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In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report
“anomalous diffusion,” where mean-squared displacements scale as a power law of time with exponent o < 1
(subdiffusion). While the detailed mechanisms causing such behaviors are not always elucidated, movement
hindrance by obstacles is often invoked. However, our understanding of how hindered diffusion leads to
subdiffusion is based on diffusion amidst randomly located immobile obstacles. Here, we have used Monte
Carlo simulations to investigate transient subdiffusion due to mobile obstacles with various modes of mobility.
Our simulations confirm that the anomalous regimes rapidly disappear when the obstacles move by Brownian
motion. By contrast, mobile obstacles with more confined displacements, e.g., Orstein-Ulhenbeck motion, are
shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing
power laws with anomalous exponent « that varies with the density of Orstein-Ulhenbeck (OU) obstacles or
the relaxation time scale of the OU process. In particular, some of the values we observed are significantly
below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that
subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited
by experimental measurements in living cells and may explain that some experimental estimates are below the

universal value predicted for immobile obstacles.
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I. INTRODUCTION

The inner life of a cell involves complex reaction-diffusion
processes whereby biomolecules interact with each other.
Because biomolecules interact only when they meet, the
way by which they actually move, i.e., the diffusion part
of these processes, has a deep impact. More often than not,
it is hypothesized that the intracellular microenvironment is
very simple, so that biomolecule movement can be described
by classical Brownian motion, a hallmark of which is the
linear relation between the average of the squared distance
traveled by the molecule (mean-squared displacement) and
time: (R2(t)) o< t. By contrast, experimental and vesicular
measurements of molecular diffusion in living cells have
consistently reported nonlinear relations in almost all cell
compartments, either in procaryotes or eucaryote [1-14]
(see Hofling and Franosch [15] for a recent review). Most
often, these nonlinear variations are found to be power laws
((R*(1)) o t* witha # 1). Superdiffusive motion (2 > o > 1)
is relatively well understood, being usually due to active
transport mediated by molecular motors on cytoskeleton
elements [16], but subdiffusive transport (o« < 1) less so.

In bacterial cytoplasm, small macromolecules, ranging
from small proteins like GFP to intermediate-sized protein
aggregates, seem to display Brownian motion (o = 1) [17-19],
but the motion of larger biomolecules, such as RNA particles
or ribosomes, is subdiffusive [9,11,18]. In the cytoplasm
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of mammal cells, the motion is subdiffusive for a large
range of sizes, from large objects (beads, dextrans, granules)
[12,14,20-22] down to small proteins [3]. The reported values
of « vary over a wide interval (between 0.5 and 0.9), even for
molecules of similar size. In the plasma membrane of mammal
cells, the reported values also consistently exhibit subdiffusion,
with a similar variation range for the exponent [1,23], in
particular when receptor motion [2,13,24,25] is considered
(between 0.49 and 0.9). Subdiffusion has also been reported
in the nucleus for a large range of diffusive object size, from
small proteins (GFP and fusion thereof) [3] to large complexes
(Cajal bodies, telomeres) [7,10,22]. In this case as well, the
estimated values of « take values within a very large variation
range (between 0.32 and 0.9).

There exist three major theoretical scenarios to explain
subdiffusive transport, all of which rest on the idea that
the interior of cells and their membranes experience large
molecular crowding due to their high densities of proteins,
lipids, carbohydrates, filamentous networks, and organelles,
with widely distributed sizes [26]. In the presence of a
hierarchy of such slow processes slowing down diffusion, one
generically expects subdiffusion. Compared to experimental
data evidencing subdiffusion, it can be nontrivial to decide
which of these three scenarios matches the data [27], especially
because these three scenarios need not be mutually exclusive
and must sometimes be combined to account for the experi-
mental observations [13,14].

The arguably simplest scenario, referred to as “fractional
Brownian motion,” is a generalization of the classical Brow-
nian motion, where the random increments between two
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successive locations are not independent (like in Brownian
motion) but present long-range temporal correlations [28].
The second scenario, usually referred to as “continuous-time
random walks,” assumes that the complexity of the cellular
media changes the statistics of the residence time between two
moves of the random walkers. Whereas Dirac- or exponentially
distributed residence times lead to the classical Brownian
motion, power-law distributed residence times can generate
nonequilibrium processes with subdiffusive motion [29,30].

The third scenario is the only one to provide a clear
microscopic origin to the observed subdiffusion. It assumes
that intracellular movements are restricted (by, e.g., molecular
crowding) to a subset of the cellular space that has fractal
geometry. Random walks restricted to fractal supports are
indeed known to exhibit subdiffusion [29,31]. One acclaimed
model for this scenario is hindered diffusion in the presence
of randomly distributed immobile obstacles [15,32-36]. When
obstacle density is at the percolation threshold, the subspace
available to the diffusing molecule forms a percolation cluster
and the mean-square displacement scales sublinearly with time
as (R?(t)) o t* with (in continuum space) a = 0.659 in two
dimensions (2D) and 0.317 in 3D [29,34]. When obstacle
density is lower, subdiffusion is only transient: at long time
scales, diffusion leaves the subdiffusion regime and converges
to slowed-down Brownian motion. But the value of « during
the anomalous regime is not expected to change [29,34,37].

Although hinderance by immobile obstacles is a seductive
scenario to subdiffusion, this scenario predicts that the anoma-
lous exponent « has a universal, thus unique, value that varies
only when the dimensionality of the problem or the discrete
vs continuum properties of space (in 3D) changes [29,34].
The above reported large variation range of the experimental
measurements of « in cells is therefore hard to reconcile
with this scenario. In particular, some of the reported values
are significantly smaller than the theoretical values: in cell
membranes, estimates of ¢ ~ 0.5 have been reported [2,23],
a value significantly smaller than the universal value of 0.659
predicted by the immobile obstacle scenario.

The assumption that obstacles are immobile is very practi-
cal both because it makes simulation much easier and efficient
and because it permits direct application of percolation theory.
Albeit on general grounds, obstacles can be expected to be
less mobile than the tracked molecules because of their size,
assuming their total immobility is a strong hypothesis that
deserves further investigation. Some studies have been devoted
to the case where the obstacles undergo Brownian motion and
concluded that even when obstacle motion is much slower than
the tracked molecule, the transient subdiffusion regime should
rapidly vanish [32,38]. Brownian motion is however not the
only motion possible in cells, as evidenced by the experimental
results reported above, and other types of obstacle motion must
be considered.

In the present work, we investigate subdiffusion due to
mobile obstacles in two space dimensions. Using Monte Carlo
simulations, we show that the effect of obstacle movements
depends on the type of movement considered. While obstacles
endowed with Brownian motion efficiently suppress the
subdiffusive regime, it is preserved when obstacle movement
is more confined than Brownian motion. To emulate this
confinement, we use an Ornstein-Uhlenbeck (OU) process (a
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Brownian motion coupled to a slow drift to the long-term
mean position) to model obstacle motion. Our results show
that when obstacle motion is described by an OU process,
the subdiffusive regime is conserved, even for large obstacle
mobilities. Moreover, when the density of OU obstacles varies
above the percolation threshold for immobile obstacles, our
simulations show convincing evidence of subdiffusion regimes
with values of o« that depend on obstacle density and are
within the experimental range. Therefore, our results show
that accounting for obstacle motion by OU processes qualifies
hindered diffusion as a potential microscopic mechanism for
the experimental observations of subdiffusion in cells.

II. METHODS
A. Diffusion constants and molecule radii

The typical values of the protein and obstacle sizes and
mobility in our simulations were chosen so as to be repre-
sentative of the size encountered in a typical cell. Regarding
the size of the diffusing protein, we considered an “average”
E. coli protein, that typically has radius ry, = 2.0 nm and
molecular weight 40 kDa; see, e.g., Table S1 in [39]. Typical
lateral diffusion coefficients for such “average-sized” bacterial
proteins range from 10% m?/s in (unobstructed) water to
10°-10" zm?/s in the (obstructed) E. coli cytoplasm [17,40].
In two dimensions, however, typical orders of magnitude vary
from 10° um? /s in (unobstructed) artificial membranes down
to 107210~ wm?/s in (obstructed) cytoplasmic membranes
[41]. Since our simulations are two dimensional we focused
on the latter case. The diffusion constant in our simulations
corresponds to diffusion in the membrane without obstacle;
therefore, we set the protein diffusion constant to Drw =
1.0 um?/s. Regarding the obstacles, we considered large
multimolecular obstacles (comparable to ribosomes), with
radius rgps = 5 nm.

B. Continuum percolation model

We simulated the two-dimensional diffusion of proteins
in lattice-free conditions. Periodic boundary conditions were
used to reduce finite-size effects. Each run was initiated by
positioning at random (with uniform probability) 2D obstacles
(disks) in the 2D continuous space domain of overall size
L, xL,=50x5.0 pum?, until the surface fraction occupied
by the obstacles equals the preset excluded volume fraction 6.
A set of N, = 10 noninteracting proteins (random walkers)
was then positioned in the space domain at random locations
but respecting excluded volume with respect to obstacles: for
each protein, a new position X, is chosen at random (with
uniform distribution) inside the simulation domain, until the
tracer molecule does not overlap with any obstacle at x,,.

Excluded volume was thus imposed between proteins and
obstacles (i.e., one protein and one obstacle cannot share
the same spatial region) but not between two proteins nor
between two obstacles. This means in particular that the
obstacles can interpenetrate each other. This corresponds to a
continuum percolation model, also called the “Swiss cheese”
model [42]. In fact, most of the published (simulation and
theoretical) studies about continuum percolation use immobile
interpenetrating obstacles [34—-36,42].
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C. Immobile obstacles

At each time step, the simulation proceeds by moving
each protein independently of each other. We modeled pro-
tein diffusion as a random walk with time step At and a
displacement per time step Ar that do not depend on the
diffusion constant. Between ¢ and ¢ + At, each protein has
a probability Ppove to move to a randomly chosen position
located at distance Ar from its position at #. The displacement
probability is given by the diffusion coefficient of the protein,
DRrw: Prove = 4Drw At/ Ar?. The advantage of this algorithm
is that choosing a sufficiently small value for Ar (namely
Ar < 2ry, + 2rops) ensures the excluded volume condition
between proteins and obstacles for all values of Drw and At.
In our simulations, typical values ranged from Ppove = 0.35
to 0.95. Excluded volume is then modeled by adding the
restriction that displacement attempts are rejected when the
diffusing molecule, at the target site, overlaps with an obstacle.
We have used At = 0.25 pus and Ar = 1 nm throughout the
article.

The squared displacement R?(¢) of each protein was
monitored taking into account periodic boundary conditions.
Unless otherwise indicated, R>(f) was averaged over the 10
walkers across 200 initial obstacle configurations and random
realizations.

D. Brownian obstacles

To model the movements of the obstacles by Brownian mo-
tion, the position of each obstacle at time ¢ + At was updated
according to Xebs(f + Af) = Xebs(#) + N(o), where N(o) is a
two-dimensional random vector of which each component is
an i.i.d. random number with normal distribution of mean zero
and standard deviation o. This setting results in a diffusive
movement with diffusion coefficient Dyps = 02/(2At). When
attempting to move an obstacle, if the obstacle at the chosen
location is found to collide with a protein, the obstacle
movement is rejected. This ensures the preservation of the
excluded volume condition between obstacles and proteins.
Our aim here is to specifically evaluate the hindrance caused
by the obstacles on the protein movements, and not vice
versa. Therefore, we chose simulation conditions in which the
hindrance caused by the proteins on the obstacle movements
can be neglected. In practice, this is achieved by using only
10 diffusive proteins per simulation run. Protein motion was
simulated in the same way as for immobile obstacles above.

E. OU obstacles

The Ornstein-Uhlenbeck process can be considered a
Brownian motion with additional feedback relaxation to an
equilibrium position u:

x(t 4+ 8t) = x(t) + 5t“%€0) +/2Dgps8tN, (1)

where N is a Gaussian random number with zero mean and
unit variance, Doy, the diffusion constant, 7 the relaxation time,
and u the long-term average position [we used here . = x(0)].
To simulate OU movements, we used the exact numerical
simulation algorithm given in [43]. In our two-dimensional
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case it reads
Xobs(f + A1) = Xops(7) exp(—A7/7)
+ Xobs(0)[1 — exp(—At/7)]
+ v/ DobsT[1 — exp(=2At/T)IN(1). (2)

This formula is exact thence valid for all time steps Ar. Just
like with Brownian obstacles, excluded volume conditions
are applied between an OU obstacle and diffusing proteins,
but not between two obstacles nor two proteins. Here again,
protein motion was simulated in the same way as for immobile
obstacles above.

F. Size-distributed obstacles

To simulate the polydispersity of the obstacles’ size, we
draw the radius of each obstacle as an independent Gaussian
random number with mean rg,s and standard deviation SD.
Negative numbers were rejected. In order to keep the mean
radius ryps constant, we restricted SD to values for which the
rejections of negative-valued variates do not modify the mean
radius by more than 0.1%. In practice, that means SD < 1.6
for rops = 5.0 nm.

III. RESULTS

We simulated the diffusion of typical-sized proteins in two-
dimensional (membranelike) conditions, taking into account
the presence of obstacles that hinder protein diffusion. To
avoid numerical issues related to the size of the accessible
space domain or the time sampling, we monitored the mean-
square displacement of the proteins over large time scales
(at least six decades) with good temporal sampling (>700
data points per curve) and within large-sized spatial domain
(Lx = Ly = 5.0 um). With these settings, the maximal mean
distance traveled by a protein in our simulations was 15% of the
length of the spatial domain in 2D, thus excluding finite-size
effects.

A. Hindered diffusion by immobile obstacles

We start with simulations of hindered diffusion with
immobile obstacles. Figure 1 shows the evolution with time of
the rescaled mean-square displacement (R>(¢))/t (Fig. 1) of
the diffusing proteins amidst immobile obstacles (see insets)
on a log-log plot. Each curve in the figure corresponds
to a different obstacle density. The topmost curve is for
unobstructed diffusion, while obstacle density increases from
top to bottom, until the lowest curve where 48.4% of space is
occupied by obstacles (thus the excluded fraction 6 = 0.484).

Clearly, without obstruction, (R%(1)) /t is constant which
unveils a single diffusion regime, with Brownian motion (& =
1). When the excluded fraction is very high (e.g., 8 = 0.484,
well above the percolation threshold located around 6 = 0.44;
see below), the (R%(¢)) /t ratio shows a supralinear decay even
at long times, corresponding to saturation of (R?(¢)) with time.
For such suprathreshold obstacle densities, space is partitioned
into disconnected clusters of available sites which permanently
trap the proteins, thus the saturation of (R?(¢)) at long times.

For intermediate obstacle fractions (6 < 0.4), three regimes
can be distinguished, including two Brownian regimes: one at
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FIG. 1. (Color online) Computer simulations of subdiffusion due
to immobile obstacles in two dimensions. The time course of the
ratio between the mean-squared displacement and time, (R%(¢))/t,
is shown for increasing obstacle densities. Each color codes for a
different obstacle density, expressed here as the excluded volume
fraction 6, i.e., the fraction of the accessible surface occupied by
obstacles. Here, 6 = 0, 0.197, 0.355, 0.395, 0.441, and 0.484 (from
top to bottom). The black dashed line locates the power law y oc £ =%,
yielding percolation threshold 6, = 0.441 and anomalous diffusion
exponent o = 0.66. The insets show representative trajectories
(red) of protein amidst obstacles (green disks) at the indicated
densities. The black disks locate the initial and final position of
the proteins. Parameters: protein radius r,, = 2.0 nm, obstacle radius
Tops = 5.0 nm, protein diffusion constant Dgw = 1.0 um?/s, time
step At = 0.25 pus, space step Ar = 1 nm, and total domain size
L, = L, =5.0 um. All data are averages of the motion of 10 proteins
per obstacle configurations and 500 obstacle configurations.

short times (t < 10~3 ms) that corresponds to the time for a
protein to meet its first obstacle and another one at long times
(t Z 0.5 ms). Note that, within the time scale of Fig. 1, the
late Brownian regime is clearly reached only for the smallest
obstacle densities. For larger obstacle densities, the curves
display commencement of convergence to it.

According to percolation theory (that is valid for immobile
obstacles) the crossover time 7’y between the subdiffusive
regime and the final diffusive one scales as [32]: 18z o |0 —
6.]7%, where z ~ 3.8 in two dimensions, 0 is the fraction of
space occupied by the obstacles, and 6, is its (critical) value
at the percolation threshold. This scaling, that is valid only
when 6 is not too far from 6., thus predicts that #%; increases
very rapidly when obstacle density approaches the percolation
threshold but that it is only exactly at the percolation threshold
(6 = 6,) that the system remains in the subdiffusive regime
forever. This imposes a strong restriction in terms of numerical
simulations: the closer to the percolation threshold, the larger
the total simulation time needed in order to determine #{y
in a precise way. In our case, we fixed the total simulation
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length at the largest value for which computation time remains
attainable (i.e., 0.10-0.15 s; see Fig. 1).

The red curve, obtained with & = 0.441, shows no evidence
of the upward curvature typical of the crossover back to the
diffusive regime (obvious with, e.g., 8 = 0.395), nor of the
downward curvature typical of suprathresold obstacle densities
(seen with 6 = 0.484). We therefore consider 8 = 0.441 as
our estimate for the percolation threshold 6,. Note that albeit
this is a standard way to determine the percolation threshold
(see, e.g., [42]), this process can only yield an estimate of the
threshold. One generically expects that the curve for 6 = 0.441
in Fig. 1 (the red curve) will eventually crossover back to the
diffusive regime at times larger than the simulation length.

This estimate can be compared to theoretical predictions
from continuum percolation. Expressions for the threshold
in the corresponding continuum percolation problem can be
found in [36] (for d = 2) and [35] or (d = 3) for pointlike
random walkers. In a first approximation, one can introduce the
protein radius in these expressions by replacing the problem
of a protein of size ry, within obstacles of size rq by that of a
pointlike protein diffusing amidst obstacles of size rgps + Fy-
This yields the following theoretical expressions for the critical
threshold in d = 2 dimensions:

2
6. =1—exp|—nn} _fobs , 3)
Tobs + T'w

withn} & 0.359 [36], the critical obstacle density for pointlike
random walkers. For the conditions of Fig. 1, Eq. (3) yields
0. = 0.438 in very good agreement with our estimation from
the simulations (0.44). The anomalous exponent « can be
estimated from the long-time decay of (R>(t))/t at @ = 6, =
0.441 (red curve). Figure 1 exhibits a clear power-law decay
with exponent —0.34, yielding the estimate o = 0.66. This
value is in very good agreement with theoretical estimates
from percolation theory, &« = 0.659 in 2D [29,34].

B. Diffusion hindered by Brownian obstacles

Figure 2 shows simulations similar to those of Fig. 1 with
obstacle density at the percolation threshold (6 = 0.414) but
where obstacles move by Brownian diffusion with diffusion
constant Dgps. The reference curve in this figure is the red one,
that corresponds to Dgys = 0, i.e., immobile obstacles. The
diffusion coefficient of the obstacles then progressively in-
creases up to Dops/ Drw = 1. The anomalous regime observed
atlong times with immobile obstacles (red curve) becomes first
transient when the obstacle starts to be mobile and vanishes as
soon as Dops/Drw > 0.005 (green curve). Hence, according
to these simulations, anomalous diffusion is not expected to
persist at long times scales (>1 ms) as soon as the obstacles
move with Brownian motion. Note that this point was already
suggested in [38], and partly in [44].

However, diffusive obstacle movements are not the only
possible movements for the obstacles. Because of their large
size compared to that of the cell, obstacles may be restricted in
their movements. Such restriction could as well be the result of
stabilizing spatial interactions with each other. In other words,
obstacle movement may be restricted to a confined subspace
of the cell and not allowed to wander the whole cell space.
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FIG. 2. (Color online) Protein diffusion in two dimensions in
the presence of mobile obstacle with Brownian motion. The time
courses of (R%(t))/t are shown for increasing values of the diffusion
constant of the obstacles Dy = 0, 2 x 1074, 5 x 1073, 0.125, and
1.0 um?/s (from bottom to top). The black dashed line locates the
critical regime y o< t=%3* for immobile obstacles. The insets show
representative trajectories of the obstacles (Brownian motion) at the
indicated diffusion constants. The black bars indicate the spatial
scale of the trajectories and the green disks locate the starting and
ending positions (the radii of the green disks are not to scale). The
obstacle density was set at the percolation threshold for immobile
obstacles, i.e., 6 = 0.441. Data are averaged over 10 proteins per
obstacle configurations and 200 obstacle configurations. All other
parameters are as in Fig. 1, including the protein diffusion constant
Drw = 1.0 ,umz/s.

This type of movement, described by an Ornstein-Uhlenbeck
(OU) process, is studied in the following.

C. Diffusion hindered by Ornstein-Uhlenbeck obstacles

Ornstein-Uhlenbeck (OU) processes are basically a combi-
nation of a Brownian diffusion term with a feedback relaxation
term that effectively restricts the space region explored by
the obstacle [Eq. (1)]. This process has two main parame-
ters: the diffusion constant D,,s and the time scale T with
which the obstacle comes back close to its initial position.
Figure 3 shows simulations of protein diffusion amidst OU
obstacles of increasing diffusion constant. The color code used
for the curves is identical to that used in Fig. 2 and corresponds
to the same values of Dgs. All other parameters are also
identical to those used in Fig. 2. The only supplementary
parameter, T, was set to 1 us. Comparing the representative
trajectories shown in the insets of Fig. 3 with those of Fig. 2
(for the same obstacle diffusion constants) illustrates the
fundamental difference between Brownian and OU motion.
In the latter case, the obstacles are confined to a spatial region
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FIG. 3. (Color online) Protein diffusion in two dimensions in the
presence of mobile obstacles with Ornstein-Uhlenbeck motion. The
time courses of (R?(t))/t are shown for the same values (same color
code) of the obstacle diffusion constant as in Fig. 2: Dg,s = 0, 2 X
1074, 5 x 1073, 0.125, and 1.0 um?/s (from bottom to top), except
that the obstacle motion here is simulated by an Ornstein-Uhlenbeck
process with relaxation constant T = 1 us. All other parameters are
as in Fig. 2, including the obstacle density 0 = 0.441.

around their average position, whereas the obstacles in the
Brownian case readily escape away from their initial location
(this is especially true in dimension d > 2). Comparing the
curves for the two types of obstacle motion reveals that
subdiffusion is much more robust with OU motion. With OU
obstacles, the duration of the subdiffusive regime massively
increases even for large diffusivities. For instance, when
Dobs/ Drw = 0.125 the anomalous regime extends over the
main part of the simulation with OU motion (Fig. 3), whereas
when the obstacles move with Brownian motion with identical
value of Dgps/Drw, the duration of the anomalous regime is
several orders of magnitude smaller (Fig. 2).

Another interesting property of subdiffusion in the presence
of OU obstacles is that the percolation threshold effectively
disappears. In the classical case of immobile obstacles, the
motion of proteins amidst obstacles at suprathreshold densities
is limited in space since the accessible space is composed
of disconnected islands of finite size. As a result, the mean-
square displacement (R>(t)) saturates at long times with
suprathreshold obstacle densities (see, e.g., Fig. 1, purple
trace). In two dimensions, with immobile obstacles of radius
Fobs = 5.0 nm, the percolation threshold was determined above
as 6. = 0.441. Figure 4 shows plots similar to those in
Fig. 3 except that the density of OU obstacles is varied
above the percolation threshold of immobile obstacles 6 > 6,
(with Dgps/Drw = 1.0). The topmost curve (the gray one)
corresponds to the percolation threshold. Obstacle density
is then progressively increased in the other curves of the
figure, to values that would yield excluded fractions ranging
from 6 = 0.501 to 8 = 0.606, if the obstacles were immobile.
At first inspection, Fig. 4 shows that, with OU obstacles
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FIG. 4. (Color online) Protein diffusion amidst Ornstein-
Uhlenbeck mobile obstacles at suprathreshold densities. The density
of Ornstein-Uhlenbeck obstacles increases from top to bottom as
0 = 0.441, 0.501, 0.548, and 0.606 (density is expressed as the
excluded volume fraction of an equivalent number of immobile
obstacles). The slopes of the (R%(¢))/t curves at long times range
from 0.23 (intermediate regime for 6 = 0.501) to 0.43 (long times
for 6 = 0.606), yielding estimates for the apparent anomalous
exponents « € [0.57-0.77]. Insets are illustrative snapshots of
obstacle locations at a time point of the simulation, intended to
illustrate the difference in excluded fractions. Parameters of the
obstacle OU motion: diffusion constant Dy, = 1.0 um?/s and
relaxation constant 7 = 1 us. All other parameters are as in Fig. 2,
including the protein diffusion constant Dry /Dobs = 1.0.

that move as fast as the Brownian proteins, the anomalous
diffusion regime is preserved for all curves, i.e., even when the
obstacle density is much larger than the percolation threshold.
Moreover, the (R2(t))/t plots for suprathreshold conditions do
not display the supralinear decay typical of protein diffusion
amidst suprathreshold immobile obstacles observed in Fig. 1.

Above the threshold, examination of the plots indicates
convincing power-law decays even at long-time scales, with
exponents that vary from 0.57 to 0.77. Therefore, for large mo-
bile obstacle densities, our simulations suggest the existence
of power-law regimes with exponents that are significantly
smaller than the universal value of percolation theory (0.659).
This range is in fact compatible with most experimentally
determined values of « in vivo [15]. Therefore, protein
diffusion hindered by OU obstacles above the threshold could
be one explanation for the reported variations in the values
of a.

Whether or not the power-law regimes observed for
suprathreshold obstacle densities are permanent or would
exhibit a crossover back to the diffusive regime at a time
larger than the total simulation length in the figure cannot be
decided on the basis of our results. Indeed, with a power-law
function of time, improvement in precision is expected only
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for simulation lengths that would be at least tenfold larger
than on Fig. 4. The computation cost of such simulations is
however prohibitive (especially at such large density of mobile
obstacles). However, we do not think that our results can
be explained by a potential crossover back to diffusion. The
crossover back to the diffusive regime can lead to an effective
(or apparent) power law, with an exponent that would be
between the universal value of the anomalous exponent (0.659)
and 1. In the cases of Fig. 4, however, the exponents obtained
for the largest obstacle densities are significantly smaller than
0.659 (down to 0.57), which cannot be accounted for by the
potential transient nature of the phenomenon. We therefore
suspect they reflect a more fundamental property of obstructed
random walks with mobile obstacles moving according to an
OU process.

Investigating further the effects of OU obstacles, we
uncovered another possible explanation for the experimental
reports of variable o values. Formally, the relaxation time scale
T allows one to go continuously from a OU motion (r — 0)
to a Brownian motion (t — o0). In Fig. 5, the relaxation time
scale T was varied from 1 us to 1 ms. For short relaxations,
the results of the previous section are regained, showing a

<R*(t)>/t (cm?/s)

— N

0.4 nm A

0'1 1 1 |_4 1 |_2 1
10 10 10

time t (s)

FIG. 5. (Color online) Continuum of obstacle movements from
Ornstein-Uhlenbeck to Brownian motion. The time courses (R*(¢))/t
are shown for different values of the relaxation time of OU mobile
obstacles, T = 1, 10, 100, and 1000 s (from bottom to top). The
topmost (pale blue) curve is for Brownian motion in the same
conditions (formally corresponding to T = 00). The straight lines
illustrate the corresponding values of the anomalous exponent & when
T varies, from « = 0.71 (dashed line) to 0.88 (dashed-dotted line).
The insets show representative trajectories at the indicated values
of t. The black bars indicate the spatial scale of the trajectories
and the green disks locate the starting and ending positions (the
radii of the green disks are not to scale). Obstacle diffusion constant
Dqps = 0.125 um?/s. All other parameters are as in Fig. 3.
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subdiffusion regime with @ = 0.71. Increasing t above 1.0 ms
ultimately produces the same results as protein diffusion in
Brownian diffusion, i.e., an almost complete disappearance
of the anomalous region. Nevertheless, between those two
extremes, protein diffusion appears to preserve the anomalous
regime even for long times, but with exponent « that varies
with 7 (ranging from 0.71 to 0.88 in the figure). Albeit these
power-law regimes may not be genuine power laws but reflect
the crossover regime back to diffusive motion, they could
account for the variations of & measured in vivo.

D. Effects of obstacle polydispersity

Another frequent simplification made in computer sim-
ulations of diffusion hindered by obstacles resides in the
variability of the obstacle size. In most studies, the obstacle
size is monodisperse, i.e., all obstacles in a given simulation
condition have the same radius. We next investigated whether
random obstacle sizes could have an effect on the diffusion of
the proteins. To this end, we ran the same simulations as in
Fig. 3, for instance, except that the radius of each obstacle is no
more set to a constant value 7o, but is drawn from a Gaussian
distribution with mean ry,s and standard deviation SD. Note
that when the variance of the obstacle radius increases, the
excluded fraction for identical numbers of immobile obstacles
increases too (Fig. 6). Therefore, we had to adjust the number
of obstacles to keep the excluded fraction constant with
increasing size variance. Figure 7 shows the results obtained
when the variance of the obstacle radius increases for OU
obstacles. It seems clear from these simulations that the
polydispersity of the obstacle sizes does not have a strong
influence on the diffusion regime of the proteins, except for

0.46

excluded fraction
o
N
S

0.42

0.0 0.4 0.8 1.2
SD of r_, .(nm)

FIG. 6. (Color online) Excluded fraction depends on the variance
of the obstacle size. Each curve shows the evolution of the excluded
fraction (for immobile obstacles) with the standard deviation SD
of the obstacle radius. Obstacle size was drawn from a normal
distribution with mean 5.0 nm and variance (SD)?. The number of ran-
domly located obstacles was (from bottom to top)172 x 103, 177 x
103, 182 x 10%, 183.5 x 10°, and 185 x 10°. The dashed line lo-
cates the excluded fraction at the percolation threshold (0.441).
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<R3 (t)>/t (cm?/s)

0.1 1 1 1 7 1 1 1
10 10 10
time t (s)

FIG. 7. (Color online) Protein diffusion amidst polydisperse
Ornstein-Uhlenbeck mobile obstacles. The size of the mobile obsta-
cles was a random variable drawn according to normal distribution
with mean 5.0 nm and standard deviation (SD) = 0, 0.45, 0.80, 1.04,
and 1.41 nm (from bottom to top). Parameters of the OU motion
for the obstacles Dy, = 5 x 1073 um?/s and v = 1 pus. For each
value of the standard deviation, the total number of obstacles was
adjusted so that the excluded fraction was kept to the critical threshold
of immobile obstacles 8 = 0.441 (see text and Fig. 6). All other
parameters are as in Fig. 3.

the largest variances tested where the anomalous regime tends
to deviate a bit from a clear power law (at long-time scales).
We thus conclude that the broadness of the obstacle size
distribution is not likely to have a strong influence of the value
on the anomalous exponent « in cells.

IV. DISCUSSION

Our simulations confirm the conclusion of previous studies
that the long-time anomalous regime typical of immobile
obstacles disappears very rapidly as soon as the obstacles are
mobile. However, our finding that diffusion amidst Ornstein-
Uhlenbeck (OU) mobile obstacles gives rise to extended
anomalous regimes has interesting implications. For instance,
light-harvesting complexes of photosynthetic membranes are
large-size obstacles that occupy between 70% and 90% of
the membrane area [38]. Recent experimental observations
revealed that their mobility in the membrane indeed consists
of fluctuations around an equilibrium position, with fluctuation
amplitudes that depend on the considered region in the
membrane [45]. This seems a good example of an OU
movement.

Our results are also relevant to diffusion in lipid
membranes and in particular in binary lipid membranes
close to the fluid-gel critical point [46]. In these systems, the
gel phase is made of dynamically rearranging, fluctuating,
and interpenetrating domains dispersed in the fluid phase.
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Ehrig et al. [46] showed that the diffusion of marker lipids
that are restricted to the fluid phase of these systems is
transiently anomalous with anomalous diffusion profiles
that are qualitatively similar to ours [compare, e.g., their
Figs. 4(a) and 4(b) with our Fig. 1]. Precise quantitative
comparisons are impossible because our simulations concern
protein diffusion while [46] considered the diffusion of lipids,
that is several orders of magnitude faster. Moreover, in the
simulations shown in [46] (with no additional elements such
as interactions with the cytoskeleton), the amplitude of the
anomalous regime is limited. We thus lack the necessary
ingredients to judge the agreement with our paper in strongly
anomalous cases. Nevertheless, qualitatively, the agreement
between the behaviors we obtained using OU obstacles with
large mobility or small density and their results is good. Hence
our model can be considered a coarse-grained approach where
the gel domains are directly modeled as disk-shaped obstacles
and the lipid molecules of the membrane are not explicitly
represented. This coarse-grained model greatly facilitates
exploration of the parameter space in particular concerning
the size of the gel domains or obstacles and/or their mobility.

One major conclusion from our work is that proteins dif-
fusing amidst hindering obstacles may undergo subdiffusion
with properties that are very similar to those measured in
vivo, whenever the mobile obstacle motion is an OU process.
Of particular importance, we observed that the subdiffusive
motion of the tracked protein displays convincing power laws
with anomalous exponent « that varies with the density of
OU obstacles (above the percolation threshold of immobile
obstacles) or the relaxation time scale of the OU process.
In particular, we observed values (e.g., o = 0.57, Fig. 4)
that are significantly below the universal value of @ = 0.659
predicted in 2D in the case of immobile obstacles. Therefore,
subdiffusion due to mobile obstacles with OU-type of motion
may account for the large variation range exhibited by
experimental measurements of « in living cells (see Sec. I)
and the fact that some of these experimental estimates in 2D
[2,23] are below the universal value predicted for immobile
obstacles in 2D by percolation theory.

In our simulations, the time of crossover from the anoma-
lous regime back to the diffusive one increases rapidly when
obstacle concentration increases. Of course, crossover times
larger than the total simulation length, that is of the order
of 0.1 s, could not be observed. Globally, the first crossover
from the initial Brownian regime to the subdiffusive one in
our work takes place at around 0.01 to 0.10 ms and the
subdiffusive regime has a duration that varies from some
ms to more than 100 ms. In experimental reports, the time
scales of the observed anomalous regimes are spread over
several orders of magnitude. In bacteria, for instance, the
diffusion of large objects (ribosomes or entire chromosome
loci) displays anomalous diffusion regimes that usually last for
very long-time scales, up to 10 or even 100 s [9,11], although
hindered diffusion due to obstacles might not be the cause of
anomalous subdiffusion in these cases (see, e.g., [11]). On the
other hand, in eukaryotic cells, the anomalous regime is often
observed with time scales of 0.1 to 100 ms [1,3,12,20-23],
which is the same time scale as in our simulations. Therefore,
we think our work may constitute a potential explanation, at
least for these experimental situations. In many cases though,

PHYSICAL REVIEW E 89, 022708 (2014)

the time scale of the measured anomalous regime is much
larger, e.g., from 1 to 100 s [2,10,14,24,25], even up to several
hundred minutes [7]. However the microscopic origin of these
very long-time scale anomalous regimes is often complex,
possibly combining different sources of anomalous transport
(see, e.g., [13,14]). These situations cannot be accounted for
with our simulations that only account for anomalous diffusion
due to hindering by obstacles.

In the experimental recordings where the transition from the
subdiffusive regime back to the diffusive one was observed,
the corresponding crossover times ranged between 0.1 s [23]
and 100 s [10] or even 100 min [7]. Even after factoring out the
fact that distinct cell types or intracellular environments can
experience distinct obstacle densities [47], our work can hardly
account for the totality of this substantial interval of time scales
(more than four orders of magnitude). However, our results are
clearly compatible with the shorter-time scales reported.

The OU process used here is mostly used to preclude the
escape of the mobile obstacles too far from their initial (equi-
librium) positions. Other processes with this property could be
considered. In space dimension d > 2, the Brownian motion
is a noncompact exploration process, i.e., the random walker
visits only a small part of the available space (or volume). As
a result the probability that a random walker escapes its initial
position (never coming back to its initial location, at any time)
is finite but nonzero [48]. By contrast, in d < 2 (e.g., in one
space dimension), a random walker experiencing Brownian
motion comes back to its initial position almost surely, i.e.,
its escape probability vanishes. One-dimensional Brownian
motion is a compact exploration process. Brownian obstacles
in our two-dimensional simulations thus tend to wander away
from their initial positions. This is clearly associated with a
rapid disappearance of the anomalous diffusion regime of the
proteins that move amidst them. To change the tendencies
of the Brownian obstacles to escape their position, we
have introduced here obstacles that move via an Ornstein-
Uhlenbeck process. The OU process is however not the only
way by which one may reduce the probability that moving
obstacles escape their initial position. Another possibility
could be that the obstacles themselves undergo subdiffusion.
Indeed, subdiffusion is a compact exploration process of the
space around the walker [49]. Therefore, obstacles moving
by a subdiffusion process may hinder the diffusion of smaller
proteins in a similar way as observed here for OU obstacles.
This enticing possibility would correspond to simulating
the subdiffusion of proteins due to hindering by obstacles
themselves undergoing subdiffusion on another time scale.
Albeit challenging in methodological terms, this approach
may allow one to decipher several of the remaining issues
uncovered by the experimental measurements of biomolecule
diffusion in vivo.
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