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Reliable binary cell-fate decisions based on oscillations
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Biological systems have often to perform binary decisions under highly dynamic and noisy environments,
such as during cell-fate determination. These decisions can be implemented by two main bifurcation mechanisms
based on the transitions from either monostability or oscillation to bistability. We compare these two mechanisms
by using stochastic models with time-varying fields and by establishing asymptotic formulas for the choice
probabilities. Different scaling laws for decision sensitivity with respect to noise strength and signal timescale are
obtained, supporting a role for oscillatory dynamics in performing noise-robust and temporally tunable binary
decision-making. This result provides a rationale for recent experimental evidences showing that oscillatory
expression of proteins often precedes binary cell-fate decisions.
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I. INTRODUCTION

Living organisms must constantly make important deci-
sions in fluctuating environments. The characterization of
the nonlinear behavior of interacting proteins and cells is
key to understand how these organisms achieve appropriate
decisions, such as during cellular differentiation. The differ-
entiation process that generates a diversity of cell types in
multicellular organisms occurs sequentially at various devel-
opmental stages, in which multipotent cells select between a
finite number, typically two, lineage-specific cell types [1].
The outcomes of these successive two-choice decisions rely
on the activity of specific intracellular regulatory networks
under the influence of highly dynamic extracellular signals
and various sources of stochasticity [2]. On the one hand,
the role of noise is very ambivalent as it may contribute to
beneficial phenotypic heterogeneity but may also lead to errors
in signal-driven decisions [3]. On the other hand, the temporal
properties of the signal are likely to subtly influence decision
outcomes [4,5]. A fundamental issue is thus to understand how
binary decisions are orchestrated by the interplay of signal
and noise, in a manner that presumably depends on the local
dynamics near a bifurcation point where the number of stable
states changes [6].

From a dynamical-system viewpoint, binary cell-fate deci-
sion can be implemented by two main dynamical mechanisms
[7]. The most prevalent mechanism relies on pitchfork bifur-
cation in which the trigger signal destabilizes the uncommitted
steady state and switches toward two possible differentiation
steady states [8–10]. This scenario is prone to arise in genetic
circuits based on mutual activation or inhibition between
self-activating regulators. However, an alternative mechanism,
based on oscillatory dynamics, has also been proposed
[11–13]. In this scenario, binary choice coincides with the
transition from oscillations to bistability, which is likely
to occur in biochemical networks combining positive and
negative feedback loops [14]. These transition and feedback
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properties are found in many signaling and regulatory molec-
ular pathways that drive binary cell-fate decisions [15–17].

II. BINARY DECISION MODEL

In contrast with previous cell differentiation models relying
on numerical simulations and bifurcation analysis of protein
and cellular networks [8–13], we use here an analytical ap-
proach in order to compare the two decision-making scenarios
above, with respect to the controversial effects of noise and
signal timing. To this aim, the dynamics of one decision unit
(e.g., the cell) is simply described by the following Langevin
equation:

dx

dt
= F (x,α,s(t,τ )) + σζ (t), (1)

where the decision trigger signal s can be modeled to first
approximation by a saturating exponential with time scale τ :

s(t,τ ) =
{

0, t � 0

1 − e−t/τ , t � 0.
(2)

First, we consider one-dimensional dynamical systems whose
scalar field derives from a potential as F (x,α,s(t)) =
− ∂U (x,α,s(t))

∂x
. To implement a binary decision, the force field

F (x,0,s) is assumed to exhibit two stable fixed points xA and
xB (i.e., cell-fate attractorsA andB) for s above some threshold
(sc = 0.5), whereas the parameter α biases the stability of one
attractor relative to the other. The effect of noise is taken into
account by a stochastic term where ζ (t) is zero-mean Gaussian
white noise with unit variance and σ is the noise strength. In
this model, the interplay among signal increase (with the rise
time τ ), noise (of intensity σ ), and the bias parameter (α)
determines the respective probabilities PA and PB to select,
after some time, attractors A or B [Fig. 1(a)]. For simplicity,
but not necessity, we consider that the force field is endowed
with symmetries that ensure equiprobable attractor selection
PA = PB for α = 0 and that PA(α) = PB(−α) otherwise. By
convention, we defineA (respective toB) asPA > 0 for α > 0.
In this model, essential features of decision making can be
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FIG. 1. (Color online) (a) Binary cell-fate decision driven by
the interplay of signal and noise. (b) Binary choice sensitivity
measure η.

captured by the following decision sensitivity quantity:

η = dPA
dα

∣∣∣∣
α=0

, (3)

which measures the infinitesimal choice probability changes
induced by the selection bias parameter α [Fig. 1(b)]. The sig-
nificance of η values is assessed in the context of probabilistic
theory of biological (including cognitive) decision making
under uncertainty [18,19], which presupposes a statistical
rather than deterministic relationship between the selection
bias parameter (i.e., α) and the appropriateness or fitness of
the decision. According to this theory, optimal decision in an
uncertain environment is associated with a smooth function
PA/B(α) of some intermediate η value. Because the noise
strength σ is likely to represent the combined effect of multiple
sources of intratrial and intertrial variabilities and τ is one
important timescale of the decision process, the manner how
η depends on these two parameters provides valuable insights
into trial-to-trial reliability and temporal control of binary deci-
sion making. We restrict our study to σ not too large, thereby
disregarding the case where attractor selection is influenced
by noise-induced transition between A and B when decision
trigger signal is switched on. Such an assumption is motivated
by the biological context of multicellular development where
spontaneous transdifferentiation events are unlikely.

Given these general binary-decision model and quantities,
the goal is now to compare the decision properties associated
with two time-varying force fields F (x,α,s(t)) [and potentials
U (x,α,s(t))] that implements in a minimal manner the two
bifurcation scenarios based on the transitions from either
monostability or oscillation to bistability.

III. PITCHFORK MECHANISM

A. Transition from monostability to bistability

The prevalent model for binary decisions involves a pitch-
fork bifurcation scenario, such as for cell differentiation where
the interplay between multiple positive feedback loops in
protein regulatory networks typically implement a subcritical
pitchfork bifurcation mechanism [8–10]. The simplest scalar
field associated with this bifurcation scenario is given by

FP (x,α,s) = α + β1(s − 0.5)x + β2x
3 − x5, (4)

FIG. 2. (Color online) Binary decision making based on pitch-
fork bifurcation [Eq. (4) with β1 = 6 and β2 = 3]. (a) Phase diagram
where s is considered as a parameter and O, A, and B are steady
states. Multistable domains I, II, and III correspond to O/A, O/B,
and O/A/B, respectively. (b) Potential landscape and bifurcation
diagram [black (white) lines: stable (unstable) steady-state branches]
for α = 0 with two examples of noisy trajectories. (c), (d) η as a
function of τ and σ in numerical simulations (circles, squares, and
crosses) as compared with the theoretical predictions of Eqs. (10)
(solid lines) and (11) (dashed lines).

where β1 > 0. In the symmetric case (α = 0), a pitchfork
bifurcation occurs for s ≡ sc = 0.5 at time t ≡ tc = τ ln 2. A
positive value for β2 ensures that the bifurcation is subcritical.
The symmetry-breaking term α results instead in an imperfect
pitchfork bifurcation. As a function of α and s (considered first
as a parameter), the phase diagram displays three stable steady
states O, A, and B with specific domains of multistability
(O/A,O/B,O/A/B, andA/B) [Fig. 2(a)]. In the small σ and
α limit, temporal increase in the signal s(t) triggers a transition
from the uncommitted steady state O to the committed steady
states A or B in the vicinity of the pitchfork bifurcation
singularity [Fig. 2(b)]. To obtain the respective probabilities
of selecting A or B in these limits, we use an approach similar
to Refs. [20,21] consisting of studying the Fokker–Planck
equation associated with Eq. (1) where FP is linearized for
small x as FP (x,α,s) ≈ α + β1(s − 0.5)x. The solution for the
probability density function obtained by using the methods of
characteristics is a Gaussian whose center μ(t,α) and variance
V (t) evolve in time:

P (x,t,α) = [2πV (t)]−1/2e
−[x−μ(t,α)]2

2V (t) , (5)

where

μ(t,α) = αew(t)

(
2

β1
+

∫ t

0
e−w(u)du

)
, (6)

V (t) = σ 2e2w(t)

(
1

β1
+

∫ t

0
e−2w(u)du

)
, (7)

022707-2



RELIABLE BINARY CELL-FATE DECISIONS BASED ON . . . PHYSICAL REVIEW E 89, 022707 (2014)

with w(t) = β1
∫ t

0 [s(u) − 0.5]du. After crossing the pitchfork
bifurcation point for s > sc, the presence of an unstable fixed
point near x = 0 splits the Gaussian distribution into two parts
that rapidly spread out to +∞ and −∞, respectively [or steady
states xA and xB when taking into account higher-order terms
of the original scalar field given by Eq. (4)]. The probability
PA of being in the attraction basin of A at time large enough
but smaller than the Kramers’ escape time from A can be
approximated as

PA(α) = lim
t→+∞

∫ +∞

0
P (x,t,α)dx. (8)

B. Asymptotic expressions for decision sensitivity

Computation of decision sensitivity η in various asymptotic
limits requires estimating the infinitesimal effect of α on the
respective probabilities to select A or B. By replacing Eq. (5)
in Eq. (8), the probability change due to a positive increment of
α reads δPA = limt→∞ erf (μ(t,α)

2V (t) )/2, which can be linearized

for small α as δPA ≈ limt→∞ μ(t,α)/
√

2πV (t). Replacing
μ(t,α) and V (t) given respectively by Eqs. (6) and (7) and
deriving with respect to α leads to

η =
(

2
β1

+ ∫ ∞
0 e−w(u)du

)
√

2πσ 2
(

1
β1

+ ∫ ∞
0 e−2w(u)du

) . (9)

Slow signal change. In the large-τ limit, attractor selection
is made during a finite time interval for which signal increases
almost linearly as s(t) ≈ t−tc

2τ
+ 0.5 for which w(t) ≈ β1

4τ

(t − tc)2 − β1t
2
c

4τ
. Substituting w(t) into Eq. (9), integrating

using rescaled time t̃ = t − tc, and keeping only the dominant
term for large τ finally gives

η
τ→∞ =

(
2

πβ1

)1/4

τ 1/4σ−1. (10)

The formula is valid in the asymptotic limits of τ large and
σ small, provided that τ remains smaller than the Kramers’
escape time τK ∝ eσ−2

. This requirement reads σ 2 ln τ � 1.
Fast signal change. In the small-τ limit, the decision

between A or B is made after the signal is quickly relaxed and
saturated to 1 [i.e., s(t) ≈ 1] for which w(t) ≈ β1

2 t . Inserting
w(t) into Eq. (9) and integrating yields

η
τ→0 = 2√

πβ1
σ−1. (11)

Note that η does not depend on the signal timescale τ anymore.

C. Numerical simulations and crossover regimes

In the section above, distinct scaling behaviors for η have
been obtained in the limits of small noise and slow or fast
signal changes. The range of validity of these expressions
is assessed through numerical integration of the dynamical
system (1) with the force field given by Eq. (4) (rather than
integration of Fokker–Planck equation that is inefficient for
very small noise). Numerical simulations agree with predicted
scaling behaviors for η given by Eqs. (10) and (11) for τ � τc

and 	τc, respectively, as long as σ is below some critical
noise σc [see the crossover for both Figs. 2(c) and 2(d)]. For

some range of noise above σc, small α-induced changes of the
Kramers’ transition rates between A and B lead to η ∝ σ−2

[Fig. 2(d)].
On the one hand, the critical signal timescale τc that sep-

arates the regimes of fast versus slow signal-driven decisions
is related with the characteristic time for trajectories to escape
the neighborhood of the unstable fixed saddle point before
to quickly transit to steady states. This decision time can be
expressed as a function of the local instability exponent of
the saddle, but also of the noise as ∝| ln (σ )| or ∝| ln (σ )|1/2

depending on whether the potential evolves quickly or slowly
[20], indicating that τc depends on σ in a subtle manner.

On the other hand, the critical level of noise σc corresponds
to the noise beyond which back-and-forth transitions between
neighborhoods of O, A and B become frequent enough to
modify the probability density distribution of Eq. (5) and
to prevent stable fate choices at large time. In the limits of
large and small τ , respectively, those transitions tend to occur
either close to or far from the pitchfork bifurcation for which
different Eyring–Kramers laws apply [22], which reveals
that σc slightly decreases with τ but remains nevertheless
bounded with, numerically, 1 < σc < 2. It is to note that,
although the parameter β2 (i.e., whether the bifurcation is
subcritical or supercritical) does not influence the asymptotic
regimes consistently with linear approximations, it modifies
the Kramers’ escape rate so as to slightly change σc.

IV. OSCILLATORY MECHANISM

A. Transition from oscillation to bistability

We now investigate an alternative binary decision scheme
based on the occurrence of limit-cycle bifurcations. Among
the possible bifurcation scenarios, we consider the case
where two stable fixed points appear through two saddle-node
bifurcations on invariant circle (two-SNIC) [14]. In contrast
with homoclinic bifurcations or saddle-node bifurcation of
limit cycles, the two-SNIC bifurcation can be treated by
using a one-dimensional model adapted from the theta model,
acknowledged as the normal form of a SNIC bifurcation [23].
This two-SNIC theta model has a 2π -periodic variable x and
is characterized by the scalar field

FS(x,α,s) = 1 − cos (2x) − α cos (x) − β3(s − 0.5)

× [1 + cos (2x) + α cos (x)], (12)

where β3 > 0. The phase diagram as a function of α and s
[Fig. 3(a)] shows the existence of one oscillatory state O
and two steady states A or B with a region of bistability
A/B, but no region of multistability involving O in contrast
with the subcritical pitchfork bifurcation scenario. For α = 0,
transition from the oscillatory regime to the bistable regime
occurs for s ≡ sc = 0.5 through two simultaneous saddle-node
bifurcations located at xsnA = 0 and xsnB = π , whereas the
sign of α determines which attractor appears first and which is
more stable. A temporal increase in signal s(t) thus triggers a
transition from the oscillatory state to one of the two committed
steady states depending on the system state when saddle-node
bifurcations occur [Fig. 3(b)]. Like for the pitchfork model,
attractor selection induced by slow or fast signal variations
in the low-α and -σ limits is analyzed by studying temporal
evolution of probability density and current, P (x,t,α) and
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FIG. 3. (Color online) Binary decision making based on limit-
cycle bifurcation [Eq. (12) with β3 = 2]. (a) Phase diagram where
s is considered as a parameter. O is an oscillatory state whereas
A and B are steady states. (b) Potential landscape and bifurcation
diagram [black (white) lines: stable (unstable) steady-state branches]
for α = 0 with two examples of noisy trajectories. (c), (d) η as a
function of τ and σ in numerical simulations (circles, squares, and
crosses) as compared with the theoretical predictions of Eqs. (17)
(solid lines) and (19) (dashed lines).

J (x,t,α), obeying the Fokker–Planck equation with periodic
boundary conditions. The probability of being in the attraction
basin of A (at time large enough but smaller than the Kramers’
escape time from A) is given by

PA(α) = lim
t→+∞

∫ xs2 (α)

xs1 (α)
P (x,t,α)dx, (13)

where xs1 (α) and xs2 (α) are the two saddle points (i.e., attractor
basin boundaries) for s = 1 satisfying FS(xs1,2 ,α,s = 1) = 0.

B. Asymptotic expressions for decision sensitivity

Although an approximated solution for the probability
distribution cannot be obtained, perturbative methods and
symmetry assumptions are nevertheless sufficient to derive
scaling laws for decision sensitivity η. Provided that the
probability density distribution is stationary for t � 0, the
probability density and current solutions of the corresponding
Fokker–Planck equation can be expanded for t � 0 and small
α as

P (x,t,α) = P0(x,t) + αP1(x,t), (14a)

J (x,t,α) = J0(x,t) + αJ1(x,t). (14b)

Because the force field in Eq. (12) can be decomposed into
two-fold rotational symmetric and skew-symmetric parts as
FS(x,α) = FS,0(x) + αFS,1(x) where FS,0(x) = FS,0(x + π )
and FS,1(x) = −FS,1(x + π ), zero- and first-order solutions of
probability density and current satisfy P0(x,t) = P0(x + π,t)
and P1(x,t) = −P1(x + π,t) (respectively, P → J ).

Slow signal change. In the large-τ limit, small α > 0
induces a differential slowing of trajectories near the respec-
tive saddle-node bifurcation occurrence, which progressively
skews the distribution P (x,t,α) with a larger peak just before
xsnA (as compared to before xsnB ), resulting in increasing PA.
Such an increase is captured by the time integration of the
shift �J between inward and outward probability currents
on a domain containing xA; for instance, [xsnB ; xsnA ]. Using
Eq. (14b) and the associated symmetry properties, we obtain
�J = 2αJ1(xsnB ,t) so that binary choice sensitivity reads

η
τ→∞ = 2

∫ +∞

0
J1(π,t)dt. (15)

To derive the scaling behavior of η, we thus study the local
dynamics near saddle-node bifurcation occurring at xsnB

and tsn = τ ln 2 where FS(x) ≈ 2(x − π )2 − β3

2τ
(t − tsn) + α.

Under the following scaling transformations, τ̃ = 2τ/β3,
t̃ = (τ̃ /2)−1/3(t − tsn), x̃ = (4τ̃ )1/3(x − π ), α̃ = (

√
2τ̃ )2/3α

and σ̃ = (2τ̃ )1/2σ , local dynamics close to saddle-node
bifurcation satisfies a τ -invariant Riccati nonlinear differential
equation

dx̃

dt̃
= x̃2 − t̃ + α̃ + σ̃ ζ (t̃). (16)

We now define probability densities p and p̃ and probability
currents j and j̃ which obey Fokker–Planck equations
associated with Eqs. (15) and (16) supplemented with periodic
boundary conditions at arbitrary ±xc: p(xc,t) = p(−xc,t)
and p̃(x̃c,t̃) = p̃(−x̃c,t̃). We also define the quantities

h(x,t) =
∫ tsn+tc

tsn−tc

dJ

dα
(x,t)dt,

h̃(x̃,t̃) =
∫ t̃c

−t̃c

dJ̃

dα̃
(x̃,t̃)dt̃ .

The normalization
∫

p(x,t)dx = ∫
p̃(x̃,t̃)dx̃ = 1 results

in the scaling relations p = (4τ̃ )1/3p̃, j = (τ̃ /2)−1/3j̃ , and
h = (

√
2τ̃ )2/3h̃. Zero-order expansion of the functions p̃,

j̃ , and h̃ in the limit of small σ̃ allows us to rewrite h =
(
√

2τ̃ )2/3[h0 + O(τσ 2)]. Because η in the original two-SNIC
dynamical system follows the same scaling behavior as h in
the Riccati dynamical system, we write to leading order

η
τ→∞ = C

(
τ

β3

)2/3

, (17)

where C ≈ C0 + O(τσ 2) (where numerical integration of the
Langevin equation gives C0 ≈ 0.492), which indicates that η

is insensitive to noise as long as τσ 2 is small enough.
Fast signal change. In the small-τ limit, the probability of

selecting attractor A (respectively, B) given by Eq. (13) de-
pends only on the initial probability distribution P (x,0,α) and
the attractor boundaries given by the saddle point coordinates
xs1,2 for s = 1:

PA(α) =
∫ xs2 (α)

xs1 (α)
P (x,0,α)dx. (18)

To compute η, we first expand Eq. (18) to first order in α using
Eq. (14a) and xsi

(α) = xsi
(0) + (−1)iαδxs (for i = 1,2) and
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we then derive with respect to α to obtain

η
τ→0 =

∑
j=1,2

P0(xsj
(0),0)δxsj

+
∫ xs2 (0)

xs1 (0)
P1(x,0)dx, (19)

where, after expanding FS(xs1,2 ,α,s = 1) = 0, δxs reads

δxsj
= 1

4| sin [xsj
(0)]| . (20)

In the particular case of β3 = 2, we have xs2 = π/4, P0(x,0) =
(2π )−1 and P1(x,0) = 0, whose substitutions into Eqs. (20)
and (19) yield η

τ→0 ≈ 2−3/2π−1. In the more general case of
β3 
= 2, σ might nevertheless influence η by shaping P (x,0).

C. Numerical simulations and crossover regimes

Like for the pitchfork model, numerical simulations agree
with predicted scaling behaviors for η in Eqs. (17) and (19)
for τ 	 τc or �τc respectively, as long as σ is below some
critical value [see the crossover for both Figs. 3(c) and 3(d)].
Kramers’ theory can again be used to estimate the critical
noise σc beyond which transitions between A and B above
the two saddle points for s = 1 becomes frequent enough to
influence choice probability and to explain the scaling behavior
η ∝ σ−2 observed above σc, which is similar to the pitchfork
model. However, in contrast with the pitchfork mechanism,
the critical signal timescale τc that separates the slow versus
fast signal-driven decision regimes is now related with the
oscillation period (equal to Tosc = π/

√
2β3 for s = 0 and

α = 0) and is thus not dependent on noise.

V. GENERALIZED MODEL

For simplicity, the binary decision model introduced in
Sec. II assumes the existence of symmetry properties so
that PA(α) = PB(−α) as well as of additive noise. However,
protein network regulating cell-fate decisions exhibits a high-
dimensional dynamics without particular symmetry, in which
stochasticity (due for instance to finite number of proteins)
is often modeled as multiplicative noise. In this section, we
check whether our results are still valid with less restrictive
assumptions by discussing the following generalized model:

dx

dt
= g(x)FP,S(x,α,s(t,τ )) + σh(x)ζ (t), (21)

where g(x) and h(x) are arbitrary positive-valued function,
whereas g(x) = 1 and h(x) = 1 in the original model. h(x)
leads to multiplicative noise, and g(x) contributes to force-field
asymmetry since FP (x,0,s) and FS(x,0,s) exhibit, respec-
tively, reflection and two-fold rotational symmetry with respect
to x. In fact, the asymptotic expressions previously obtained
for η in Eqs. (10), (11), (17), and (19) remain valid in such
generalized model. For the pitchfork model in the low-noise
limit, the decision outcome depends only on the local force
and noise fields near the bifurcation point. Accordingly,
Eqs. (10) and (11) apply for arbitrary g or h by replacing
σ with σh(0)/

√
g(0) and τ with τ/g(0). However, the validity

range of these asymptotic expressions for increasing levels
of noise strength is reduced due to larger deviations from
Gaussian distribution. The case of the two-SNIC model is
less straightforward as low-noise decision making depends

0.01 1 100
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0.01 1 100
τ
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1
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η

SNIC (σ=0.1)Pitchfork (σ=0.1)
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Multiplicative noise

Symmetric vector field + additive noise

[ x’= F(x) + σ h(x) ζ(t) ]

[ x’= g(x)F(x) + σ ζ(t) ]

 [ x’= F(x) + σ ζ(t) ]

+

g(x) = exp(x)

h(x) = exp(x)

g(x) = x/π+0.2
h(x) = x/π

+ +

(a) (b)

FIG. 4. (Color online) Effects of asymmetric force field and
multiplicative noise. η as function of τ for σ = 0.1 for (a) the
pitchfork model and (b) the two-SNIC model with asymmetric force
field (blue crosses) and multiplicative noise (red squares) as compared
with original results (black circles) of Figs. 2(c) and 3(c).

(i) on the nonlocal initial probability distribution for small
τ or (ii) on the dynamics close to two remote saddle-node
bifurcation points for large τ . As a consequence, a force
field without two-fold rotational symmetry leads to different
prefactors in Eqs. (17) and (19) for η, while keeping the
same scaling relation with τ and σ . In contrast, multiplicative
noise does not have any effect as far as η does not depend
on the noise component (τσ 2 small). Figure 4 illustrates that
an asymmetric force field and multiplicative noise associated
with some function g(x) and h(x) do not alter the scaling
laws for η. We thus conjecture that the binary decision made
by a protein network whose high-dimensional dynamics can
be mapped onto a one-dimensional dynamics in the form of
Eq. (21) follows the same scaling properties with respect to
noise strength and signal timescale.

VI. DISCUSSION

Binary decision is an important class of decision problems,
especially for biological decision making. We have shown that
binary decision implemented by a transition from oscillation to
bistability is much more robust with respect to noise but more
sensitive to signal timing as compared with decisions based
on a transition from monostability to bistability. Compared to
a mere stable fixed point, oscillations give rise to a much
more dynamical ground state of decision, in which phase
dynamics obliterates the diffusive effect of noise but also
sensitizes decision outcomes to signal timing (with respect
to the oscillator’s phase) and signal risetime (with respect
to the oscillator period). Noteworthily, decisional sensitivity
to signal timing is not necessarily a problem because phase
dynamics can be regulated individually and collectively; for
instance, through the synchronization of coupled oscillators
[24,25]. Binary decision based on oscillations is expected to be
relevant to systems subject to uncontrollable and detrimental
stochasticity, while being driven by dynamic and tunable
signals, such as for fate decisions in cellular systems.

The pending question is what could be these intracellular
oscillations contributing to cellular decision making. The
cell-cycle oscillator is a natural candidate as various fate
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decisions including quiescence, differentiation, stress re-
sponse, or programed death usually coincides with cell-cycle
arrest, which is dynamically implemented by few possible
bifurcation mechanisms [26,27]. Distinct fate decisions have
been shown to depend on the cell-cycle phase at which the
signal is received and the cell-cycle progression is arrested,
such as in Bacteria [28], Amoeba [29], C. Elegans [30] or
mammals [31], which manifests the occurrence of binary
differentiation decisions based on cell-cycle oscillations.
There are also numerous signaling pathways capable of
delivering both oscillatory and bistable responses, such as P53
or Notch-Hes1 signaling, many of which have been shown to
contribute to binary fate responses upon stress or developmen-
tal signals [15–17]. Yet these different cell-cycle or signaling
oscillatory mechanisms support the same notion of time
windows for decision opportunities underlying complex signal
processing.

More generally, the existence of distinct binary decision-
making strategies in fluctuating environments is not restricted
to individual cells based on the dynamics of their intracellular
protein networks. Likewise, multicellular organisms have
evolved neuronal networks implementing various bifurcation
mechanisms, including limit cycle bifurcations, to also per-
form two-choice decision tasks [32,33]. In any case, the
selection through learning or evolution of one or another
decision-making strategy is likely to correlate with the adaptive
tradeoffs specific to a particular biological context.
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