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Analog and digital codes in the brain
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It has long been debated whether information in the brain is coded at the rate of neuronal spiking or at the
precise timing of single spikes. Although this issue is essential to the understanding of neural signal processing,
it is not easily resolved because the two mechanisms are not mutually exclusive. We suggest revising this coding
issue so that one hypothesis is uniquely selected for a given spike train. To this end, we decide whether the
spike train is likely to transmit a continuously varying analog signal or switching between active and inactive
states. The coding hypothesis is selected by comparing the likelihood estimates yielded by empirical Bayes and
hidden Markov models on individual data. The analysis method is applicable to generic event sequences, such as
earthquakes, machine noises, and human communications, and enhances the gain in decoding signals and infers
underlying activities.
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I. INTRODUCTION

Sensation and motion are represented and processed in the
brain as a series of neuronal discharges called firings or spikes
[1]. In the early 1900s, the number of neuronal discharges in
a given time interval was found to be related to the tension in
the associated muscle [2]. Since then, correlating the rate of
neuronal firings with animal behavior has become standard
protocol. Other coding hypotheses have also been studied
both experimentally [3–6] and theoretically [7–10]. Among
these alternatives is temporal coding, which emphasizes the
importance of precise spike timings [5,6].

Coding hypotheses have retained researchers’ interest, less
for unproductive taxonomy purposes, but because they assist
our understanding of neuronal information processing in the
brain. Theoretically, it has been demonstrated that a discrete (as
opposed to continuous) firing rate increases the rate of informa-
tion transmission, depending on the width of the time window
[11–15]. Thus, assuming that neural systems have evolved to
maximize their information transmission rate, different areas
of the brain may process signals in different ways. The coding
problem has become the subject of theoretical modeling.
For instance, in attractor network theory, neuronal activity
undergoes transitions among quasistationary states [16–18].
Attractor states may manifest as distinct changes in the firing
condition. Information processing can feasibly be represented
by jumping among quasistationary states. In particular, the
change-point detection of neurons approaches the theoretical
optimum [19]. Of more practical interest, coding identification
may lead to improved information decoding, which would
benefit real-time applications such as brain machine interfaces.

Nevertheless, rate coding and temporal coding are not
clearly delineated because they are not mutually exclusive.
For instance, spike timing may be reinterpreted as high firing
rate in a small time window. A clearer distinction between
the coding types has been suggested, such that any spike
train is classifiable into rate or temporal coding, depending
on whether the underlying rate varies slowly or rapidly with
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time, respectively [20,21]. However, this principle is not
directly applicable to data, because the firing rate cannot be
uniquely determined from a single spike train. Rather, spiking
is generally irregular and sparse, and the underlying rate can
be obtained only from multiple spike train analyses in repeated
trials. The fine details of original rate fluctuations are easily
erased by intertrial jittering [22]. For this reason, the coding
hypothesis should be identified on a single trial basis.

Here, we suggest a method that selects a unique hy-
pothesis for any given single spike train. The conventional
timing-based classification is replaced by an analog-digital
classification criterion that inquires whether the spike train
is likely transmitting a continuously varying analog signal
or discontinuously switching binary signals (Fig. 1). The
proposed classification scheme is similar to the timing-based
scheme because analog and digital signals may be represented
by the firing rate and timing of spike bursts, respectively. Thus,

?

FIG. 1. (Color online) Selecting a coding hypothesis for a single
spike train. A spike train is examined to determine whether it is likely
transmitting a continuously varying analog signal or discontinuously
switching binary signals.
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rather than dispense with the rate-coding hypothesis, we select
the best interpretation of a single spike train from alternative
rate estimators based on rivalry principles. Specifically, we
select a single stochastic model, either the empirical Bayes
model (EBM) or the hidden Markov model (HMM), by
comparing their likelihood estimates for a given spike train.
The EBM and HMM represent the analog and digital codes,
respectively. The effectiveness of the inference method is
tested on synthetic data derived from inhomogeneous Poisson
processes whose continuous and discrete rates are given by the
Ornstein-Uhlenbeck process (OUP) and the switching state
process (SSP), respectively. Finally, to determine whether
different areas of the brain encode signals continuously or
discretely, the suggested analysis is applied to biological data.

II. MODELING SPIKING PROCESSES

To examine how efficiently the rate estimators infer the
underlying rate, we first consider the idealized inhomogeneous
Poisson processes, in which spikes are randomly drawn from
a given rate function of time. OUP and SSP represent rate
functions that fluctuate continuously and discontinuously in
time, respectively.

The Ornstein-Uhlenbeck process (OUP). A typical con-
tinuously fluctuating process is illustrated in Fig. 2(a). We
represent this process by the OUP, originally introduced to
describe the fluctuating velocities of Brownian particles. OUP
is modeled by the following stochastic differential equation:

1

2

dλ(t)

dt
= −λ(t) − μ

τ
+ σ√

τ
ξ (t), (1)

where ξ (t) is the Gaussian white noise characterized by the
ensemble average 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′). Due
to random fluctuations in the OUP, λ(t) can be negative even if

μ exceeds the typical fluctuation amplitude σ . Interpreting λ(t)
as the temporally fluctuating rate, the firing rate is regarded as
zero if λ(t) < 0.

Switching state process (SSP). A typical discontinuously
fluctuating process is illustrated in Fig. 2(b). For this process,
we adopt random telegraph state switching, in which the on/off
states stochastically alternate under the random telegraph
process. Here we consider a symmetric case in which the
average intertransition interval is the same for both states.
This process can be realized by repeating the Bernoulli trials
for making a transition to another state with the rate 1/τ ;
equivalently, by drawing intertransition intervals from the
exponential distribution with mean τ , p(t) = τ−1 exp (−t/τ ).
For two states we assign the firing rates λ(t) = μ − σ or μ + σ

(μ > σ > 0).
First and second order statistics. The sample rate processes

generated by the OUP and SSP are apparently different
(Fig. 2). However, given the same parameter set, {μ,σ,τ },
both processes deliver identical first and second order statistics
(mean and correlation function of the rate, respectively),
given by

λ(t) = μ, (2)

δλ(t + s)δλ(t) = σ 2 exp

(
−2|s|

τ

)
, (3)

where the overbar represents the time average and δλ(t) ≡
λ(t) − μ.

Inhomogeneous Poisson processes. Given a time-dependent
rate process λ(t), a Poisson spike train can be derived by
subdividing the time axis into small bins of width δt and
repeating the Bernoulli trials for generating a spike in every
time bin with a probability of λ(t)δt .

 0

 30

 60

 0  5  10

R
at

e 
[H

z]

Ornstein-Uhlenbeck Process (OUP)

 0  5  10

Spike train

 0

 30

 60

 0  5  10

R
at

e 
[H

z]

Hidden Markov Model (HMM)

 0

 30

 60

 0  5  10

R
at

e 
[H

z]

Time [s]

Empirical Bayes Model (EBM)

 0

 30

 60

 0  5  10

R
at

e 
[H

z]

Switching State Process (SSP)

 0  5  10

Spike train

 0

 30

 60

 0  5  10

R
at

e 
[H

z]

Hidden Markov Model (HMM)

 0

 30

 60

 0  5  10

R
at

e 
[H

z]

Time [s]

Empirical Bayes Model (EBM)

)b()a(

FIG. 2. (Color online) Continuous and discontinuous rate processes and their decoding. (a) A spike train is derived from the continuously
modulated rate given by the OUP (blue, top). The continuous EBM (green, bottom) estimates the original rate better than the discontinuous
HMM (orange, middle). (b) A spike train is derived from the discontinuous rate given by the SSP (red, top). The HMM better estimates the
original rate than the EBM. Simulation parameters are μ = 25 (Hz), σ = 17 (Hz), and τ = 1 (s) for both the OUP and SSP.
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III. RATE ESTIMATORS

Here we introduce EBM and HMM as stochastic models
of continuous and discontinuous rate processes, respectively.
These models are used as rate estimators.

Empirical Bayes model (EBM). We assume that spikes are
independently drawn from the underlying firing rate λ(t). In
this scenario, termed the inhomogeneous Poisson process, the
probability of spike occurrences at times {tj } ≡ {t1,t2, . . . ,tn}
in the period t ∈ [0,T ] is analytically given as [23]

P ({tj }|λ(t)) =
⎛
⎝ n∏

j=1

λ(tj )

⎞
⎠ exp

(
−

∫ T

0
λ(t)dt

)
. (4)

The underlying rate is inferred from the spike train using
Bayes’ theorem,

P [λ(t)|{tj }] = P [{tj }|λ(t)]P [λ(t)]

P ({tj }) . (5)

Here we give a prior distribution functional, by assuming the
rate to be generally flat:

Pγ [λ(t)] ∝ exp

[
− 1

2γ 2

∫ T

0

(
dλ

dt

)2

dt

]
, (6)

where γ is a hyperparameter representing the flatness of
the rate process. The hyperparameter can be selected by
maximizing the marginal likelihood, or “evidence,”

Pγ ({tj }) ≡
∫

P [{tj }|λ(t)]Pγ [λ(t)] D{λ(t)}, (7)

where D{λ(t)} denotes that the functional is integrated over
all possible rate processes. If data are provided, this marginal-
ization integral can be maximized with respect to γ by the
expectation-maximization algorithm [24]. The negative of the
logarithm of the marginal likelihood corresponds to the free
energy [25–27]. With the hyperparameter γ̂ that maximizes the
marginal likelihood or minimizes the free energy, we obtain
the maximum a posteriori (MAP) estimate of the rate process,
λ̂(t), that maximizes the posterior distribution functional,
pγ̂ [λ(t)|{tj }] [28]. An application program for estimating the
MAP rate for a given spike train is accessible by Ref. [29].

Hidden Markov model (HMM). When estimating the firing
rate by HMM [30,31], the spike train is derived from the rate
of transition between different states according to the Markov
process. Here we adopt a two-state HMM model, in which
the rate takes one of two values. Model parameters are the
two rates λ1 and λ2, the elements of the transition matrix,
and the probabilities of the initial states. These parameters
are estimated by the Baum-Welch algorithm, and then the
most likely sequence of hidden states is then obtained from
the Viterbi algorithm. The estimated rate λ̂(t) is regarded
as the sequence of alternating rates assigned as the selected
hidden states. An application program for performing HMM
rate estimation is accessible by Ref. [32].

IV. TESTING THE RATE ESTIMATORS USING
SYNTHETIC SPIKE TRAINS

In this section, we compare the accuracy of EBM and HMM
in estimating the underlying rates from OUP- and SSP-derived

spike trains, representing continuous and discontinuous rate
processes, respectively.

A. The Kullback-Leibler divergence

Apparently the firing rate of the spike train derived from
OUP is better estimated by EBM than by HMM, while the
opposite is true for the SSP-derived spike train (Fig. 2).
If the underlying rates of synthetic data are known, the
estimation accuracy can be evaluated by directly measuring
the deviation of the estimated rate λ̂(t) from the underlying
rate λ(t). Furthermore, if spikes are derived independently
from the underlying rate λ(t) and the resulting spike train
follows a Poisson process, the goodness of the rate estimator
is the deviation of the normalized density of individual spikes,
p̂(t) ≡ λ̂(t)/

∫ T

0 λ̂(t ′)dt ′ from the normalized underlying den-

sity, p(t) ≡ λ(t)/
∫ T

0 λ(t ′)dt ′, assuming that the average rate

is correctly captured; i.e.,
∫ T

0 λ̂(t ′)dt ′ = ∫ T

0 λ(t ′)dt ′. The de-
viation of distribution functions may be represented by the
Kullback-Leibler (KL) divergence [33,34], defined as

D(p||p̂) ≡
∫ T

0
p(t) log [p(t)/p̂(t)] dt � 0, (8)

where the equality holds if the two distribution functions are
equal. The KL divergence is represented as the surplus of the
cross entropy [35],

H (p,p̂) ≡ −
∫ T

0
p(t) log p̂(t)dt, (9)

over the entropy of the underlying distribution p(t),

H (p) ≡ −
∫ T

0
p(t) log p(t)dt, (10)

that is,

D(p||p̂) = H (p,p̂) − H (p). (11)

Rate estimation using the EBM. In EBM, the KL diver-
gences of the OUP- and SSP-derived spike trains depend
similarly on σ [the green (gray) lines in Figs. 3(a) and 3(b)].
The initial quadratic increase with σ may be interpreted as
follows. If the rate fluctuation in a spike train is small, it will
not be detected by any rate estimator. Rather than sampling
a fluctuation, principled estimators such as the EBM will
draw a fixed rate of p̂(t) = 1/T , whereby the cross entropy is
given as

H (p,p̂) = −
∫ T

0
p(t) log(1/T )dt = log T . (12)

The entropy can be approximated by expanding p(t) in terms
of the deviation of the normalized distribution from the mean
1/T ,

H (p) = −
∫ T

0

(
1 + δp(t)

T

)
log

(
1 + δp(t)

T

)
dt

≈ log T − δp2/2 = log T − σ 2

2μ2
. (13)
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FIG. 3. (Color online) KL divergence of the estimated distribution p̂(t) from the underlying distribution p(t). Numerically estimated EBM
and HMM values are depicted in green (gray) and orange (light gray), respectively. (a) The continuous OUP rate process. (b) The discontinuous
SSP rate process. The rates are estimated from spike trains of n = 1000 spikes. The black solid line is the analytical result obtained by the path
integral, Eq. (23). The edges of the shaded regions along the green (gray) and orange (light gray) lines represent the upper and lower quartiles
of KL divergence, respectively, estimated from 1000 samples. Other parameters are μ = 25 (Hz), τ=1 (s), giving a theoretical detection limit
of σc = √

μ/τ = 5 (Hz).

Thus, in both the OUP and SSP, the KL divergence of the
constant probability p̂ = 1/T is approximated as

D0 = H (p,p̂) − H (p) ≈ σ 2

2μ2
. (14)

Theoretical estimate of the EBM using the path integral.
As the rate fluctuation σ increases further, the KL divergence
departs downward from this quadratic line, implying that rate
fluctuations have begun to be appropriately detected by EBM.
The EBM marginalization integral has been shown to be
analytically solvable [36,37]. Equation (7) can be transformed
into a path integral format as [38]

Pγ ({tj }) = 1

Z(γ )

∫
D{λ(t)}e− ∫ T

0 L(λ,λ̇,t)dt , (15)

where the “Lagrangian” L(λ,λ̇,t) is

L(λ,λ̇,t) = 1

2γ 2
λ̇2 + λ −

n∑
i=1

δ(t − ti) log λ. (16)

The “classical path” corresponding to the MAP estimate
of the rate process λ(t) is obtained by the Euler-Lagrange
equation:

d

dt

(
∂L

∂λ̇

)
− ∂L

∂λ
= 0. (17)

Here, the log marginal likelihood is averaged over possible
realizations of spike trains derived from a rate function.
When deriving a spike train from an underlying rate λ(t),
the fluctuations in spike counts within a given time interval
are Poisson distributed. In this case, the variance in the spike
count equals the mean, and the rate of an individual spike train

is described by a stochastic function:

λ(t) +
√

λ(t)ξ (t), (18)

where ξ (t) denotes Gaussian white noise. The path integral can
be evaluated by expanding the “action integral” to quadratic
order in the deviation of the rate from the mean [36,37]. The
free energy is analytically obtained as

F (γ ) = −〈log Pγ ({tj })〉

≈ T |γ |
4
√

μ

(
1 − 2τσ 2

2μ + γ τ
√

μ

)
+ const, (19)

where the angle brackets represent the averaging operation
with respect to the ξ (t) ensemble. The hyperparameter γ may
be selected by minimizing the free energy:

γ̂ = arg min
γ

F (γ ) =
{

0, if σ < σc

2(σ − σc)/
√

τ , otherwise,
(20)

where σc = √
μ/τ . Thus, γ vanishes, or equivalently, the

flatness of the rate diverges, if the fluctuation amplitude of
the underlying rate is below the critical value σc, implying that
the rate fluctuation is undetectable (Fig. 4).

The MAP estimate of the rate, or solution of the Euler-
Lagrange equation, is given as

λ̂(t) ≈ μ + γ̂

2
√

μ

∫ T

0
[δλ(s) + √

μξ (s)]e−(γ̂ |t−s|/√μ)ds,

(21)

where
√

λ(t)ξ (s) is approximated by
√

μξ (s). The cross
entropy can be obtained by expanding p(t) in terms of the
deviation of the normalized distribution, and by averaging over
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FIG. 4. Detectable-undetectable phase transitions of the empir-
ical Bayes model. (a) Free energy defined by the log-likelihood
Eq. (19) for the cases of σ < σc, =σc, and >σc. (b) An optimal
hyperparameter γ̂ representing the degree of flatness. The conditions
of phase transition for the OUP and SSP are given by Eq. (20). The
numerical data points represent the average, and the error bars are
the upper and lower quartiles of the hyperparameter γ̂ determined by
applying practical optimization algorithms to 1000 synthetic data
numerically generated by simulating the inhomogeneous Poisson
processes. Parameters of synthetic data used for numerical analysis
are the same as those of Fig. 3.

all possible realizations of spike trains ξ (s) as

H (p,p̂) = −
∫ T

0

1 + δp(t)

T

〈
log

(
1 + δp̂(t)

T

)〉
dt

≈ log T − 〈δpδp̂ − δp̂2/2〉. (22)

By calculating the ensemble average, the KL divergence is
obtained as

D(p||p̂) ≈
{
σ 2/(2μ2), for σ < σc

σσc/(2μ2), otherwise.
(23)

The phase transition at σ = σc, above which the fluctuations
become detectable, is discernible in the analytical KL diver-
gence curves (the black solid lines in Fig. 3). Though this
solution assumes that σ 
 μ, it reasonably agrees with the
numerical solutions [the green (gray) lines in Fig. 3] even
when σ is comparable to μ.

Rate estimation using the HMM. To enable comparison
between the rate-detection performances of EBM and HMM,
the KL divergence of HMM is also plotted in Fig. 3 [the orange
(light gray) lines].

When σ < σc, the KL divergences of the HMM are higher
than D0 = σ 2/(2μ2) for both OUP- and SSP-derived spike
trains. From this result, we infer that HMM needlessly
tracked the fluctuations of individual data; accordingly, the
rate estimation is inferior to that obtained by simply indicating
the constant mean rate.

When rate fluctuations are large, σ > σc, the KL diver-
gences obtained by HMM differ widely between the OUP
and SSP data. For the SSP, the KL divergence is lower than
that of EBM, implying that HMM more accurately estimates
the underlying transition rate between the two states when
rate fluctuations are sufficiently large, in particular, σ � 15.
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FIG. 5. (Color online) Validating the likelihoods of analog and
digital coding hypotheses. (a) Likelihood distributions of EBM and
HMM [the blue (gray) and red (light gray) distributions, respectively],
calculated by Eq. (24), for trains of 1000 spikes derived from
continuous OUP and discontinuous SSP. (b) Scatter plots of the
likelihoods on the (lHMM, lEBM) plane. (c) Distribution of the likelihood
difference, lHMM − lEBM. Model parameters: (μ, σ , τ ) = [25 (Hz), 10
(Hz), 1 (s)] for the OUP and [25 (Hz), 20 (Hz), 1(s)] for the SSP.
Number of spikes n = 1000; subsampling spikes m = 10; sampling
trials k = 100.

Contrariwise, for the OUP data, which realize continuous rate
changes, the performance of EBM is always superior to that
of HMM.

B. Validating rate estimators

The KL divergence is an impractical measure because the
original rate is not known in real applications. Here we suggest
a random subsampling validation method that evaluates the
rate estimators in terms of their goodness of estimation.

Given a spike train of n spikes, we randomly remove
m(
n) spikes and estimate the rate profile λ̂n−m(t) from the
remaining n − m spikes. Because every spike is independently
derived from the underlying rate, the likelihood of the rate
profile of the unused m spikes is the product of the likelihoods
of normalized densities p̂(t) = λ̂n−m(t)/

∫ T

0 λ̂n−m(t ′)dt ′. Thus,
the log likelihood per a single spike is estimated as

l = 1

m

m∑
i=1

log

(
λ̂n−m(ti)∫ T

0 λ̂n−m(t ′)dt ′

)
. (24)

Repeating this procedure k times, we compute the mean and the
standard error of the log likelihood of a given spike train. The
cross-validated log likelihood should approximate the negative
cross entropy, −H (p,p̂) [Eq. (9)].

When the distributions of the likelihoods for EBM and
HMM are directly compared, their relative superiority or
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inferiority is not evident [Fig. 5(a)]. This occurs because the
entropy H (p) of individual rate processes fluctuates among
samples, and the estimated log likelihood and negative cross
entropy −H (p,p̂) alone do not reflect the goodness of the
rate estimation. Thus, we suggest comparing the likelihoods
of EBM and HMM for individual spike trains [Fig. 5(b)]
or computing their difference lHMM − lEBM [Fig. 5(c)]. The
conformity of the data to HMM and EBM is now clearly
detected even from sequences of O(1000) spikes, which are
typically acquired from experiments.

V. ANALYSIS OF BIOLOGICAL DATA

Finally, we apply our method to real data. To this end, we
analyze biological neuronal spike trains by the cross-validation
method. The test is conducted on publicly available spike
data. All data were collected from the visual cortical areas,
primary visual cortex (V1) and middle temporal area (MT),
and from the thalamus and lateral geniculate nucleus (LGN)
of monkeys (Macaca fascicularis) repeatedly presented with a
drifting sinusoidal grating [39,40]. In each trial, the recording
times of a single run were 6000 or 3000 ms for V1, 1280 ms
for MT, and 5138 ms for the LGN. Only the trials with mean
firing rate greater than 10 Hz were accepted, and spike trains
recorded in different trials were concatenated into a final spike
train of 1000 spikes. The numbers of accepted neurons were
39, 40, and 49, respectively, for V1, MT, and LGN.

The results of the cross-validation analysis are shown in
Fig. 6. Fractions of neurons exhibiting analog and digital
coding patterns differ between the three brain regions. In

particular, more discontinuous firing patterns were observed in
LGN neurons than in V1 and MT neurons (15/49 in the LGN,
versus 3/39 and 7/40 in the V1 and MT, respectively). Several
spike trains, together with their rates estimated by continuous
EBM and discontinuous HMM rate estimators, are presented
in Fig. 7.

VI. DISCUSSION

In this paper, we selected alternative coding hypotheses for
individual spike trains. For this purpose, we compared rate
estimators of the continuous EBM and discontinuous HMM,
respectively representing analog and digital neuronal codes.
We first determined whether the class of rate process could be
identified from synthetic spike trains derived from OUP and
SSP. Next, we applied our analytical method to biological data
obtained from the visual cortical areas V1 and MT, and the
thalamus LGN, and found significant differences among the
firing patterns of different brain areas.

Here we assumed two hypotheses; that information trans-
mitted by neurons is coded in an analog or digital manner. If
the purpose of selecting coding hypotheses is to best estimate
the unknown underlying rate, more coding hypotheses can
be accommodated by adopting a suitable model selection
principle. For instance, we suggested that two-state HMM
represents discontinuous rate processes, but numerous variants
are possible. For example, the number of states can exceed two;
the number of firing rates is not necessarily fixed in advance but
may change arbitrarily in every switching; the firing rate may
fluctuate during the intertransition interval. Such possibilities
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(orange, right). (b) Histograms of differences between the two log-likelihoods shown in Fig. 5(c). Number of spikes n = 1000; subsampling
spikes m = 10; sampling trials k = 100.
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FIG. 7. (Color online) Sample of biological spike trains and their estimated rates. Spike trains are recorded from V1, MT, and LGN and
the rates are estimated from the continuous and discontinuous estimators, EBM [green (gray)] and HMM [orange (light gray)], respectively.
The title of each set of plots indicates the neuron ID in Refs. [40], and the rate estimations selected according to the likelihood are shown with
the check marks.

could be examined using multistate HMMs, the infinite HMM
[41], and the switching state-space model [42].

Model selection was carried out on the basis of the KL
divergence. It is observed in Fig. 3(b) that even for data
drawn from the SSP belonging to the Markov model, HMM
is evaluated as inferior to EBM when the amplitude of rate
fluctuation is small [σ � 15 [Hz)]. It should be noted, however,
that a selection may depend on the measure employed; the
parameter range of such inconsistent selection contracts if the
KL divergence is replaced by the L1 measure (data not shown).
This is because the KL divergence or the L2 measure tends to
emphasize the rate estimation error, and accordingly, these

measures are unfavorable to the two-state HMM that does not
have intermediate values.

Throughout this study, we have assumed the inhomoge-
neous Poisson process, in which individual spikes are indepen-
dently derived from a given rate function of time. However, it
should be noted that spiking events are significantly influenced
by their predecessors. Consequently, real neuronal firings are
not precisely modeled by Poisson processes [43–45]. Thus,
one may extend our analysis to contend with deviation from
Poisson firing, as has been done in Refs. [37,46].

Nevertheless, assuming the simple Poisson process is
suitable for diverse problems due to its general applicability.
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In random point processes such as earthquakes, machine
noises, and human communications, it would be worthwhile to
examine whether the underlying condition is better interpreted
as active and inactive, or continuously fluctuating.
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