segment of the chain.
However, in our simplified analysis, we assume that for each
blob the entire viscous resistance of the blob is concentrated at
the end of the blob proximal to the free end of the chain; thus,
the torque is applied to the ends of the chain region within one
blob. Alternatively, one can proceed directly to the continuous
model, similar to that described in [36–39].)

Let us consider the behavior of a rotating chain as a function
of its length. When the chain is very short, its respective coil
size, and consequently its viscous resistance, is small; thus,
the viscous torque generated by its rotation is also small, and
the respective blob size which corresponds to this small torque
is large; thus for the small length, the size of the unperturbed
coil which corresponds to this length is smaller than the size
of the blob, and consequently the chain shape is practically
unperturbed by rotation (i.e., nonrandom winding of the chain
around a cylinder is not pronounced). Upon increasing the
chain length, the size of the coil also increases, leading to an
increase in torque and a decrease of the respective blob size. At
some critical length, the size of the unperturbed coil becomes
equal to the size of the blob (which we will call the “first
blob”). Starting from this critical first blob length, nonrandom
winding of the chain around the cylinder becomes noticeable.
If the chain is longer than the critical length, it forms a second
blob, for which the size is defined by the sum of viscous torques
created by the first blob and by the second blob itself, and so
forth. In general, if Mj is the torque acting upon a blob with
the number j , μj is the viscous rotational resistance of this
blob, and ω is the angular rate of rotation. Then

Mj =
i=j∑
i=1

ωμi. (34)

In particular, for the very first blob,

M1 = ωμ1. (35)

Let Nbj be the number of segments in the blob number j .
Then, the distance (expressed in the number of segments) from
the blob number j to the free end of the chain is

sj =
i=j∑
i=1

Nbi. (36)

From these two equations, an “artificial” variable j can be
excluded, and the torque could be expressed as a function of the
distance from the free end. In the continuous approximation,
that leads to the equation

dM

ds
= ω

μ

Nb

. (37)

Recurrent calculations using Eq. (34) or its continuous
analog Eq. (37) can be continued until the distance from the
end [Eq. (36)] becomes equivalent to the total length of the
chain, or until the torque become so large that the size of
the blob becomes smaller than the size of the segment (as
in the stem-flower profile [38]); consequently, the blob-based

analysis would become nonapplicable and should be replaced
by some other model applicable to strongly stretched chains.
Note that for continuous Eq. (37), the condition at the free end
M(s = 0) = 0 implies that rb(s = 0) = ∞. This divergency,
which was previously discussed for the trumpet model [39],
could be circumvented by starting calculation from the first
blob, i.e., from s = Nb1.

In the absence of hydrodynamic interactions between the
segments within a blob,

μ ∼ Nblη〈r2〉, (38)

where 〈r2〉 = 〈r2〉(rb,R) is the average quadratic distance of
the segment from the cylindrical axis, 〈r2〉 ∼ r2

b at small
torques, and 〈r2〉 ≈ R2 at large torques.

Equations (37) and (38) allow us to evaluate the profiles
of the characteristic distance and the torque as a function of
the distance along the chain for the rotating polymer chain,
in the absence of hydrodynamic interactions. However, be-
cause the general analytic expression for function rb(M) is
unknown, we cannot write the general analytic solution for
this equation for all values of torques.

Here we will limit an analysis to the small torques, for
which rb > R ; thus 〈r2〉1/2 ∼ rb, and from Eq. (19),

M

kT
≈ π

ln (rb/R)
. (39)

Introducing the dimensionless blob size,

χ ≡ rb

R
, (40)

and substituting Eqs. (38)–(40) into Eq. (37), we obtain

− 1

(lnχ )2 χ3

dχ

ds
= ωηlR2

πkT
≡ α, (41)

where α is a dimensionless parameter characterizing magni-
tude of frictional forces. For example, in the case of RNA
rotation during transcription in aqueous solution, substituting
ω ≈ 100 nt/s ≈ 60 rad/s (reviewed in [29]), η ≈ 10−3 Pa s,
R ≈ l ≈ 10−9 m, kT ≈ 4 × 10−21 J, we obtain α ≈ 10−8.

We will analyze Eq. (41) for α � 1, and assuming that the
total length of the chain N > 1/α. In general case, the integral
of Eq. (41) over χ cannot be expressed through a finite number
of elementary functions. However, for χ  1, we can make a
substitution:

χ ≡ ξ

lnξ
, (42)

and, if χ  1, then ξ  1; thus

ln χ = ln ξ − ln (ln ξ ) ≈ ln ξ (43)

and

dχ

ds
= dξ

ds

[
1

ln ξ
−

(
1

ln ξ

)2
]

≈ dξ

ds

1

ln ξ
. (44)

Substituting approximations Eqs. (43) and (44) into Eq. (41),
we obtain

− 1

ξ 3

dξ

ds
≈ α; (45)
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thus

ξ ∼ 1

(αs)1/2 , (46)

and from that, we obtain profiles along the chain length
for the blob size (which in this regime is equivalent to the
characteristic distance from the chain to the cylinder),

rb ≡ Rχ ∼ R

(αs)1/2 ln (1/αs)
, (47)

and for the torque,

M

kT
∼ 1

lnχ
∼ 1

ln (1/αs) − 2ln [ln (1/αs)]
. (48)

The requirement for the validity of these equations is a
large normalized blob size χ , which is satisfied, as long as
the distance from the free end s is sufficiently smaller than
1/α. When the distance from the free end exceeds this value,
the chain becomes tightly wound around a cylinder and its
radius of gyration approaches the radius of the cylinder (i.e., it
would be practically independent upon torque). Consequently,
viscous resistance per one segment would be also independent
upon torque, and thus, further accumulation of torque would
grow linearly with s.

The parameter of particular interest is the number of
segments in the first blob Nb1, which is the characteristic
number of segments starting from which nonrandom winding
of the chain around the cylinder becomes pronounced. For
an ideal Gaussian chain in the absence of hydrodynamic
interactions it could be evaluated from Eq. (47), taking into
account that rb(s = Nb1) ≡ rb1 ∼ lN

1/2
b1 , from which we could

obtain that, up to the logarithmic multiplier, Nb1 ∼ (1/α)1/2.
However, it is more convenient to evaluate Nb1 directly

from Eq. (35) for the first blob. Estimations performed for the
first blob based on Eq. (35) are also applicable in the case
of hydrodynamic interactions between the segments, as well
as for non-ideal chains with excluded volume. In contrast,
analysis for the “higher order blobs” based on Eq. (34) is
applicable only in the absence of interactions between the
segments, because in the case of “pure” rotation torsional
blobs formed by rotating chain would be localized within
each other like “Russian dolls”; thus neglecting interactions
between segments within different blobs [as it was done
upon derivation of Eq. (34)] is not justified. In this aspect,
torsional blobs differ from tensile blobs, which are separated
in space, and interactions between the segments belonging to
different blobs could be neglected [39]. Of course, in the case
of transcription, the rotational movement is accompanied by
linear translocation along the the DNA axis; thus torsional
blobs in principle become shifted relative to each other in this
direction [as in the very exaggerated form shown in Fig. 1(b)]
due to viscous resistance to linear translocation. However,
because viscous resistance against linear translocation is
expected to be much smaller than that against rotation (see
below), in reality this shift would be small in comparison with
the size of the blobs.

Below we will obtain the expression for the number of
segments in the first blob in general form, which includes
excluded volume effects and hydrodynamic interactions.

In the case of strong hydrodynamic interactions between
segments (nondraining coil), Eq. (38) is replaced by

μ ∼ η〈r2〉rb. (49)

Combining Eqs. (38) and (49) for the large blob ap-
proximation 〈r2〉 ∼ r2

b (one can check that the small blob
approximation, in which 〈r2〉 ≈ R2, is not compatible with
condition α � 1) with Eqs. (26) and (30), we obtain

Nθ
b1 (lnNb1)κ ∼ kT

ωηl3
∼ 1

α
. (50)

where θ = 1 + 2ν or θ = 3ν, for draining and nondraining
coils, respectively; ν = 1/2 and ν = 3/5 for Gaussian chains
and for chains with excluded volumes, respectively; κ = 1 and
κ = 0.5 (or 0.75) for ideal Gaussian chains, and for chains with
excluded volume, respectively [see references after Eq. (29)].
[Parameter α in Eq. (50) is assumed to be the same as in
Eq. (41), because we neglect the coefficients of the order of
unity, and consider the case in which l ≈ R].

At α � 1, Eq. (50) could be approximately resolved
relative to Nb1 by making a substitution,

Nb1 = (1/α)1/θ f (α) , (51)

which upon substituting into Eq. (50) gives

[f (α)]θ [ln (1/α)1/θ + lnf (α)]κ = 1. (52)

Assuming that |ln(1/α)1/θ | > |lnf (α)|, from Eq. (52) we
obtain the result which is consistent with this assumption:

f (α) ≈ θκ/θ

[ln (1/α)]κ/θ
, (53)

and, thus from Eqs. (51) and (53) we obtain the approximate
solution of Eq. (50) at α � 1:

Nb1 ∼ θκ/θ (1/α)1/θ

[ln (1/α)]κ/θ
. (54)

From Eq. (54), for α ≈ 10−8 [which is relevant for
transcription conditions; see estimate following Eq. (41)],
the smallest value of Nb1 which corresponds to draining
coils with excluded volume (θ = 11/5; κ = 0.75) is about
2 × 103; the largest, which corresponds to nondraining coils
without excluded volume (θ = 3/2; κ = 1), is about 4 × 104.
In the case of the single-stranded RNA, for which one
segment comprises about three nucleotides [40], these values
would correspond to about 104 and about 105 nucleotides,
respectively.

In terms of transcriptions, the above predicts that in the
media with waterlike viscosity and in the absence of bound
proteins, transcripts with lengths up to about 104 nt would
rotate as unperturbed coils, and only for longer transcripts
nonrandom winding around DNA becomes pronounced.

From Eq. (30), rotation of the first blob would produce
torque:

M ∼ kT / (lnNb1)κ . (55)

The torque M = kT corresponds to superhelical density
0.03 (see Appendix B). Experiments have shown that su-
perhelical density of this magnitude could appear in in vitro
transcription without either RNA or DNA tethering to proteins
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or other bulky objects when the nascent transcript reaches
the length of about 104 nt [41]. For that to occur, both
nascent RNA and DNA must have sufficient viscous resistance
to create such a torque upon their relative rotation during
transcription; otherwise, if either one of them has a much
lesser resistance, it would predominantly rotate (while another
remains predominantly immobile), thus creating much less
torque. It was shown theoretically that DNA of the lengths of
about the ones which were used in these experiments could
provide sufficient viscous resistance due to sequence-specific
bends in DNA [29]. In terms of RNA, according to Eq. (55),
the transcript about 104 nt (which is close to the first blob size),
should create a torque which is smaller than kT by a factor
roughly between 1 and 10. Thus, since in the system used by
[41] several RNA polymerases were likely to transcribe one
DNA template simultaneously, our estimations are consistent
with creation of the total torque of about kT in this system.

Finally, in this section, we would like to analyze two “com-
plications” of the nascent RNA dynamics during transcription
in comparison with pure rotation around DNA:

First, during transcription, RNA polymerase, and con-
sequently nascent RNA, not only rotate around, but also
translocate along the DNA axis. For RNA polymerase, the
ratio of the linear speed of rotation to the speed of translocation
along the DNA axis is 2πR/H , where R ≈ 1 nm is the DNA
radius and H ≈ 3 nm is the DNA helical pitch. Substituting
these numerical values, we obtain that for RNA polymerase,
the linear speed of rotation is about twice as large as the speed
of translocation. For the nascent RNA, this ratio is even larger,
because its distance from the DNA axis is larger than the
DNA radius. Because viscous forces are defined by the linear
speed of the chain, its stretching due to translocation along the
DNA axis would be smaller than due to rotation, especially
for loose wrapping, where the characteristic distance between
the chain segments and the cylinder axis is significantly larger
than the radius of the cylinder. Thus, neglecting additional
chain deformation due to translocation along the DNA axis
would not significantly affect the results.

Second, the nascent RNA chain is growing during transcrip-
tion. In general, this would make the rate of rotation around the
DNA duplex to be somewhat smaller for the nascent RNA coil
than for the RNA polymerase. For example, in the limiting
case of infinitely strong viscous resistance against nascent
RNA rotation, the nascent RNA would simply wrap around
DNA as soon as it synthesized, and would not rotate at all.

In Appendix C, we obtain the relationship between the rate
of rotation of the nascent RNA coil, ωcoil, and that of RNA
polymerase ω:

ωcoil = ω

(
1 − γDNA

2πλ
ū

)
= ω

(
1 − ū

umax

)
, (56)

where γDNA ≈ 10.5 is the number of DNA base pairs for
one helical turn in a Watson-Crick double helix, λ ≈ 3 is
the number of nucleotides in the Kuhn segment for the
single-stranded RNA, ū is the winding per RNA segment
averaged over the whole RNA chain, and umax ≈ 2 rad is
the maximal possible winding per segment, at which the
winding angle per one newly incorporated ribonucleotide is
the same as the angle at which RNA polymerase rotates

during this ribonucleotide incorporation (though technically
for the Gaussian model any value of u is possible, for the
RNA winding around DNA during transcription, the values
of u > umax do not have physical meaning; moreover, this
maximal value of RNA winding corresponds to RNA stretched
practically up to its geometrical limit—thus a freely jointed
chain model instead of a Gaussian model should be applied,
and besides, twisting deformations of the DNA duplex should
be taken into account [3]). When u < umax, ωcoil ≈ ω (i.e., the
effect of the chain growing upon the rate of the coil rotation
is negligible for loosely wrapped coils). The case u = umax

corresponds to infinitely large viscous resistance of the coil,
when the coil stops rotating, which is equivalent to the RNA
anchoring without initial slack. In reality, RNA invasion into
the DNA duplex is likely to occur before this value is reached
(see below).

D. Possible experimental testing and potential biological
significance of the theoretical results

Testing torque-winding interdependence. Although we pri-
marily discuss RNA winding around DNA in the context of
cotranscriptional RNA anchoring or viscous impediment, the
torque-winding interdependence for the RNA wound around
DNA, in principle, could be tested in a simplified system
without transcription.

One possibility would be to use single-molecule manipu-
lations, which permit application of a torque and a stretching
force to a single molecule (or to a single defined complex
of several molecules; reviewed in [42–44]). One of the
possible experimental designs, shown in Fig. 2, is a “braid-
ing” system, which was originally applied to study topoi-
somerase action upon intertwined DNA duplexes [45–47].
In this assay, two molecules (in our case, single-stranded
RNA and double-stranded DNA) could be attached (in parallel
fashion) by one end to an immobile surface, and by the
other end to a bead which could be rotated (e.g., using
magnetic tweezers [45]), thus causing intertwining of the
molecules and creating a torque acting upon the bead. In the
magnetic tweezers-based experiments it is possible to track
the winding angle and the torque [48]; thus, the experimental
torque-winding dependence could be obtained and compared
with our theoretical results. Note that in the braiding assay, a
single-strand break could be introduced into the DNA duplex
[45,46]; this would act like a swivel, preventing accumulation
of the twisting deformation within the duplex upon the bead
rotation. Thus, the torque created in this system would be
solely due to RNA winding around DNA.

Because the mechanical properties of single-stranded RNA
and single-stranded DNA are similar, single-stranded RNA
could be replaced by single-stranded DNA in these experi-
ments, in case that would simplify experimental procedures.
Also, to facilitate an attachment of ssRNA (or ssDNA)
and dsDNA to the same bead and to render their points
of attachment sufficiently close to each other, they could
be designed to form a local acidic pH-dependent triplex
(reviewed in [25]). That could hold them together prior to
the attachment to the bead and to the surface, and then the
triplex could be dissociated after their attachment by increasing
the pH.
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FIG. 2. Possible testing of torque-winding interdependence in
single-molecule experiments. Single-stranded (ss)RNA and double-
stranded (ds) DNA are show as a thinner black and a thicker gray line,
respectively. A (magnetic) bead and immobile surface are shown as
a light gray circle and light gray rectangle, respectively. A torque
applied to the bead allows the rotation of it, thus intertwining RNA
and DNA. A stretching force applied to the bead allows keeping DNA
in sufficiently straight configuration, while the single-stranded RNA,
whose contour length is about twice as large, would remain loose. A
nick in dsDNA acts like a swivel, preventing accumulations of torque
within the DNA duplex upon the bead rotation; thus a torque created
in the system would be solely due to RNA-DNA intertwining.

Potential biological role and experimental testing of the
predicted effects of cotranscriptional nascent RNA anchoring
to DNA. As already mentioned in the Introduction (see also
review [49]), it is plausible that cotranscriptional nascent RNA
anchoring to DNA could occur in vivo either by proteins which
could bind RNA and DNA simultaneously, or by direct RNA-
DNA interactions.

According to our model [Fig. 3(a)], this anchoring would
cause nascent RNA winding around DNA, creating a torque
acting upon the DNA duplex. This torque induces negative
superhelical stress in the DNA duplex region between the
anchoring point and transcribing RNA polymerase (i.e., within
the RNA-wound DNA region) (see Appendix B). If the
RNA-wound DNA region is longer than the DNA persistent
length, and the DNA is not strongly stretched by some external
forces, this supercoiling could lead to the formation of a DNA
plectoneme in this region [Fig. 3(a), the second scheme from
the bottom]; otherwise, supercoiling would be seen only in the
form of DNA twisting.

After the anchoring has occurred, the RNA winding around
DNA becomes tighter upon continuation of transcription and
eventually, if nothing else happens, this would attain a limiting
value of very tight winding density, which corresponds to
the situation in which RNA is anchored to DNA at the very
beginning of transcription without initial slack. However,
our previous estimates [3] have shown that the negative
superhelical strain created by that tight RNA winding is
sufficient to cause DNA duplex unwinding; thus, it seems

FIG. 3. Predicted effects of cotranscriptional nascent RNA an-
choring and their possible experimental detection. Designations are
the same as in Fig. 1. (a) Anchoring-induced RNA winding around
DNA would first generate negative supercoiling within RNA-wound
region. If this region is longer than the DNA persistent length,
and the DNA is not strongly stretched by some external forces,
this supercoiling could lead to formation of a DNA plectoneme(s)
in the wrapped region, as shown; otherwise supercoiling would
be only in the form of DNA twisting. Further increase in RNA
winding density, and consequently in negative supercoiling, would
lead to the RNA invasion in DNA, i.e., R-loop formation. (b), (c)
Within circular closed relaxed DNA (b) this negative supercoiling
and/or R-loop formation (only the latter is shown) would create
compensatory positive supercoiling outside the DNA region between
the anchoring point and RNA polymerase. In the single-molecule
experiment (c), where non-nicked linear DNA is attached by one
end to some immobile surface, and the by the other end is attached
to a magnetic bead, this supercoiling and/or R-loop formation (only
the latter is shown) could either create plectonemic superturns, or
could be completely in the twisting form, depending upon an external
stretching force applied to the DNA.

most likely that the nascent RNA would invade the DNA
duplex (thus “canceling” RNA winding around the duplex
and relaxing negative superhelical stress) [Fig. 3(a), the very
bottom scheme] before the winding density reaches this
limiting value.

RNA invasion into DNA (i.e., R-loop formation) is impli-
cated in numerous biological processes, both regulatory [6–9]
and deleterious [10,11], and it is tempting to speculate that
anchoring-induced R-loop formation (that could be modulated,
for example, by concentration of the anchoring agent) might
have regulatory functions in living cells.

There are a number of methods to detect R loops, for
example, by specific chemical and enzymatic reactivity of
a displaced DNA strand, or by retention of (radioactively)
labeled RNA within DNA (reviewed in [50]), that could be
used to test our hypothesis that cotranscriptional nascent RNA
anchoring would eventually lead to R-loop formation.

Anchoring-induced negative supercoiling could also facil-
itate unusual DNA structure (e.g., cruciforms, Z- or H-DNA,
reviewed in [51]) formation in the nascent RNA-wound
region of DNA, provided that this area contained appropriate
DNA sequences. For example, an interesting situation could
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appear in the case of the Z-DNA binding protein, which is
also an RNA-editing enzyme (reviewed in [21,22]). It was
hypothesized that this protein, while bound to Z-DNA in
the vicinity of the transcription site, could cotranscriptionally
modify the nascent RNA [21,22]. It is likely that this RNA
modification is associated with transient RNA binding (i.e.,
RNA anchoring). If there are more Z-DNA forming sequences
localized between the anchoring point and transcribing RNA
polymerase, then RNA-anchoring-induced negative supercoil-
ing would facilitate B-to-Z transitions within these sequences,
thus recruiting more Z-DNA binding proteins, i.e., in effect
mediating “cooperativity” of protein binding.

If cotranscriptional RNA anchoring followed by generation
of negative supercoiling and/or R-loop formation within the
RNA-wound region occurred within relaxed circular closed
DNA, a compensatory positive supercoiling would appear
in the DNA outside the RNA-wound (or R-loop-forming)
region [Fig. 3(b)]. This supercoiling could be detected, for
example, by first treating the plasmid with topoisomerase IV, to
preferentially relax positive supercoils [46], and then removing
RNA by RNase treatment. The entire procedure would convert
the plasmid from relaxed form to negatively supercoiled, which
could be detected by altered plasmid mobility in gel.

Alternatively, compensatory positive supercoiling could
be detected in single-molecule experiments [Fig. 3(c)], for
example, by monitoring either torque-induced rotation of the
bead, or by monitoring vertical shift of the bead position due to
DNA buckling caused by formation of plectonemic supercoils
(e.g., in assay similar to the one used in [52]).

Similar effects are expected in the case of dynamic
transcription-induced supercoiling (e.g., [41]); however,
in contrast to transcription dynamic supercoiling, RNA-
anchoring-induced supercoiling would not require a long tran-
script to create sufficient viscous resistance and, importantly,
it would persist even when polymerase is paused or stalled,
provided that the transcription complex is not dissociated
from the template. (Note that if an R loop is formed, for
certain sequences it would persist after dissociation of the
transcription complex even in positively superhelical DNA,
due to the superior stability of RNA-DNA versus DNA-DNA
duplexes for these sequences).

Both RNA-winding-induced strain [3] and R-loop forma-
tion [3,12–14] are expected to interfere with transcription, and
might lead to transcription slowing down, pausing, or stalling.
These effects could be also monitored in single-molecule
experiments (e.g., [53,54]).

In the experiments described above, a model artificial
anchoring agent could be used: For example, it could be a
bivalent oligonucleotide that is comprised of two moieties, one
of which forms a triplex with double-stranded DNA, and the
other forms a duplex with the single-stranded nascent RNA.
These kinds of artificial anchoring agents, in principle, could
be used to target R-loop formation to specific sequences, which
potentially could be used for artificial gene regulation.

III. CONCLUSIONS

(1) We analyzed the behavior of a long Gaussian chain
wound around a cylinder by a constant torque, and have
obtained interdependences between torque, free energy of

the chain, an average winding per one chain segment, and
an intrinsic characteristic spatial scale of the chain (the
torsional blob size). All these dependences are expressed
via the function x1(q), where x1 is the largest zero of the
modified Bessel function of purely imaginary order iq, and q

is the torque normalized upon thermal energy kT . Though
the general analytical expression for the function x1(q) is
unknown, a numerical solution and analytical asymptotics
are available. Using the simplified blob-based approach,
we extended our analysis to nonideal polymer chains. The
obtained torque-winding dependence can be used to estimate
strains which appear in DNA and RNA during transcription,
when nascent RNA becomes anchored to DNA, for example,
via bivalent protein binding.

(2) Using the interdependence between characteristic spa-
tial scale (the blob size) of the chain and the torque, we ex-
tended our analysis to a polymer chain with one free end, rotat-
ing in viscous solution. In particular, we estimated the minimal
length of the chain, starting from which nonrandom winding
of the chain around the cylinder became pronounced. For
RNA during transcription, this length estimate is around 104

nucleotides. Thus, in the absence of anchoring or some protein
binding that increases viscous resistance, the winding around
DNA is pronounced only for sufficiently long transcripts.

(3) We estimated a correction introduced when the RNA
chain is growing during its rotation around DNA. We
concluded that this correction is not important for loosely
wound RNA, but that it becomes increasingly important with
increasing of RNA winding.

(4) We suggested several experimental approaches to test
theoretical predictions of our analysis.
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APPENDIX A: CHARACTERISTIC DISTANCE FROM
THE CHAIN TO THE SURFACE OF THE CYLINDER

AT LARGE TORQUES

We are going to analyze behavior of the chain in the vicinity
of the cylinder surface at large torques. For this purpose, we
first rewrite Eq. (10) in the form

d2g

d (ln x)2 + (q2 − x2)g = 0. (A1)

For a point at position x, the distance from the surface is

y = x − x1. (A2)

In the close vicinity of the surface, i.e., when y � x1,

ln x = ln (x1 + y) = ln x1 + ln

(
1 + y

x1

)
≈ ln x1 + y

x1

(A3)
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and

q2 − x2 = (q − x) (q + x) = (q − x1 − y) (q + x1 + y)

≈ (q − x1 − y) (q + x1) . (A4)

Note that because we are interested in y � x1 we omitted y

in the term (q + x1 + y), but not in the term (q − x1 − y),
because at large torques (i.e., large q) q − x1 � x1 [30].

Substituting Eqs. (A3) and (A4) into Eq. (A1), we obtain

x2
1
d2g

dy2
+ (q − x1 − y) (q + x1) g = 0. (A5)

This equation can be simplified by linear substitution,

y =
(

x2
1

q + x1

)1/3

t + (q − x1) , (A6)

which converts it into an Airy equation, which, in contrast to
a Bessel equation, does not contain any parameters:

d2g

dt2
− tg = 0. (A7)

We are interested in a solution which approaches zero when
t → ∞. This solution is the Airy function of the first kind
Ai(t). From t = −∞ up to a certain negative value t = t1
(further referred to as the largest zero of the function), this
function is oscillating between negative and positive values
until it switches from negative to positive value for the last
time at t = t1, and then remains positive, first reaching a local
maximum, and then monotonically decreasing, approximately
as exp(− 2

3 t3/2)/t1/4.
The maximal zero of this function t1 = −2.3381 . . . must

correspond to the surface of the cylinder, i.e., y = 0. Thus,
from Eq. (A6),

q − x1 = −
(

x2
1

q + x1

)1/3

t1 ≈ 2

(
x2

1

q + x1

)1/3

≈ 22/3x
1/3
1 ≈ 22/3q1/3 ≈ 1.6 q1/3 (A8)

(here we took into account that q − x1 � x1 provided that q

is large, thus q + x1 ≈ 2q ≈ 2x1). This result is similar to the
estimate obtained in [30]:

q = x1 + 1

2

(
9π

4

)2/3

x
1/3
1 + · · · ≈ x1 + 1.8x

1/3
1 (A9)

(Eq. (18) in [30]; designations are modified in accordance with
the current paper).

Because Eq. (A7) does not contain any parameters, and,
taking into account Eq. (A8), the coefficients in Eq. (A6) both
scale as q1/3; the characteristic scale for y is

yc = q1/3. (A10)

Thus, the characteristic distance from the surface at large
torques is

hc ∼ yc

R

x1
≈ q1/3 R

x1
≈ q1/3 R

q
= R

q2/3

≡ R(
M
kT

)2/3 ∼ l4/3

u2/3R1/3
. (A11)

The second part of this equation is obtained by substitution of
Eq. (23).

APPENDIX B: SUPERCOILING INDUCED
BY COTRANSCRIPTIONAL NASCENT

RNA ANCHORING TO DNA

As already stated, anchoring of the nascent RNA to DNA
during transcription causes the nascent RNA winding around
DNA, which exerts torque upon DNA. This torque causes
deformation within DNA (superhelical strain), and these
deformations, in turn, decrease RNA winding around DNA.
Below, we will obtain a connection between degree of RNA
winding and superhelical strain within DNA in general form.
We will model RNA as a flexible chain, and DNA as an elastic
cylinder.

First consider the situation in which the cylinder is straight
and its deformation under the torque could be neglected (i.e.,
either the cylinder is very rigid, or the torque is sufficiently
small). In this case, the average winding angle per one segment
of wrapped RNA is

u =
2π

γDNA
(NRNA − NRNA,0)

NRNA
λRNA

, (B1)

where NRNA and NRNA,0 is the nascent RNA length (in
nucleotides) between RNA polymerase and the anchoring
point at the current moment and at the moment of anchoring,
respectively; λRNA ≈ 3 [40] is the number of RNA nucleotides
in an apparent segment, and γDNA ≈ 10.5 is number of DNA
bases for one DNA helical turn (which is the same as the
number of RNA nucleotides synthesized during one turn of
RNA polymerase around DNA).

In the next approximation, the cylinder is still straight, but
it is capable of twisting deformations under the torque, which
partially relax the torque. In terms of DNA, that approximation
could be valid, either for sufficiently short DNA fragment
(<300 bp), or if the DNA is stretched by some external force.
In this case, if the twisting angle of the cylinder is ϕ (note that
ϕ has an opposite sign relative to that of the winding angle
φ ≡ Nu, and because φ is positive, ϕ is negative) Eq. (B1) is
transformed into

u =
2π

γDNA
(NRNA − NRNA,0) + ϕ

NRNA
λRNA

=
2π

γDNA
(NRNA + NDNAσ − NRNA,0)

NRNA
λRNA

, (B2)

where

σ =
ϕ

2π

NDNA
γDNA

(B3)

is superhelical density, and NDNA is the number of DNA
base pairs between the anchoring point and the transcribing
RNA polymerase. (If the anchoring occurs at the unique DNA
sequence homologous to the bound region of RNA, then
NDNA = NRNA).

The energy of supercoiling within wrapped DNA region is

Gsc = NDNAAσ 2, (B4)
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where A is a coefficient of elasticity. The supercoiling creates
“countertorque,”

Mσ (σ ) = ∂Gsc

∂ϕ
= 2ANDNAσ

∂σ

∂ϕ
= A

γDNA

π
σ, (B5)

which equilibrates torque from the strain in the wrapped chain:

Mσ (σ ) = −M(u). (B6)

Thus

σ = − π

γDNAA
M(u), (B7)

and Eq. (B2) becomes

u =
2π

γDNA

[
NRNA − NDNA

π
γDNAA

M (u) − NRNA,0
]

NRNA
λRNA

. (B8)

By substituting the dependence M(u) [or u(M)] [obtained
for a given polymer model of RNA, e.g., Eqs. (18) or (23) for
an ideal Gaussian chain] into Eq. (B8) and resolving it relative
to u (or M) one can estimate both the torque and an average
winding angle for given lengths of the transcripts NRNA and
NRNA,0, and then from Eq. (B7) estimate superhelical density.

Long, nonstretched supercoiled DNA adopts a three-
dimensional structure mostly comprised of plectonemic su-
percoils ([55–58] and references therein); thus, it cannot be
modeled by a straight cylinder. However, we think that in
this case the behavior of wrapped RNA also could be roughly
described as “two dimensional:” At sufficiently loose winding,
the DNA plectonemes would tend to extrude from the wrapped
area, and most of the wrapping would occur around relatively
straight DNA linkers between plectonemic regions. In contrast,
for the tight winding, RNA would be close to the DNA surface,
thus relatively insensitive to the overall shape of DNA contour.
Thus, in both cases wrapping around a straight cylinder might
still be a reasonable approximation.

For the long, nonstretched DNA, parameter A in Eq. (B7)
is

A = 10kT (B9)

(reviewed in [55,56]), and the superhelical density [Eq. (50)]
becomes

σ = − π

10γ

M

kT
≈ −0.03

M

kT
≡ −0.03q. (B10)

Most biologically interesting values of σ are roughly in the
interval from −0.03 to −0.1, which corresponds to superhe-
lical densities in various circular DNAs isolated from various
organisms (reviewed in [59]) and are likely to reflect the actual
level of supercoiling which might occur in vivo. In this region
of σ , double-stranded Watson-Crick B form of DNA with
random sequence is stable at physiological conditions, but
supercoiling-induced melting and other supercoiling-induced
structural transitions such as cruciform, Z-, and H-DNA
formation could occur locally at some specific sequences
(reviewed in [56]). This interval of σ values corresponds
to q between 1 and 3 (i.e., about unity), which is in the
transitional area, where simple analytical approximations
for function x1(q), and, consequently for torque-winding
dependence [Eq. (13)] are not available. However, in this area

FIG. 4. Schematic representation for simultaneous movement
and growing of the nascent RNA. For explanation, see text.

torque-winding dependence could be obtained numerically,
e.g., using numerical evaluation of function x1(q) [30].

APPENDIX C: CHAIN ROTATION ACCOMPANIED
BY GROWING

To make derivation easier, we will schematically visualize
rotational movement of polymerase and the nascent RNA chain
as linear translocation (Fig. 4), and at the end, replace linear
translocational shifts by angular rotational shifts.

Consider a “snapshot” of RNA polymerase (symbolized by
the gray circle), to which a coil of the nascent RNA (shown in
black) is attached (Fig. 4, top). The chain is considered to be in
the “equilibrium” stretched state (diagrammatically shown by
a zigzag pattern formed by the chain segments), in which the
average projection of the chain segment upon the direction of
polymerase movement is �eq . Next, during an interval of time
�tP , polymerase synthesizes a new segment (shown in gray)
and simultaneously moves the distance �P (i.e., the velocity
of polymerase is υP = �P /�tP ). The newly synthesized
segment, which is initially overstretched in comparison with
the rest of the coil, is “equilibrated” into the coil, so its
projection upon direction of movement, which initially was
�P , becomes �eq , as for the rest of the segments.

If the time of the segment equilibration into the coil is
sufficiently smaller than the time of the segment synthesis
�tP , we can neglect the equilibration time and assume that
the whole coils shifts at the distance �P − �eq (shown by
the gray arrow) during the time �tP ; thus, the velocity of the
coil is

υcoil = �P − �eq

�tP
= υP

(
1 − �eq

�P

)
. (C1)

The assumption that the segment equilibration time could
be smaller than the time of the segment synthesis seems to
be reasonable, or at least not contradictory, for the chains
with the number of segments about or less than 104: If
we assume that the distortion propagation along the chain
occurs via a random-walk-like process, with an elementary
step corresponding to local “isomerization” in which two
neighboring segments “exchange” stretched and relaxed states
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with each other without affecting other segments (Fig. 4),
then this elementary step would involve rotational diffusion
movement of roughly one segment upon roughly one turn, for
which the characteristic time would be

τ0 ∼ ηl3

kT
, (C2)

and the total time of equilibration,

�teq = N2τ0, (C3)

and

�teq

�tP
= N2 τ0

�tP
≈ N2 ηl3

�tP kT
. (C4)

The fast equilibrating coil approximation is applicable when
this ratio is less than unity, i.e., when

N < Neq =
√

�tP kT

ηl3
. (C5)

Substituting numerical values �tP ≈ 3 × 10−2 s, η ≈
10−3 Pa s, l ≈ 10−9 m, kT ≈ 4 × 10−21 J, we obtain Neq

about 104 segments.
To modify Eq. (C1) for rotational movement, �eq should be

replaced by ū, which is the winding per RNA segment averaged
over the whole RNA chain, and �P should be replaced by the
angle upon which RNA polymerase has rotated around DNA
while synthesizing one RNA segment,

�P = 2πλ/γDNA, (C6)

where γDNA ≈ 10.5 is the number of DNA base pairs for one
helical turn in a Watson-Crick double helix, and λ ≈ 3 is the
number of nucleotides in the Kuhn segment for the single-
stranded RNA.

Substituting these expressions for �eq and �P in Eq. (C1),
and replacing linear translocation rate υ by rotational rate ω,
we obtain Eq. (56) of the main text.

In general, the chain-averaged winding per segment ū could
be obtained from torque profiles (see Sec. II C) using torque-
winding interdependence. However, here we will consider only
a simple special case of “viscous anchoring” (Fig. 5), in which

FIG. 5. Viscous RNA anchoring. RNA polymerase is shown as
a smaller gray oval, and a bulky object attached to the end of RNA
is shown as a larger gray oval. It rotates more slowly than RNA
polymerase, which is symbolized by a smaller block arrow.

the end of the nascent RNA is attached to some bulky object
[for example, large protein(s)], and the viscous resistance of
this object, μ, is much larger than the viscous resistance of the
RNA; thus the latter could be neglected. In this case the torque
would be the same for all regions of the chain and equivalent
to

M = μωcoil. (C7)

Here we took into account that in the steady state the RNA
coil and the bulky object attached to the end are rotating with
the same speed.

Consequently, the average winding per segment would
be the same for all regions of the coil, and in the case of
sufficiently tight winding [Eq. (23)],

ū ≈
(

l

R

)2
M

kT
=

(
l

R

)2
ωcoilμ

kT
. (C8)

Substituting this in Eq. (56), we can obtain the rotational rate
of the coil,

ωcoil = ω

1 + 1
2π

γDNA

λ

(
l
R

)2 ωμ

kT

, (C9)

and the torque,

M = μωcoil = ωμ

1 + 1
2π

γDNA

λ

(
l
R

)2 ωμ

kT

. (C10)
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