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Lattice simulations of phase morphology on lipid bilayers:
Renormalization, membrane shape, and electrostatic dipole interactions
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When liquid phases coexist at equilibrium but are not driven to minimize domain interfacial contact energy,
the resulting patterns of phase domains can have important implications for living cells. In this study we explore
some of the interactions and conditions that produce the stable patterned phases that are observed in model lipid
mixtures. By use of Monte Carlo simulations we find that background curvature is important for the formation
of patterned (modulated) phases. The interactions that stabilize nanoscopic phase separation are still not well
understood. We show that inclusion of an electrostatic dipole repulsion with decay lengths as short as two to
four lipid diameters can break up domains at the nanometer scale and that the location of the miscibility critical
point is sensitive to this interaction. The use of a coarse-grained simulation raises questions about comparing
parameters in simulations performed at different length scales. Using renormalization group techniques we show
how to reconcile this problem, treating line tension as a running coupling constant.
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I. INTRODUCTION

Lipid rafts are nanoscopic phase domains thought to exist
in plasma membranes [1–4]. Rafts might be important for the
cell to control protein localization, signaling, exocytosis, and
endocytosis and have been implicated in virus assembly on the
inner leaflet [5]. While the importance of lipid rafts is clear,
the microscopic details of their formation and stability are still
a question of active research.

The plasma membrane is composed of hundreds of
individual lipid and protein species. To study the nature
of lipid rafts, truncated model systems are employed that
limit the complexity to just a handful of lipids. As few
as three lipid species are sufficient to produce liquid-liquid
(Ld + Lo) coexisting phases that are a visible manifestation
of the domains postulated by the raft model of the plasma
membrane [6–8]. Depending on the lipids used in model
system studies, a wide range of phase morphologies can be
realized. The system distearoylphosphatidylcholine (DSPC)–
dioleoylphosphatidylcholine (DOPC)–cholesterol (chol) can
exhibit macroscopic domains tens of microns in diame-
ter, readily observable by optical fluorescence microscopy
of giant unilamellar vesicles (GUVs) [9]. By contrast,
the lipid system DSPC–palmitoyl,oleoyl-phosphatidylcholine
(POPC)–chol appears uniform in GUV studies, but a large
body of evidence, employing suboptical techniques such as
Forster resonance energy transfer, electron spin resonance,
and small-angle neutron scattering (SANS), supports the
presence of coexisting phase domains at nanometer scales
[10–13].

The nanodomains present in model systems are thought to
be similar in nature to the lipid rafts of living cells [14,15].
Thus a thorough theoretical and empirical exploration of
these model systems would clarify a fundamental biological
phenomenon. To study the nature of this nanoscopic phase
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separation, we previously used a four-component lipid mixture
to enable gradual composition-induced transition from GUVs
exhibiting macroscopic phase domains (DSPC-DOPC-chol) to
GUVs with nanodomains (DSPC-POPC-chol) [16,17]. This
experiment revealed a narrow range of compositions that
exhibits modulated phase behavior (patterned phases that
are periodic and thermodynamically stable). Our previous
study [18] found that modulated phases could be explained
by a competing interactions model [19–21]: Line tension,
which drives coexisting phases towards large round domains,
competes against curvature energies, which penalize bending
of the membrane.

This work expands the explorations of this model. We find
that the line tension used to describe energy contributions
from the phase boundary is highly sensitive to coarse graining.
A renormalization group approach is used to formalize this
problem and provide a workable solution. Renormalization
was crucial for comparing simulations performed at different
grain levels and for connecting our simulation results directly
to experimental observations.

We also explore the role of background curvature in the
stabilization of modulated phases on the surface of GUVs.
Whereas all simulations in the previous study were performed
on spherical lattices, which break the symmetry of the
Hamiltonian and may facilitate patterning of the phases, here
we construct lattices that lack this background curvature and
compare the resultant morphologies for similar parameter
sets.

With the success of a competing interaction model to
explain modulated phases, we explore the use of electrostatic
dipole repulsion between lipids as another potential interaction
to compete with line tension to stabilize nanodomains. We
study the effects of the dipole density in each phase and
the decay length of the electric fields within the bilayer on
phase morphology. Simulations are performed to study limited
inclusion of curvature as an added degree of complexity. These
results are compared directly to the domain size measurements
of Heberle et al. [12] using SANS on 60-nm large unilamellar
vesicles (LUVs).
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TABLE I. Default parameter set for studying effects of back-
ground curvature on modulated phase patterns.

Parameter Value Unit

u/kT 0.7
κd ,−κ̄d 10 × 10−19 J
κo,−κ̄o 80 × 10−19 J
P 0.5
R 25 μm
kT 4.0 × 10−21 J

II. MATERIALS AND METHODS

A. Monte Carlo simulation

We use a triangulated lattice to model the membrane and
perform a Monte Carlo simulation to minimize a Hamiltonian
defined on the vertices [18,22]. The perturbations explored at
each step depend on the fields being studied. The Hamiltonian
we had previously studied, the Helfrich energy functional [23],
models the energetics of an elastic membrane S,

H[S,φ] = γL +
∫∫

S

κ(φ)[H ]2dA +
∫∫

S

κ̄(φ)GdA, (1)

where γ is the line tension, L is the total length of phase
boundary, κ is the bending modulus, and κ̄ is the saddle-splay
modulus. The parameters used in each section are defined in
Tables I and II. The fields here are the phase field φ(�r) (a
binary field taking on the value 0 in the Ld phase and 1 in the
Lo phase), the mean curvature field H (�r), and the Gaussian
curvature field G(�r). To perturb the phase field φ, long-range
exchanges are performed in which the phases of two randomly
chosen vertices are exchanged. To perturb the curvature fields,
a random vertex is moved a small distance (0.1% of the vesicle
radius) in a random direction [22]. These two procedures
enable the simulation to explore a large range of phase
morphologies and vesicle shape deformations. Accepting or
rejecting these perturbations using the Metropolis-Hastings
criterion, with probability P = e−�E/kT , biases the simulation
towards a minimal energy configuration, but still allows for
entropic fluctuations.

Some key shape constraints prevent the surface from
becoming nonphysical. Edge lengths are constrained so that
each edge is free to fluctuate within ±30% of a specified value
(here we use the average of the initial edge lengths). This

TABLE II. Default parameter set for studying electrostatic effects
on morphology.

Parameter Value Unit

u/kT 0.7
μd 133 e−/μm
μo 309 e−/μm
k−1 2 nm
κd ,−κ̄d 2 × 10−19 J
κo,−κ̄o {8,14,20} × 10−19 J
R 30 nm
P 0.5

keeps the lattice from self-intersecting while still allowing a
reasonable degree of flexibility. The global area of the lattice
is also harmonically constrained so that the total area of the
membrane fluctuates by less than 1%. This constraint reflects
the relatively high compression modulus of the membrane
and keeps area fluctuations small. The simulation framework
outlined above is exactly the same as in our previous work [18].
The changes introduced below are new to this study and extend
the applicability of the simulation to more general cases.

B. Open surfaces and flat topology

The surface representation was changed to facilitate open
surfaces and edges. This enables study of the behavior of flat
open sheets of membrane and comparison of their behavior to
that of curved membranes. An open surface can be modeled
as a closed surface in which a subset of the vertices has
missing neighbors. In the previous formalism we imposed
the restriction that the array of neighbors for every vertex
must form a closed counterclockwise loop. Here we lift this
constraint and represent the missing points as a special value,
internally referred to as BREAK, in the neighbor array. An
example of the neighbor array for a vertex on the edge of a
surface is shown in Fig. 1. The occurrence of a break signals the
simulation to use edge-case versions of the geometric update
routines.

Constructing the flat lattice requires defining the positions
and neighbor arrays of each vertex. For an N × N flat array
the position of the ith vertex is

�vi =
〈

(i%N )

N
+ �i/N�%2

2N
− 1

2
,

√
3

2

(�i/N�
N

− 1

2

)
,0

〉
,

(2)

where ·%· is the modulo function and �·� is the floor function.
This produces the triangular lattice grid shown in Fig. 2. The
connectivity of this lattice is defined by the edges shown,
with BREAK flags inserted where appropriate. The boundary
conditions for the open surface hold the vertices at the edges
fixed in space. This constraint keeps the surface from folding
into itself, which was observed when the boundary points were
allowed to move.

FIG. 1. Example of a vertex at the open edge of a surface. The
neighbor array of v would read [0,1,2,3,4,BREAK]. The BREAK
flag instructs the simulation to use special routines for calculating
curvature, area, etc., at v.

022702-2



LATTICE SIMULATIONS OF PHASE MORPHOLOGY ON . . . PHYSICAL REVIEW E 89, 022702 (2014)

FIG. 2. A 4 × 4 flat lattice constructed using Eq. (2). Indexing
runs from bottom left to top right with offsets on alternating rows to
produce a triangular lattice.

C. Gaussian curvature on open surfaces

The inclusion of open surfaces requires a redefinition
of the way Gaussian curvature is calculated on a discrete
lattice. Gaussian curvature can be calculated by summing the
angles between neighboring edges around a given vertex and
subtracting this from 2π to determine the angle deficit [18,22].
This approach cannot be applied directly when the neighbors
do not form a complete loop.

To generalize the computation of Gaussian curvature to
vertices that could be adjacent to an edge, the fan formed by
the faces around that vertex is projected onto the tangent plane
at that vertex. The angle represented by the two edges adjacent
to the break θP is then measured. This geometric construction
is shown in Fig. 3. The equation for Gaussian curvature then
becomes

G = (2π − θP ) − ∑
θi

A
. (3)

FIG. 3. Calculating Gaussian curvature at the surface edge. The
fan around a given vertex is projected onto the tangent plane. The an-
gle subtended by the gap in the projection is measured as θP . The
angle deficit is then computed using 2π − θP as the expected angle
for zero curvature [Eq. (3)]. The angle θi is the angle between adjacent
edges around the vertex (not including the break).

This procedure satisfies the Gauss-Bonnet theorem (see
Ref. [24]) and produces a smoothly varying Gaussian curvature
even at the edges of the surface.

D. Electrostatics model

Electrostatic interactions from permanent molecular
dipoles of lipid moieties and bound water might be interactions
that compete with line tension [25]. In the context of large
(micron-size) phase domains, the effects of electrostatics can
be largely ignored due to electrostatic screening. The electric
fields within the bilayer have a decay length on the order
of a few nanometers, caused by the salt in the surrounding
medium and the symmetric geometry of the bilayer [17,26]. In
the context of nanodomains, a few nanometers may represent
several lipid shells, implying that electrostatic interactions
cannot be ignored.

To model the electrostatics we define a dipole density at
each vertex that depends only on the local phase,

μ(v) =
{
μd if v ∈ Ld

μo if v ∈ Lo.
(4)

The electric field at each vertex is defined by summing over the
remaining vertices of the lattice and adding up the contribution
of each according to the following [19,25,27]:

�E(v) = 1

4πε

∑
x �=v

e−k‖�r‖
[

3(�n · �r)�r
‖�r‖5

− �n
‖�r‖3

]
μ(x)A(x), (5)

where �n is the membrane normal at x, �r is the vector connecting
v and x, k is the decay length of the fields within the membrane,
and A(x) is the area of vertex x. This equation has three
important terms: The leading exponential function expresses
the fact that the electric fields within the plane of the bilayer
decay with a characteristic length that depends on the salt
concentration of the surrounding medium and the thickness
and geometry of the bilayer; the portion in large square
brackets is the electric field contribution at v from a point
dipole at position x (oriented normal to the membrane); the
last term is the magnitude of this point dipole at position x.
With this field defined, the energy functional becomes

H = γL −
∑

v

2μ(v)A(v)�n · �E(v). (6)

A factor of 2 is needed to take into account that both leaflets
of the membrane experience a mirrored electric field. The
assumed geometry of the lipid dipoles in the membrane and
the field lines that are produced by Eq. (5) are shown in Fig. 4.
Notice that the dipole density is always assumed parallel to the
membrane normal. We make this assumption because, whereas
individual lipid dipole moments may orient away from the
bilayer normal, the rotational symmetry of the liquid phase
ensures that in-plane contributions to the dipole density will
average to zero.

E. Quantifying morphology: Radial distribution function

To study how the various parameters and interactions affect
the clustering of phase domains, we use the Lo-Lo radial
distribution function, which gives the probability density of
finding a vertex of Lo phase as a function of distance from
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FIG. 4. The top shows electric field lines [as defined by Eq. (5)]
on the surface of a simulated GUV. The bottom shows the microscopic
geometry of the charge distribution assumed in the formulation
of the electrostatics model. Black beads represent point positive
charges, white beads point negative charges, and black arrows the
net individual dipole moments of each lipid.

another vertex of Lo. To estimate this distribution we produce a
histogram with bin width 〈�r〉, defined as the average distance
between neighboring vertices. We define the set Bv(i) as all
vertices in a spherical shell around the vertex v,1

Bv(i) = {w|i〈�r〉 < ‖ �w − �v‖ < (i + 1)〈�r〉}, (7)

and let Nv(i) be the number of elements in Bv(i). The
Lo-Lo correlation function can then be defined by counting
the number of elements in each bin for each vertex and
normalizing,

C(i〈�r〉) = 1

PN

∑
v∈Lo

⎡
⎣ 1

Nv(i)

∑
w∈Bv (i)

δφvφw

⎤
⎦ , (8)

where δ is the Kronecker delta function, P is the area fraction
of Lo phase, and N is the total number of vertices on the lattice.
In this treatment distance between vertices is measured along

1The symbol v refers to the scalar index of the vertex, while the
symbol �v refers to the vector position of the vertex in space.

FIG. 5. Different morphologies give rise to distinct shapes of their
correlation function, which measures the probability of finding like
phases at a distance r from each other. (a) Modulated phases show
damped oscillations corresponding to the repeat length of the patterns.
(b) Macroscopic domains show a linear or sigmoidal decrease (see
Fig. 10) that crosses the C(r) = P axis at approximately the domain
size. (c) Clusters and critical fluctuations show an exponential decay
that defines a correlation length and (d) random mixing yields a
straight horizontal line at C(r) = P . In the above examples, the area
fraction P = 0.5.

the contours of the surface and C is defined only at discrete
intervals set by the bin width 〈�r〉.

The correlation function can be used to distinguish among
the various morphology possibilities: random mixing, clus-
tered domains, modulated phases, and macroscopic domains.
These various morphologies are shown in Fig. 5. Random
mixing yields a constant value of C(r) = P , clustered domains
have an exponential decay that defines a correlation length,
modulated phases show a distinct periodicity that defines the
repeat length of the patterns, and macroscopic domains yield
a roughly linear or sigmoidal correlation function that crosses
the line C(r) = P at the domain size.

F. Heat capacity

Heat capacity is useful to assess how competing interactions
change the thermodynamic properties of the model. The heat
capacity at constant volume can be defined as

h ∝ 〈H2〉 − 〈H〉2. (9)

It is sufficient for our purposes to define a quantity that
is proportional to the actual heat capacity because we are
interested in the locations of features of the curve, such as
peaks or discontinuities, rather than numerical values. Because
heat capacity is a statistical measure, we must consider
error and correlation in the measurements. Heat capacity
was measured by taking 1000 samples of the total energy at
intervals separated by 100 × N Monte Carlo steps to minimize
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autocorrelation. This process still produces curves with high
variance, but the important features are readily visible.

III. RESULTS AND DISCUSSION

A. Line tension and renormalization

One useful feature of this coarse-grained simulation ap-
proach is its applicability to a wide range of size scales. By
changing the size and resolution of the lattice one can simulate
from 100-μm-diam GUVs, where each vertex represents
hundreds of thousands of lipids, down to 0.06-μm-diam LUVs,
where each vertex represents only a few lipids. In order to relate
the simulation results to physical observations it is important
to consider the problem of running coupling constants [28].
This is the tendency of certain parameters to change when
degrees of freedom are lost in coarse graining.

This problem becomes apparent when comparing simu-
lations with the same parameter set and changing only the
resolution of the lattice. Parameters that give macroscopic
phase separation at lower resolution (10 000 vertices) can
yield random mixing on a higher resolution lattice (40 000
vertices). This is due to the line tension being a running
coupling constant. In this section we consider a Hamiltonian
that includes only the contribution from line tension H = γL

in order to determine how it changes under coarse graining.
A bending modulus can be treated in a similar way [29]. To
compare the line tension on different resolution lattices we
define the scale-invariant quantity u ≡ γ l0, where l0 is the
average boundary length contribution for a pair of adjacent
vertices. This makes our model roughly equivalent to an
edge-counting Ising model

H =
∑
〈i,j〉

γ l0

2
(1 − SiSj ) (10)

=
∑
〈i,j〉

−u

2
SiSj , (11)

where Sx = 2φx − 1 and we have discarded the constant
energy offset. In this form we can relate our simulation to the
known solution of the Ising model on a triangular lattice [30].
Criticality for this system occurs when

ucrit

kT
= ln(3)

2
≈ 0.55. (12)

For u/kT below this critical value the lattice simulation
should function exactly as a triangular lattice Ising model
with zero external field. We can test this by measuring the
heat capacity as a function of u/kT , shown in Fig. 6. The
heat capacity curves h(u/kT ) for both the flat and spherical
lattices show no remarkable differences and most importantly
both show a sharp peak at u/kT ≈ 0.55, consistent with the
theoretical value for the critical point of the triangular lattice
Ising model. This close match in critical point is surprising
because the flat lattice has a valence of exactly 6, whereas
the spherical lattice has many 5-7 defects and only an average
valence of 6.

The next step is to formulate a means of relating the
morphology on lattices at different grain levels. The grain
level is defined as the number of lipids represented by each
vertex G ≡ av/a0, where a0 is the area of a single lipid and

FIG. 6. Heat capacity as a function of line tension for both
spherical (solid black line) and flat (dashed black line) lattices. The
peak corresponds to u/kT = 0.55 ≈ ln(3)/2, the theoretical critical
point of the triangular Ising model.

av is the average area of a single vertex. Two morphologies
at different grain levels are defined to be equivalent if both
have the same inverse correlation length, where the inverse
correlation length is given by

c(u/kT ) ≡
(

−dC(r)

dr

∣∣∣∣
r=0

)
− ccrit. (13)

Shifting this curve by the value of ccrit fixes the in-
verse correlation length at the critical point to be zero
[c(ucrit/kT ) = 0], thus ensuring that the critical point is a
fixed point under renormalization. The value ccrit is determined
empirically through simulation.

The curves for c(u/kT ) at two different grain levels and
an illustration of the renormalization procedure are shown
in Fig. 7. Notice that c(u/kT ) need only be measured at a
single grain level G1, because changing the grain level to

FIG. 7. Inverse correlation length relates line tension at two
different grain levels G1 (solid black line) and G2 (dashed gray line).
A value of u1/kT is chosen for grain level G1. The corresponding
value for G2 is determined and the value of u2/kT is read off the
axis. Values of u/kT below the critical point shift towards zero under
coarse graining (gray arrows), whereas values above the critical point
shift towards ∞ (black arrows).
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FIG. 8. Renormalization flows of u/kT going from a fine-grained
simulation (top) to a coarse grained simulation (bottom). To relate u

at two different grain levels, follow the contours from the top down to
the appropriate value of ln(G2/G1). For example, coarse graining by a
factor of G2/G1 = 4 [ln(G2/G1) = 1.39, dotted gray line] with a line
tension of u1/kT = 0.5 (black line with arrows) gives a renormalized
value of u2/kT = 0.425. The critical manifold (dashed black line)
remains fixed under renormalization.

G2 only introduces a constant prefactor of
√

G1/G2. When
coarse graining from grain level G1 to G2, the condition that
the inverse correlation length remains fixed is given by the
scaling relation

c(u2/kT )√
G2

= c(u1/kT )√
G1

. (14)

For any given values of u1, G1, and G2 this relation is numeri-
cally solved for u2, giving rise to a set of renormalization flows
as grain level G2 increases. The flows are shown in Fig. 8. By
following these flows we can relate the value of u from one
grain level to another and hence make meaningful comparison
of the resultant phase morphologies when other parameters
(such as vesicle size) are varied.

The renormalization flows show several important aspects
of the scaling behavior in the simulation. Below the critical
point, u tends towards 0, indicating clusters of finite size, which
will eventually be below the lattice resolution. At the critical
point (black dashed line) renormalization does not change line
tension because the morphology is fluctuating on all length
scales in a self-similar way [31,32]. Above the critical line
tension, u tends towards ∞. This is because underresolving
the boundary of a large domain is equivalent to damping out
its fluctuations, which shows up as an increase in line tension.

Figure 9 shows how this scaling procedure affects the
morphology of lattices at different grain levels. As an example
we illustrate a lattice of 40 000 vertices being coarse grained
to a 10 000 vertex lattice (holding vesicle size fixed), giving
a grain level of G2/G1 = 4. For naive coarse graining, where
line tension is treated as a true energy per unit length,
the morphologies can be radically different and comparison

FIG. 9. Renormalization is required in order to compare simu-
lations having different levels of coarse graining. The two lattices
above have 10 000 vertices (left G2) and 40 000 vertices (right
G1). Holding the true line tension fixed under coarse graining (top)
leads to radically different morphologies. Holding the scaleless line
tension fixed (middle) at u1/kT = u2/kT = 0.5 produces qualita-
tively similar morphology, but different correlation length. Using
the renormalization flows (bottom), coarse graining by G2/G1 = 4
yields u2/kT = 0.425. This produces equivalent morphologies with
similar correlation length.

becomes meaningless. Using the scale-invariant form of line
tension u for both grain levels u1/kT = u2/kT = 0.5, there
is qualitative agreement between the morphologies, but the
linear dimension of the structures is still off by a factor
of

√
G2/G1. Using renormalization flows for u1/kT = 0.5

and G2/G1 = 4, the value u2/kT = 0.425 is used for the
coarse-grained lattice (solid black line in Fig. 8). These values
produce both qualitative agreement and structures of the same
linear dimension.

This exercise in renormalization outlines the potential
pitfalls of coarse graining a model when parameters that are
sensitive to the removal of degrees of freedom may be present.
We have also outlined a general procedure for empirically
solving renormalization flows whenever an equivalence class
can be defined that is independent of the grain level (in our
case, phase morphologies with the same inverse correlation
length).

B. Flat and spherical lattices

Previous simulations have shown that the competition
between line tension and curvature energies, defined by the
Helfrich energy functional (1), can stabilize modulated phases.
These results closely match the characteristics of modulated
phase patterns observed on GUVs in the four-component
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FIG. 10. With parameters that give rise to modulated phases
(Table I) on a spherical lattice (solid curve), modulated phases do
not appear on a flat lattice (dashed curve).

lipid system DSPC/DOPC/POPC/chol. All of the previous
simulations were performed on a triangulated spherical surface
to best approximate the shape and size of the observed GUVs.
The spherical lattice imposes a constant background curvature
that breaks the symmetry of the energy functional and may play
an important role in the formation of modulated phase patterns.
To better understand the role that this symmetry-breaking plays
in the formation of modulated phases we perform simulations
on spherical and flat lattices to compare the resultant phase
morphology.

1. Modulated phases do not appear on flat lattices for parameters
that produce modulated phases on spherical vesicles

Simulations were performed with the parameters shown in
Table I. The value of line tension u/kT = 0.7 ensures that
the model is in the two-phase region, but is low enough
so as not to dominate the energy landscape. The bending
moduli are slightly higher than literature reported values [33],
but are chosen to produce modulated phase patterns. Setting
κ̄ = −κ is consistent with literature estimates [34]. These
parameters give modulated phases when used on a 50-μm-
diam spherical surface. When these same parameters are used
on a flat lattice with dimension 96 × 83 μm2 (equal area and
vertex density), modulated phases do not appear. Simulation
correlation functions and the representative morphologies are
shown in Fig. 10. This finding implicates background curvature
as a stabilizing factor in curvature-induced modulated phases.

2. Background curvature is important
in stabilizing modulated phases

To study how background curvature affects the formation
and stability of modulated phases a series of simulations was
performed in which only the background radius of curvature
was changed. To produce different background curvatures the
spherical and flat lattices were molded, scaled, and truncated
to produce open spherical caps with the same vertex density.
The observed changes in morphology are shown in Fig. 11. We
find that for the parameter set explored, background curvature

FIG. 11. Background curvature is important to stabilizing mod-
ulated phases. From right to left the background radius of curvature
is increased. Each simulation shown has the same area per vertex
(0.78 μm2/vertex) and is drawn on the same absolute length scale
for comparison.

is necessary for the stability of patterns. Increasing the radius
of curvature by about 50% (to 35 μm) causes a broadening of
the domain size, while a doubling of the radius of curvature
(50 μm) is sufficient to altogether arrest the formation of a
well-defined periodic pattern. Macroscopic domains persist
as the radius of curvature is further increased. The sudden
onset of modulated phases as the surface is curved represents
a buckling instability that exchanges the energy cost of
bending a large Lo domain for an increase in phase boundary.
Similar curvature-induced morphological instabilities have
been observed that minimize the phase boundary using out-of-
plane deformations of the membrane [35]. These observations
may have implications for raft morphology, given the large
variations in curvature observed for living cells [36].

C. Nanodomains and electrostatics

So far the simulation outlined successfully models GUVs
with optically resolvable modulated phases and macroscopic
domains. To study the nanoscopic phase separation observed
in some model systems [1,13,21,37], the simulated vesicle
is scaled down so that each vertex represents only a handful
of lipids. At this scale nanometer-size domains are resolvable,
allowing us to explore their morphology and stability. Here we
simulate vesicles that are 60 nm in diameter with a resolution
of 10 000 vertices, giving a grain level of approximately two
lipids per vertex. Our motivation for this particular vesicle
size is that 60-nm vesicles are used by Heberle et al. in small-
angle neutron scattering to study the size and distribution of
nanodomains [12].

When each vertex represents only a few lipids, it is
necessary to consider electrostatic dipole interactions, which
vary on this length scale. Previous calculations of the range
of the electric fields within bilayers showed a decay length
between 2 and 4 nm depending on the concentration of salt in
the surrounding medium [17]. For GUV simulations of optical
phenomena this allowed treating dipole interactions as a con-
tribution to the mechanical parameters describing the Helfrich
energy functional and enabled obtaining bending modulus
values directly from experiment [33]. At the nanodomain
scale this decay length represents several lipid shells and thus
must be treated as a separate term in the energy functional as
described by Eqs. (5) and (6). Since the microscopic origin
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of the electrostatic interaction is approximated as adjacent,
parallel molecular dipoles, it is necessarily a dispersive
interaction that will compete with line tension. This provides a
potential mechanism for the stabilization of nanoscopic phase
separation.

1. Electrostatic parameters

To implement this model we start with approximate values
for the electrostatic parameters. The key parameter that
controls the magnitude of the interaction is the dipole density
of each phase μd and μo. The most robust measurement of this
parameter comes in the form of the dipole potential 
d [38],
which is the difference in electrostatic potential between the
surface and interior of the membrane. This value is on the
order of 300 mV for the Ld phase and has been estimated to
be as high as 1000 mV for the Lo phase [39,40]. In order to
convert such a measurement to dipole density we must assume
a geometry for the charge distribution. The simplest geometry
that captures the essential features of the transmembrane
potential has the headgroups as a parallel plate capacitor.
A positively charged plate is placed at the headgroup-chain
interface and a negatively charged plate at the headgroup-water
interface [25,27]. This provides the simple relation μ = ε
d

for the dipole density, where ε is the effective dielectric
experienced by the molecular dipoles.

The dielectric constant ε for our simulation is not well
determined. The electrostatic environment within the head-
group region of the membrane is very complicated. It has a
high degree of anisotropy with estimates of the normal and
lateral components of the dielectric tensor ranging over two
orders of magnitude [41,42]. We constrain our value of ε

by noting that the major contributions to the dipole density
come from the carbonyl groups that link the acyl chains
to the glycerol backbone and from bound water [43]. The
zwitterionic phosphotidylcholine headgroup is oriented nearly
parallel to the membrane surface and thus contributes little to
the normal component of the dipole density [40]. With this
in mind we choose ε = 8 to emphasize that the carbonyls are
partially submerged in the hydrocarbon portion of the bilayer,
which has a low dielectric [27,38,41,44]. Using these values in
the parallel plate capacitor equation yields an estimate for the
Ld dipole density of μd = 133 e−/μm. For the Lo phase we
use the value 
d = 700 mV [39], which gives a dipole density
of μo = 309 e−/μm. This contrast between the two phases
�μ = μo − μd = 176 e−/μm produces the frustration that
could drive the breakup of macroscopic domains.

The other parameter in Eq. (5) that needs to be addressed
is the decay length of the electric fields within the plane of
the bilayer k−1 (not to be confused with the Debye length
in the aqueous surrounding medium). This parameter is well
constrained and depends on the salt concentrations in the
surrounding medium and the geometry of the bilayer. Previous
simulations of the Debye-Hückel equation allowed solving
for the electrostatic potential in and around a circular phase
domain and enabled calculating this decay length [17]. See
Ref. [24] for a detailed explanation of these calculations. We
found the accessible range of decay lengths from k−1 ≈ 1 nm
at arbitrarily high salt concentrations up to k−1 ≈ 4 nm for a
surrounding medium of pure water. We used a default value

k−1 = 2 nm, corresponding to a physiological concentration
of salt in the surrounding medium.

In Secs. III C 2–III C 4 we consider only the competition of
line tension and electrostatics as given by Eq. (6). In Sec. III C 5
we consider the added complexity of curvature in tandem
with line tension and electrostatics. Line tension is chosen
to be u/kT = 0.7 because this yields the two-phase region
while still exhibiting interesting behavior with the electrostatic
parameters derived above. We set the phase fraction of the
membrane to be P = 0.5 to emulate being in the center of a
tie line far from any phase boundaries in composition space.
The default parameter set for our exploration of electrostatics is
shown in Table II unless otherwise stated. The bending moduli
shown only apply to Sec. III C 5, where Helfrich curvature
terms are included.

2. Contrast in dipole density between phases
breaks up phase domains

The contrast in dipole density between the two phases �μ

dictates the magnitude of the electric fields. To explore how the
dipole interactions disrupt the phase domain morphology we
examine the correlation functions for a series of simulations
with �μ = 0 up to �μ = 176. To achieve this contrast the
value of μo is changed while the value of μd is held fixed
at the value given in Table II. The results of this series are
summarized in Fig. 12.

For �μ = 0 the electrostatic interactions are irrelevant
to the energetics. A single hemispherical domain exists, as
indicated by the linear correlation function crossing the line
C(r) = P at r ≈ 45 nm. As �μ increases, the correlation
function abruptly shifts from linear to an exponential decay
curve. This indicates that the hemispherical domain has
dispersed into smaller irregular clusters. For dipole density
contrast greater than �μ = 130 e−/μm correlation lengths
range from 10 to 20 nm (inset of Fig. 12), consistent with the
estimated size of nanodomains.

FIG. 12. Correlation functions for a series of dipole density
contrasts �μ. As dipole contrast is increased the macroscopic domain
morphology (straight line) abruptly transitions to an exponential
decay. The inset shows the correlation length as a function of �μ.
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FIG. 13. Heat capacity for a spherical lattice without (black
line) and with electrostatic repulsion (gray dashed line, with the
parameters in Table I). Electrostatics shifts the critical point to the
right, explaining why increasing dipole contrast can lead to an abrupt
shift between macrodomains and nanodomains.

3. Inclusion of dipoles shifts critical line tension to a higher value

To better understand the mechanism behind the transition
from macroscopic to nanoscopic phase separation caused by
dipolar repulsion, we measure how the miscibility critical point
has shifted. The heat capacity is measured as a function of
u/kT for a dipole density contrast of �μ = 176 e−/μm and
decay length of k−1 = 2 nm. The results of this calculation are
shown in Fig. 13.

The inclusion of a dipolar repulsion term shifts the
miscibility critical point to a higher value of u/kT than that of
the triangular lattice Ising model. The critical point now occurs
at ucrit/kT ≈ 0.72. Once the dipole density contrast is high
enough to shift the critical point above the current line tension
(u/kT = 0.7) the system transitions from two coexisting
phases to one phase. This shows why the transition observed
when �μ is increased occurs so abruptly. This finding is
interesting; it shows a sharp transition from macroscopic to
nanoscopic phase separation that is sensitive to a specific
aspect of membrane composition. The local composition of
the plasma membrane is known to be under tight regulation by
the cell, thus providing a possible mechanism for the formation
and dissipation of membrane rafts.

4. Decay length of electric fields influences domain size

The other parameter important for describing dipolar
repulsion in the membrane is the decay length of the fields
within the plane of the bilayer k−1. Whereas the contrast
�μ describes the magnitude of the electric fields, the decay
length describes how many shells of lipid are affected by the
dipole moment of a given lipid. With the geometry of the
bilayer fixed, the only external factor governing the decay
length is the concentration and type of ions in the surrounding
medium. For physiological conditions this decay length is
1.5–2 nm [24]. To explore how the decay length (and by
extension the salt concentration) affects the phase morphology
we performed a series of simulations, varying the decay length
from k−1 = 1nm (high salt concentration) up to k−1 = 3 nm
(low salt concentration). The resultant correlations functions
are summarized in Fig. 14.

FIG. 14. Correlation functions for a series of decay lengths
from k−1 = 1 to k−1 = 3 nm. The smallest decay length leads to
macroscopic phase separation, which transitions smoothly to small
clusters as k−1 is increased. The inset shows the correlation length
as a function of k−1, which shows that for k−1 > 1.5 nm, correlation
lengths are on the order of 10 nm.

We find that as the decay length is increased the phase
morphology shifts from macroscopic domains to clusters with
progressively shorter correlation length (inset of Fig. 14).
For the shortest decay length k−1 = 1 nm, the electric fields
only extend roughly two lipid shells. Such a short decay
length limits dipolar repulsion to a local effect that does not
disrupt large-scale phase separation, as indicated by the linear
correlation function.

As the decay length is extended, dipolar repulsion affects
more and more shells of the lipid. The overlap in the
electric fields from nearby lipids becomes more significant and
frustrates the formation of a single large domain. This decrease
in stability becomes apparent as the correlation function peels
away from the macroscopic case and takes on the characteristic
shape for irregular clusters.

The range of values examined here effectively covers the
range of physically realizable decay lengths. The shorter decay
lengths of 1–2 nm are expected for physiological conditions on
the cytosolic side of the plasma membrane. The larger decay
lengths greater than or equal to 3 nm are typical of conditions in
GUV experiments, where sucrose-glucose solutions are used
to provide density and optical contrast.

5. Curvature and electrostatics stabilize
circular domains on LUVs

In our previous study of competing interactions and phase
morphology [18], curvature was used as a competing interac-
tion with line tension to break up macroscopic domains and
stabilize modulated phases at an optical scale. Here we have
shown that electrostatic repulsion is another interaction that
can compete with line tension to produce phase morphology
at nanodomain size scales. The next step in complexity for this
model is to consider both electrostatics and curvature terms
working in tandem and assess how the phase morphology is
affected.
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FIG. 15. Curvature and electrostatics together stabilize modu-
lated phases on LUVs. With modest values of bending moduli,
curvature alone (not shown) yields macroscopic phase separation,
while electrostatics alone (E) yields a roughly 9-nm correlation
length. Curvature with electrostatics [C(κd,κo) + E] yields a slight
increase in correlation length, followed by the formation of modulated
phases with domain diameter of 8 nm as κo is increased. Correlation
curves shown are stacked with a constant vertical offset.

The simulations in this section use the energy functional
defined by Eq. (6) but also include the Helfrich curvature
energy terms from Eq. (1). As a starting point for our
exploration, bending modulus values are chosen similar to
those measured by Semrau et al. [45] (κd = 2 × 10−19 J,
κo = [8 − 20] × 10−19 J) and the remaining parameters from
Table II. A series of simulations was performed for increasing
value of κo (and by extension κ̄o). The results of these
simulations are shown in Fig. 15.

When electrostatic terms are not included these curvature
parameters alone were not sufficient to disperse a macroscopic
domain (not shown). By contrast, electrostatics alone (E)
strongly opposed the formation of a single macroscopic do-
main, producing a correlation length of about 9 nm. When cur-
vature is included together with electrostatics [C(κd,κo) + E],
the simulated domains become larger, e.g., the correlation
length increases from 9 to 12 nm. This surprising result shows
that curvature is not simply an interaction that opposes line
tension, but instead works in a direction to minimize the frus-
tration of bending the membrane. As κo is increased further,
modulated phases precipitate with a smaller characteristic size
of approximately 8 nm in diameter. Experimentally measured
bending moduli already contain contributions from the dipole
repulsion of nearby lipids, so we must be mindful of this when
interpreting the values used to produce modulated phases in
Fig. 15.

6. Comparison to SANS experiments

Recently the work of Heberle et al. [12] has shown that
SANS experiments detect signatures of small domains on
the surface of 60-nm LUVs. These measurements revealed
domains approximately 14 nm in diameter in the model
membrane system DSPC-POPC-chol.

With simulation parameters chosen to emulate these exper-
imental conditions, we make a direct comparison of the length
scales of our simulated morphology with those measured by
neutron scattering. For electrostatic decay length of k−1 =
3 nm (no salt) and vesicle diameter of 60 nm the simulated
phase domains have a correlation length of 9–11 nm (inset of
Fig. 14). This result is close to the direct size measurements of
SANS, showing that electrostatic repulsion can compete with
line tension to stabilize structures in the predicted size range
of the nanodomains.

IV. CONCLUSION

Expanding on the simulation techniques from our previous
work [18], we have identified line tension as a running coupling
constant, which necessitates the use of renormalization group
techniques to properly account for how line tension must
change as degrees of freedom are lost in coarse graining. The
renormalization procedure we outline can be used to relate
the line tension at any two grain levels to produce equivalent
morphologies (defined as having the same correlation length).
Furthermore, this technique may be used as a general way
of empirically determining renormalization flows for a given
parameter.

Background curvature is found to play an important role
in the formation of modulated phases. When parameters that
give modulated phases on a sphere are used on a flat sheet (of
equivalent area and vertex density) modulated phases do not
appear. A series of simulations in which background curvature
was varied shows the transition to modulated phases only after
a significant degree of background curvature is present.

We implement a model for the dipolar interactions between
lipids and find that electrostatic repulsion can explain the
formation of nanodomains in model membrane systems.
Increasing the dipole density contrast �μ leads to the breakup
of macroscopic domains into irregular clusters. The nature of
this transition is caused by a shift of the miscibility critical
point to a higher value of line tension.

The decay length of the electric fields within the plane of
the bilayer is found to be important to the phase morphology.
Even though electrostatic interactions have a decay length
of only a few nanometers, this is still several lipid shells,
which proves important at the small scales relevant to nan-
odomains and membrane rafts. Varying the decay length from
1 nm up to 3 nm can drive a transition from macroscopic
domains to clusters with correlation lengths on the order
of 10 nm.

Surprisingly, on a highly curved membrane (such as the
surface of 60-nm vesicles) the inclusion of both curvature and
electrostatics can lead to a larger overall domain size than
with electrostatic repulsion alone. This increase shows that
curvature can work to either stabilize or disperse domains,
depending on the parameters and interactions used in the
simulation. Further increasing the stiffness of the raft phase
leads to the formation of modulated phases. This result is
surprising because all bending moduli used in this study
produce only macroscopic phase separation in the absence
of the electrostatic interaction.

The size of simulated domains for 60-nm LUVs can
be compared to the experimentally measured domain
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sizes from SANS. The range of correlation lengths from
simulations (9–11 nm) matched well with the measured
domain size in the model system DSPC-POPC-chol (≈14 nm
in diameter). Thus a dipolar repulsion can compete with
line tension to stabilize phase domains on the nanometer
scale.
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