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Dynamics of a semiflexible polymer or polymer ring in shear flow
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Polymers exposed to shear flow exhibit a remarkably rich tumbling dynamics. While rigid rods rotate on Jeffery
orbits, a flexible polymer stretches and coils up during tumbling. Theoretical results show that in both of these
asymptotic regimes the corresponding tumbling frequency fc in a linear shear flow of strength γ scales as a power
law Wi2/3 in the Weissenberg number Wi = γ τ , where τ is a characteristic time of the polymer’s relaxational
dynamics. For a flexible polymer these theoretical results are well confirmed by a large body of experimental single
molecule studies. However, for the intermediate semiflexible regime, especially relevant for cytoskeletal filaments
like F-actin and microtubules, the situation is less clear. While recent experiments on single F-actin filaments are
still interpreted within the classical Wi2/3 scaling law, theoretical results indicated deviations from it. Here we
perform extensive Brownian dynamics simulations to explore the tumbling dynamics of semiflexible polymers
over a broad range of shear strength and the polymer’s persistence length lp . We find that the Weissenberg number
alone does not suffice to fully characterize the tumbling dynamics, and the classical scaling law breaks down.
Instead, both the polymer’s stiffness and the shear rate are relevant control parameters. Based on our Brownian
dynamics simulations we postulate that in the parameter range most relevant for cytoskeletal filaments there is
a distinct scaling behavior with fcτ

∗ = Wi3/4f̂c(x) with Wi = γ τ ∗ and the scaling variable x = (lp/L)(Wi)−1/3;
here τ ∗ is the time the polymer’s center of mass requires to diffuse its own contour length L. Comparing these
results with experimental data on F-actin we find that the Wi3/4 scaling law agrees quantitatively significantly
better with the data than the classical Wi2/3 law. Finally, we extend our results to single ring polymers in shear
flow, and find similar results as for linear polymers with slightly different power laws.
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I. INTRODUCTION

Conformations as well as dynamics of biopolymers are
nowadays well accessible through single molecule studies.
Biopolymers with different degrees of flexibility like DNA
[1–3] or cytoskeletal filaments like F-actin [4,5] and micro-
tubules [6–10] have been studied extensively. This has, in
combination with theoretical efforts, lead to important insights
into the statistics of their conformations in thermal equilibrium
[11–13]. Using the same experimental techniques, the dynam-
ics of polymers as well as their response to external forces
[1,14–17] or flow fields [3,18–20] may be analyzed and
are now well characterized theoretically over a broad range
of polymer stiffnesses. The effect of bending stiffness on
the relaxational dynamics in quiescent solution [4,13,21–23],
and the linear response to weak external forces has been
investigated in detail [15,24,25]. Even the response to strong
fields and the ensuing nonequilibrium dynamics is fairly well
understood [26–30].

Here we study the dynamics of single polymers in shear
flow which leads to a tumbling motion, i.e., an end-over-end
turning of the polymer. It has been experimentally studied
mainly for DNA [3,31–36], and more recently also for F-actin
[37]. There are two characteristic time scales, the shear rate
γ and the polymer’s relaxation time τ . Hence one expects
that their ratio, known as the Weissenberg number Wi = γ τ ,
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is an important dimensionless quantity. However, there is an
ambiguity in the definition of the Weissenberg number, as it
remains elusive whether the relaxation time refers to global
rotation of the polymer or internal relaxation of the segments
relative to each other. For long DNA, much longer that its
persistence length lp, the characteristic tumbling frequency
was found to scale as a power law Wi2/3 [33–35], where τ

was taken as the internal relaxation time. This is in accordance
with theoretical work [20,38,39] and numerical simulations
for flexible polymers [40–46]. It is commonly argued that the
relaxation time in the Weissenberg number should be that of
the slowest modes [34,42,47]. While for a flexible polymer
these clearly are internal modes, it will eventually become
the global rotation with increasing polymer stiffness. In fact,
recent work for short DNA segments and F-actin employ the
rotational relaxation time [37,48]. Strikingly, the tumbling of
a stiff rod, which may be solved exactly, shows the same Wi2/3

scaling behavior as a flexible polymer [49–51] despite the fact
that now τ refers to the global rotation time. This agreement
in the scaling behavior of the flexible and the stiff limit is
odd as the physics of the tumbling process is qualitatively
different. While flexible polymers stretch and coil up during
tumbling avoiding large shear gradients [3,31,33–35,52], rigid
rods rotate (Jeffery orbits) and are thereby exposing the full
contour to shear [37,49].

Cytoskeletal filaments like F-actin and microtubules are
intermediate between these two extremes. Due to their finite
bending stiffness they neither remain completely straight nor
do they fully coil up. Indeed, recent experiments on F-actin
in shear flow show that they follow a unique U-shaped path
during the tumbling event, with most of the contour staying
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straight and the polymer exploring only a short distance,
when compared to the contour length, in the shear gradient
direction [37]. While these experimental results have still
been interpreted within the classical Wi2/3 scaling behavior,
theoretical work clearly indicates deviations from this scaling
behavior [44].

Here we perform Brownian dynamics simulations of single
linear and ring polymers over a broad range of polymer
stiffnesses and shear rates. We recover previous scaling results
obtained in the limits of a flexible linear polymer and a stiff
rigid rod. In the regime relevant for semiflexible biopolymers
we identify new scaling regimes and rationalize those in terms
of two qualitatively distinct Euler buckling instabilities which
lead to two types of tumbling regimes with a characteristic
sequence of polymer shapes. We show that in addition to the
Weissenberg number the stiffness of the polymer is crucial
to fully characterize the tumbling behavior, and find in our
simulations that for intermediate stiffness there exists a new
scaling regime, where the characteristic tumbling frequency
scales with a power law γ 3/4 distinct from the classical
result. Our results quantitatively explain recent experimental
results on F-actin [37], both with respect to the magnitude of
the tumbling frequency and the scaling with shear strength.
Moreover, we will also discuss the behavior of ring polymer
in shear flow. These polymers are much less studied than
linear polymers. Recent experimental and theoretical studies
have mainly focused on equilibrium conformations [53–55].
The results for ring polymers are similar to those for linear
polymers but with different power laws. In addition, to
tumbling motion we also find tank-treading dynamics similar
to recent studies [56,57]. For illustration we have added movies
of ring and linear polymers in shear flow in the Supplemental
Material [58].

The paper is organized as follows: In Sec. II we introduce
the wormlike chain model, the Langevin equation in the free
draining limit, and give a concise discussion of the numerical
algorithm used for the simulations. In the following section, we
discuss the relaxation behavior of a polymer in equilibrium. We
review previous results for linear polymers, and derive analytic
expression for the relaxation of ring polymers. In Sec. IV
we present a numerical study of the tumbling dynamics of a
linear polymer in shear flow with special focus on the effects
of polymer stiffness. Then we generalize our study to ring
polymers in shear flow in Sec. V. The appendix contains an
elaborate analysis of the numeric algorithm used to simulate
ring polymers, the simulation parameters, and the analytic
calculation of the relaxation dynamics of ring polymers.

II. LANGEVIN DYNAMICS OF A SEMIFLEXIBLE
POLYMER

We describe the polymer’s contour in terms of a continuous,
inextensible space curve r(s,t), where s denotes the arc
length position s ∈ [0,L]. The bending energy costs for a
particular polymer conformation are given by the wormlike
chain Hamiltonian [59,60],

H[r(s,t)] = κ

2

∫ L

0
ds

(
∂2r(s,t)

∂s2

)2

. (1)

Here, the bending stiffness κ is related to the persistence length
by lp = κ/kBT , which measures the distance over which
the orientation of the tangent vectors are correlated. We are
interested in the full stiffness range covering stiff polymers
(lp � L) as well as highly flexible polymers (lp � L). We
assume that the dynamics of the polymer in an external fluid
velocity field u(r) is governed by a Langevin equation in the
free draining limit,

ζ
∂r(s,t)

∂t
= −δH[r(s,t)]

δr(s,t)
+ ζ u(r) + η(s,t), (2)

where ζ denotes the friction coefficient, and η is a Gaussian
white noise with average zero, and an amplitude determined
by the Einstein relation,

〈ηi(s,t) ηj (s ′,t ′)〉 = 2 ζ δij kBT δ(s − s ′) δ(t − t ′). (3)

Using the free draining limit is well justified in the stiffness
range lp � L: Evaluating the Fourier transformation of the
Green’s function for a hydrodynamic force field (Oseen
tensor) gives only a weak (logarithmic) mode dependence
of the mobility [23,61]. This is basically due to the mostly
straight conformation of stiff filaments. Since the tumbling
of a flexible polymer under shear is dominated by relaxation
processes where the polymer is rather elongated [41], one
expects long-ranged hydrodynamic interactions to be of minor
importance even in the highly flexible limit. Indeed, recent
investigations show that the free draining limit yields basically
the same behavior as simulations fully accounting for long-
ranged hydrodynamic interactions; The tumbling frequencies
are slightly overestimated [45,46]. These effects become even
smaller upon using a dimensionless representation [20]. Taken
together, we conclude that it is well justified to use the free
draining limit for the tumbling dynamics under shear flow over
the whole stiffness regime. Note that for similar reasons we
have also assumed isotropic friction in Eqs. (2) and (3).

For our numerical simulations of the Langevin dynamics
we employ a bead-rod algorithm [62–64] following closely the
method described in Ref. [65]. For the reader’s convenience
we give a concise summary of the basic ideas next, and refer
the interested reader to Ref. [65] for an in-depth exposition
of the numerical algorithm: The polymer is discretized into
N = L/b rods of fixed length b leading to the discretization
of the continuous expressions for the bending energy and
equation of motion as described in Ref. [65]. The length
constraint is implemented by Lagrangian multipliers, and
additional metric pseudoforces are introduced to make sure
that the constrained dynamics yields the proper equilibrium
distributions; the metric forces are implemented by an efficient
algorithm introduced in Ref. [66]. Due to the constraints it is
advantageous to interpret the stochastic differential equation
using a kinetic stochastic integral [67], which implies that a
specific midstep algorithm has to be used [62,65,67].

In detail, this midstep algorithm is implemented as follows:
First the bond vectors for the current contour and the resulting
constraints are determined. Then properly scaled noise is
generated. In order to achieve a fast algorithm, we use
uniformly distributed random numbers for the noise, which
has been shown to amount to the same behavior as Gaussian
white noise within the statistical errors [63]. Next, the noise
is projected on the subspace allowed by the constraints on

022606-2



DYNAMICS OF A SEMIFLEXIBLE POLYMER OR POLYMER . . . PHYSICAL REVIEW E 89, 022606 (2014)

the bond length. Then the metric potential combined with the
bending forces is calculated. Finally, noise and flow forces are
added to the bending forces, and the sum of forces is projected
on the allowed subspace. With these forces a midstep position
is calculated. Now as the special feature of the required midstep
algorithm, all deterministic forces have to be evaluated a
second time, using the virtual contour at the midstep position.
These forces are added to the original projected noise and
projected on the allowed subspace to determine the actual
move of the polymer in this time step.

For the simulation of a ring polymer, one needs the addi-
tional constraint r(t,0) = r(t,L). While the matrix involved in
determining the Lagrangian multipliers for the projection is
symmetric tridiagonal for a linear chain [62,65], it becomes
a cyclic symmetric matrix for a ring polymer. Fortunately,
cyclic matrices may be solved as efficiently as tridiagonal
matrices by standard recursions and thus the calculation of
the projection steps required no significant adjustment. The
efficient calculation of metric pseudoforces uses the same
matrix as the projection and has to be extended for the ring
case. To keep the algorithm, i.e., the computation time, linear in
the number of beads we applied basic matrix transformations
to rewrite the matrices in the usual tridiagonal form; see
Appendix A for details. On this modified matrix we used the
same algorithm as for the linear chain [66].

To minimize discretization artifacts in our simulation
results, we employed an iterative scheme. For each given shear
flow we used two realizations with the largest and smallest
values of lp/L to check the influence of the discretization, i.e.,
the bond length on the results. To this end we performed test
simulations using a given bond length b, and then repeated
the simulations using a halved bond length. If the final
result, e.g., the power spectrum, was significantly changed, we
repeated this procedure of halving the bond length. Otherwise,
we took the corresponding bond length for the production
runs of our simulations. For the simulation in shear flow
the two parameters lp/L and γ both affect the acceptable
discretization. The stronger the flow, the shorter the bonds
need to be, but at the same time longer bonds, i.e., a lower
discretization may be used for for higher values of lp. Thus the
precise value had to be determined for each set separately. Due
to the discretization the bond length will not remain strictly
constant throughout the simulation. We adjusted the numeric
time step in order to keep the maximal error in the bond length
below 2% during each simulation.

To complement and check our simulations with the bead-
rod algorithm, we also implemented a bead-spring algo-
rithm where the bonds are represented by springs instead
of constraints. For the results in both types of algorithms
to be comparable, the fluctuations in the bond length in
the bead-spring simulations should be comparable to the
error in bond length of the bead-rod simulations. This is
guaranteed by using a stiff spring. The accurate numerical
simulation of these strong potentials of the springs requires
time steps which are much smaller than the one used in the
bead-rod simulations. Therefore the bead-spring simulation
needed longer computational times for a given system than
the corresponding bead-rod simulation. Hence we restricted
the bead-spring simulations to a representative subset of
parameter sets covering the full range. In all cases, results were

in excellent quantitative agreement with the corresponding
bead-rod simulation. We also checked our simulations against
the known results of the conformation dynamics of linear
polymers [4,13]. For the ring polymers we compared our
results to the Monte Carlo simulations for the equilibrium
shape [53]. In all cases we found identical results.

For the presentation of our numerical results we define the
time scale,

τ ∗ = ζL3

2kBT
. (4)

This corresponds to the time the center of mass of a rigid rod
of length L takes to diffuse its own contour length; it is a
convenient measure since it is independent of the persistence
length lp. For later reference, an actin filament with a contour
length of L = 10 μm and a diameter of 5 nm in a solution
with a viscosity of 0.1 Pa s at a temperature of 20 ◦C has τ ∗ ≈
1.5 × 104 s. Hence for such a system, e.g., a flow with γ τ ∗ =
1.5 × 105 corresponds to a shear gradient of γ ≈ 10 s−1. For
the actual numerical simulation we employed time and length
scales such that kBT = ζ = 1 and adjusted the contour length
to result in the desired value of τ ∗.

III. CONFORMATIONAL DYNAMICS

A. Linear polymers

The equilibrium relaxation dynamics of linear semiflexible
polymers has been studied previously and we will only give
a short summary of the relevant results needed for later
comparison [23,26,61,68–71].

In the parameter regime where the polymer contour length
L is comparable or smaller than the persistence length lp,
longitudinal (stored length) fluctuations are negligible and only
bending (undulation) modes are important. Then the Langevin
equation reduces to

ζ
∂r⊥(s,t)

∂t
= −κ

∂4 δr⊥(s,t)

∂s4
+ η⊥(s,t), (5)

where for the noise η⊥(s,t) it holds 〈η⊥(s,t)〉 = 0 and
〈η⊥(s,t) η⊥(s ′,t ′)〉 = 4 ζ kBT δ(s − s ′) δ(t − t ′) . This equa-
tion can be solved by a linear mode analysis [26,70]. For
free ends one finds for the mean square fluctuations of the
end-to-end vector R [4],

δR2 := 〈(R(t) − R(0))2〉 = L4

90l2
p

F
(
t/τ lin

L

)
, (6)

where

τ lin
L = ζ

κ

(
L

A

)4

, (7)

with A ≈ 4.73. While for times much smaller than the longest
relaxation time τ lin

L , one gets a simple power law,

δR2 ∼= 2.71
L

l2
p

(
κ

ζ
t

)3/4

, (8)

and it saturates at the equilibrium value,

δR2 = L4

90l2
p

, (9)
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for t � τ lin
L . Additionally, the polymer undergoes global

rotation, which is purely diffusive and usually only seen after
the internal relaxation saturated.

B. Ring polymers

In the following we present the first discussion of the
relaxation behavior of a semiflexible ring polymer. For this
we need to slightly modify the above standard approach. A
convenient observable, which includes fluctuations of the size
as well as the orientation of the ring, is the diameter vector of
the ring defined by

D(t) := r(0,t) − r
(

L

2
,t

)
, (10)

where the choice of s = 0 is arbitrary. To calculate the
mean-square displacement of the ring diameter, δD2(t) =
〈(D(t) − D(0))2〉, we assume that the semiflexible polymer’s
configuration is effectively constrained to a plane [53]. Then,
the polymer dynamics may be decomposed into global rotation
and internal relaxation of this planar polymer configuration.
As any change of the plane requires the whole ring to
move, this will happen on a much larger time scale than the
relaxation within the plane, and we may separate these two
processes, such that δD2 = δD2

rot + δD2
shape. The rotation of

the configuration plane is equivalent to a random walk on a
unit sphere [59], and hence

δD2
rot = 8R2[1 − exp(−t/τL)], (11)

where R = L/2π , and

τL = ζL3

16π2kBT
(12)

denote the longest rotational relaxation time. The internal
relaxation within the plane, which we assume to be two-
dimensional, may be determined using the weakly bending
limit and is calculated similarly to the familiar rod-shaped
case [4,23]. See Appendix C for details on the calculations.
We find

δD2
shape = 8R3

πlp

∑
n odd

1

n4 + 1

[
1 − e−(n4+1)t/τ̃L

]
, (13)

with the longest internal relaxation time given by

τ̃L = ζ

κ
R4. (14)

Thus, already for moderate filament stiffness, lp � L/π2, the
longest relaxation time is determined by rotation.

To test our analytic calculations we determined the mean-
square displacement of the diameter δD2 using our Brownian
dynamic simulations, and find good agreement, as can be
inferred from Fig. 1. The small deviations near the crossover
from internal to rotational relaxation we attribute to the
assumption of decoupled global and internal relaxation modes.

In Fig. 2 we compare the conformational dynamics of
ring polymers and linear polymers. In order to get identical
saturation values of the mean-square displacement of the end-
to-end vector and the diameter, respectively, at asymptotically
large times we take the length of the linear polymer to be equal
to the ring diameter. With this choice the longest, rotational

FIG. 1. (Color online) Time evolution of the mean-square dis-
placement of the diameter of cyclic polymers, δD2, for different
polymer stiffness lp/L indicated in the graph. For better visibility,
the curves with lp/L = 5 and lp/L = 2 are shifted by a factor of
10 and 100, respectively. Symbols give the numerical data; standard
error is below symbol size. Solid lines give the corresponding analytic
prediction as obtained from Eqs. (11) and (13).

relaxation time of the linear polymer is slightly shorter than
τL of the ring polymer. The initial relaxation is identical and
linear in t since it corresponds to free diffusion of individual
beads. At intermediate times, both linear and ring polymers
exhibit a t3/4 scaling, consistent with experimental data on
linear F-actin filaments [4]. However, the relaxation time and
the amplitude of the internal modes for ring polymers are
smaller by a factor of approximately 2. This is consistent with
the reduced fluctuations of F-actin rings reported recently [54].
Intermediate between the t3/4 scaling and the final plateau one
observes a linear diffusive regime due to rotational motion,
δD2

rot. As a consequence of the smaller internal relaxation
times, this regime begins at earlier times, and is hence more
pronounced for ring polymers as compared to linear polymers.
The crossover times are proportional to L4/lp and b4/lp,

FIG. 2. (Color online) Mean-square displacement of the ring
diameter, δD2, as a function of time for two ring polymers with
stiffness lp/L = 5 and lp/L = 50, respectively. As predicted from
the calculations, the stiffness does not affect the rotational relaxation
time nor the saturation value. For comparison the mean-square
displacement of the end-to-end vector of a linear polymer is shown,
and we adjusted the contour length of the linear chain Ll to be
identical to the diameter of the ring polymer, i.e., Ll = L/π . For this
linear polymer lp/Ll = 5. Statistical errors of the Brownian dynamics
simulations are of the order of the symbol size.
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FIG. 3. (Color online) Schematic representation of the flow ge-
ometry for a linear polymer in linear shear flow v = γ y êx [dashed-
dotted red (dark gray) arrows]. The inclination of the polymer’s
end-to-end distance R [dotted yellow (light gray) line] with respect
to the neutral plane (xz plane) is measured in terms of the angle φ

between the projection of R onto the shear plane (xy plane) (dashed
line) and the x axis.

respectively. Taken together, linear and ring polymers show
similar crossover behavior in the conformational dynamics.
The ring topology only affects prefactors in the amplitude and
the crossover time scales.

IV. LINEAR POLYMERS IN SHEAR FLOW

In this section we present the results of our Brownian
dynamics simulations of linear polymers in shear flow,

v = γ y êx, (15)

where γ is the shear rate. The flow geometry is illustrated in
Fig. 3. In this geometry, a polymer fully embedded in the xz

plane is not subject to any forces from the shear flow; hence we
call this the neutral plane. However, any thermal fluctuations
will inevitably lead to polymer conformations which are
inclined with respect to the neutral plane. We measure this
inclination by the angle φ between the projection of the
end-to-end vector R onto the xy plane (shear plane) and the x

axis [20,35,38,41]. Shear forces then lead to a tumbling motion
of the polymer. A typical time trace of φ consists of extended
time periods where the polymer shows small fluctuations close
to the neutral plane which are interrupted by fast tumbling
events; cf. Fig. 4. From these time traces we calculated the
power spectral density by using the Wiener-Khinchin theorem
[72]. To this end long time traces extending over 2000–100 000
tumbling events were recorded, and used to first determine the
autocorrelation function 〈φ(t)φ(t − tk)〉 at n = 400 equidistant
points in time tk , where the brackets denote a moving time
average, averaging over t for fixed tk .1 Next, upon taking the

1The most prominent feature of the power spectral density is a
peak at a frequency corresponding to the tumbling rate. We have
optimized the location and distance between the time points tk to
resolve this peak well. To get an initial value for tk , we tested various
values for tk for two simulations with lp/L = 0.4 and lp/L = 10 and
γ τ ∗ ≈ 4.1 × 104 to determine the shape of the power spectrum. A

FIG. 4. (Color online) Typical time evolution of the angle φ for a
linear polymer with lp/L = 2 in shear flow with γ τ ∗ = 1.35 × 104.

discrete Fourier transformation of the autocorrelation function
the power spectral density was obtained:

E(f ) =
∣∣∣∣∣
n−1∑
k=0

〈φ(t)φ(t − tk)〉 exp(−2πif tk)

∣∣∣∣∣ . (16)

As illustrated in Fig. 5, these power spectra show a pronounced
peak at some frequency fc which can be taken as a good proxy
for the characteristic tumbling rate.2 We used Gaussian fits
to determine the peak positions fc of the power spectra as
illustrated in Fig. 5.

Figure 6 shows the dimensionless characteristic tumbling
frequency fcτ

∗ as a function of the relative stiffness lp/L

for a set of dimensionless shear rates γ τ ∗ indicated in the
graph. Here we have rescaled fcτ

∗ with (γ τ ∗)−2/3 as suggested
by previous theoretical results [20,33–35,39,40,42,43]. From
Fig. 6 we infer that both for highly flexible (lp/L � 0.1) and for
almost stiff polymers (lp/L � 1), fc obeys a (γ τ ∗)2/3-scaling
law quite well as indicated by the data collapse. The slight
deviation from a perfect collapse in the flexible limit is
attributed to increased numerical errors in this regime resulting
from an increased dependence on the discretization and the
small values of the end-to-end vector. Note also that the
data collapse is better for large values of γ τ ∗. Moreover, in
both of these asymptotic regimes fcτ

∗ is largely independent
of the polymer’s stiffness lp/L in accordance with previous
theoretical work [20,37]. Deviations are found only at low

good representation, i.e., including the decline at both sides of the
peak over at least a factor of 5, was found for tk/τ

∗ = 9.7 × 10−5.
For all further simulations, we scaled tk with (γ τ ∗)2/3 relative to this
starting value. In each particular simulation slight further adjustments
of the time points tk were used whenever necessary to obtain a clear
decline at both sides of the peak in the power spectral density.

2In experimental studies frequently an alternative approach for the
definition of the tumbling frequency is used. The number of turning
events is recorded either directly or determined by using the unfolded
angle φ, i.e., recording the total covered angular distance, which then
is divided by π . The frequency may then calculate by dividing the
number of events by the total time under consideration. Throughout
the full range of γ τ ∗ under consideration here both definitions agree
well within the numerical errors; see e.g., Fig. 11.
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FIG. 5. (Color online) Typical power spectra E(f ) for the angle
φ at a shear rate γ τ ∗ = 5 × 106 and for two different values of
the polymer stiffness as indicated in the graph. The dashed lines
show Gaussian fits to the central region of the peak at the tumbling
frequency fcτ

∗.

shear rate and hence small Wi = γ τ ∗ where fc shows a
pronounced downturn for small lp/L; this does not contradict
existing theories since they are strictly valid only for high Wi.
For stiff filaments our simulations are in full accord with the
theoretical value from Jeffery’s theory [37,49,50] (dashed line
in Fig. 6),

fcτ
∗ = 3 × 61/3

22
(γ τ ∗)2/3. (17)

There is, however, a broad intermediate stiffness regime,
covering several orders of magnitude, where the characteristic
tumbling frequency fc is neither independent of the persistence
length nor does it follow a (γ τ ∗)2/3-scaling law. It rather
exhibits a nonsymmetrical peak whose position shifts to larger
values of lp/L with increasing shear rate γ τ ∗, and with it the
asymptotic approach to the Jeffery plateau is shifted towards
larger polymer stiffnesses the stronger the shear flow.

Both of these features of the tumbling frequency can be
attributed to the interplay between shear flow and bending
modes. In fact they correspond to two qualitatively different
tumbling regimes due to distinct types of Euler buckling
instabilities in shear flow, which we term local and global Euler

FIG. 6. (Color online) Scaling plot showing fcτ
∗/(γ τ ∗)2/3 as a

function of lp/L for a set of values for the shear rate γ τ ∗ as indicated
in the graph. The dashed line in the stiff limit is the tumbling frequency
of a rigid rod derived from Jeffery’s equation [49,50]. This Jeffery
plateau is reached the later the stronger the shear flow.

FIG. 7. (Color online) Typical examples for the different types
of tumbling, depending on which type of Euler buckling occurs. For
all examples shown here γ τ ∗ = 8 × 104. (a) For a flexible polymer
with lp/L = 0.025 the polymer coils up during the tumbling. (b) A
polymer with an intermediate stiffness of lp/L = 2 exhibits localized
bends (hairpin configurations) during tumbling. (c) Finally, for stiff
polymers (here lp/L = 80) the polymer configurations are weakly
curved over their full length.

buckling, as illustrated in Fig. 7. Consider a linear polymer in
shear flow with a fixed value of γ τ ∗, i.e., fixed shear rate and
polymer length. An almost stiff polymer will rotate like a rigid
rod and perform Jeffery orbits. However, upon decreasing the
persistence length, at some point the shear flow will be strong
enough to overcome the Euler buckling force of the polymer,
Fe ∼ lp/L2, and the polymer as a whole will bend during a
tumbling event; this is indeed observed in our simulations;
see Fig. 7(c). The threshold value of the persistence length,
where the polymer starts to buckle, is determined by balancing
the mechanical Euler buckling force and the shear force.
The shear flow exerts a force γy × ζL, where we may take
for y the typical transverse displacement caused by thermal
forces: y ∼ r⊥ ∼ √

L3/lp [4]. This implies for the threshold
value of the persistence length the following: lp/L ∼ (γ τ ∗)2/3.
Rescaling the data for the tumbling frequencies according to
this scaling argument results in data collapse for the onset of
the stiff regime (Jeffery limit); cf. Fig. 8. When the polymer
becomes even more flexible, there is a second shear-strength-
dependent threshold value for lp/L where local buckling
on length scales comparable to thermal bending modes
becomes possible: L2

bend ∼ r2
⊥ ∼ L3/lp. Again, balancing

mechanical and shear forces, Fe ∼ lp/L2
bend ∼ γLbend × ζLf ,

with Lf = Lbend, yields a threshold value lp/L ∝ (γcτ
∗)1/3.

As can be inferred from Fig. 9, rescaling data according
to this scaling behavior give excellent data collapse within
the range of statistical fluctuations of the data. In order to

FIG. 8. (Color online) Modified scaling plot for the tumbling
frequency to achieve data collapse for the stiff to rigid regime
0.01 (γ τ ∗)2/3 � lp/L � 1 (γ τ ∗)2/3. The rescaled tumbling frequency
fc τ ∗(γ τ ∗)−2/3 is shown as a function of (lp/L)(γ τ ∗)−2/3 for a series
of shear rates γ τ ∗ indicated in the graph.
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FIG. 9. (Color online) Modified scaling plot for the tumbling
frequency to achieve data collapse for the intermediate stiffness
regime 0.001 (γ τ ∗)1/3 � lp/L � 1 (γ τ ∗)1/3. The rescaled tumbling
frequency fc τ ∗(γ τ ∗)−3/4 is shown as a function of (lp/L)(γ τ ∗)−1/3

for a series of shear rates γ τ ∗ indicated in the graph.

achieve good data collapse for the tumbling frequency in this
intermediate stiffness regime, 0.001 (γ τ ∗)1/3 � lp/L �
1 (γ τ ∗)1/3, requires one also to rescale the tumbling frequency.
We find the best data collapse for

fc τ ∗ ∼ (γ τ ∗)3/4. (18)

The polymer conformation resulting from such a local
Euler buckling event are U shaped as illustrated in Fig. 7(b);
see also the videos in the Supplemental Material [58]. In
accordance with recent experimental results [37] the polymer
shows a specific sequence of conformations: Starting from a
fully stretched state it first acquires a configuration similar
to the letter J. The ends of the polymer then travel around
a stadium track assuming the typical U shape, and further
on return to a mirrored J before it becomes fully stretched
again. As an additional theoretical insight, it was shown in
[37] that the actual bending radius of the U turn can be
calculated by balancing shear and bending forces. This further
confirms our above scaling argument for the onset of the local
buckling instability which determines the value of the tumbling
frequency.

As the exponent 3/4 deviates significantly from the ex-
ponent 2/3 found for both flexible polymers and rigid rods,
we decided to study the shear rate dependence explicitly in
order to scrutinize this startling result; cf. Fig. 10. For the most
flexible case under consideration we recover the predictions of
the existing theories [20,33,34,40,42,43,45] throughout almost
the full range of shear strength studied here. However, upon
increasing the polymer’s stiffness a different scaling regime
with a larger exponent emerges over a continuously growing
range of γ τ ∗. Eventually, at lp ≈ L, this stronger scaling with
γ τ ∗ dominates over the full range of shear rates; cf. Fig. 10(a).
The exponent is consistent with the above intermediate scaling
regime: fcτ

∗ ∝ (γ τ ∗)3/4. Consequently, as experimentally
accessible shear rates are limited, typically in the range of
γ τ ∗ � 107 [35,37], we expect semiflexible polymers like
F-actin in a shear flow to exhibit a tumbling frequency pro-
portional to Wi3/4 throughout these experimentally accessible
shear rates. This actually explains the systematic deviation of
the experimentally measured tumbling frequencies at high Wi
for F-actin observed in Ref. [37], as well as the numerical

FIG. 10. (Color online) For different values of lp/L the depen-
dence of the characteristic tumbling frequency on the shear rate γ τ ∗ is
determined. In (a) we show fcτ

∗(γ τ ∗)−2/3 for linear polymer of weak
to intermediate stiffness. With increasing stiffness a characteristic
deviation of about 0.1 occurs for small, but increasing values of γ τ ∗.
For lp/L = 2 the deviation persists throughout the whole range of
γ τ ∗ used here, which should also cover the experimentally accessible
regime. In (b) we show directly the data for fcτ

∗ for stiff polymers.
The scaling exponent changes in the other direction than for the
flexible to intermediate filament, i.e., the new scaling exponent occurs
at high values of γ τ ∗, which increase with the stiffness of the polymer.

findings in Ref. [44]. Increasing the persistence length even
further to values lp � L, we observe an inverse crossover
back to fc ∝ Wi2/3 (Jeffery regime); cf. Fig. 10(b).

In Fig. 11 we compare our simulation results with mea-
surements of the tumbling frequency of actin filaments as
a function of the shear rate γ τ ∗ and in a length range of
L = 3–40 μm [37]. The data clearly deviate from the classical
scaling law, (γ τ ∗)2/3, as obtained for both flexible polymers
[20,34,39,40] and rigid rods [37]. The dashed line shown in
Fig. 11 is the quantitative result as derived in [37]. In contrast,
our findings based on numerical simulation agree—without
any adjustable parameter—extremely well with the experiment
data, not only with respect to the new power law, (γ τ ∗)3/4, but
also with respect to the amplitude of the numerical data. Note
also that the two solid lines were obtained from simulations
with lp/L = 0.6 and lp/L = 3 showing that the dependence
on the polymer stiffness is weak within the experimental range.
We highly welcome experiments on other experimental model
systems of semiflexible polymers such as microtubules [6,21]
or nanotubes [73,74] to further test our theoretical predictions.
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simulation
simulation

standard theory
experiment

FIG. 11. (Color online) Comparison of our simulational results,
exhibiting an increase of the frequency with (γ τ ∗)3/4, to experimental
data (squares in the plot) for F-actin [37]. The experimental data agree
well with the Brownian dynamics data and follow a (γ τ ∗)3/4 scaling
law. The data as well as the simulations are not consistent with the
classical 2/3 scaling law (solid line).

V. RING POLYMERS IN SHEAR FLOW

In this section we discuss the dynamics of ring polymers
in shear flow. To this end we employ the same kind of
simulations as described earlier for the relaxation dynamics
of ring polymers, and the implementation of shear flow as for
linear polymers. To monitor the dynamics of the ring we define
the normal to the “ring plane” as

n = D(α) × D(α + L/4), (19)

where the arc length position α being arbitrary in principle,
was chosen as α = 0. The orientation of the ring is specified
by the angle φ between n and the xz plane, similar as for linear
polymers, and in addition by the inclination θ of n with respect
to the z axis; see Fig. 12.

As reported in [56] two qualitatively different types of
tumbling events may be distinguished depending on the

FIG. 12. (Color online) Schematic representation of the flow
geometry for a ring polymer [yellow (light gray)] in linear shear flow
v = γ y êx [dashed-dotted red (dark gray) arrows]. The ring plane is
characterized by its normal (dashed line). To fully characterize the
ring’s orientation relative to the shear we use the angle φ between
the normal and the xz plane, and the angle θ between the normal and
the z axis.

FIG. 13. (Color online) (a) Typical time evolution of the angle φ

and θ for a ring with lp/L = 2 under a shear flow with γ τ ∗ = 62 500.
(b) Power spectrum of the same ring polymer as in (a) for the time
trace of φ.

inclination θ . Imagine a ring embedded in the xz plane subject
to a shear flow as indicated in Fig. 12. In the first type of
tumbling event, the normal of the ring rotates within the
xy plane, such that θ = π/2 throughout the whole tumbling
event. A typical time trace of such a “rapid turnover” event
is shown as (i) in Fig. 13: The turnover corresponds to a
sharp change in the angle φ by about π . In the second type of
tumbling event, which we term “tank-treading,” the normal to
the ring aligns with the z axis (θ = 0 and φ = ±π/2). In this
configuration the ring plane coincides with the shear plane, and
the shear gradient along the contour causes the ring to perform
a tank-treading motion. Since the force due to the shear flow
lacks a component to change the orientation of the ring plane
this state is metastable, and sufficiently strong fluctuations of
the contour are needed to complete the event and return to the
neutral plane. A typical time trace of this event is shown as
(ii) in Fig. 13: The angle φ only performs fluctuations while
the absolute value of θ decreases to 0 for a time much longer
than the typical duration of a rapid turnover event. These two
kinds of tumbling events are also illustrated in the movies
found in the Supplemental Material [58]. Of course, these
two are two rather idealized scenarios, and mixed tumbling
events are actually rather common since the initial orientation
of the ring before tumbling is broadly distributed. Hence the
characteristics of tumbling events mix, e.g., tank treading may
also be observed during quite short turnover events.

As for the linear polymers we analyze how the tumbling
frequency fc depends on the relative persistence length lp/L

for various values of the dimensionless shear rates γ τ ∗. The
resulting curves are qualitatively similar to those obtained of
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FIG. 14. (Color online) Rescaled tumbling frequency fc as a
function of lp/L for a ring polymer. As shown in (a), rescaling only the
dimensionless frequency with (γ τ ∗)2/3 again results in overlapping
curves in the flexible and stiff limit. In (b) we show that using an
exponent of 0.72 when rescaling the frequencies and shifting the
rigidity by a factor (γ τ ∗)0.5 gives good agreement from the flexible
regime to the peak. For higher values of (γ τ ∗) there seem to exist
small deviations in the fall to the stiff regime.

linear polymers; see Fig. 14. In the flexible limit, in the range
studied here, the frequency grows linearly with ln(lp/L). At
some shear-rate-dependent stiffness the frequency starts to
decline resulting in a peak structure as for linear polymers.
In the stiff limit, which again starts for larger relative stiffness
lp/L the higher the shear rates, there is hardly any dependence
on lp/L.

Keeping the discussion analogous to the linear case, upon
rescaling the tumbling frequency with (γ τ ∗)−2/3 we find data
collapse only in the flexible and the stiff limit, in accordance
with the results in [56]. In contrast to the linear case, the
tumbling frequency does not become constant even down to
very low values of lp/L. We are not completely sure on how
to interpret this numerical observation. Most likely it indicates
that for ring polymers the crossover to the fully flexible
regime occurs at much lower stiffness than for linear polymers
[53,75,76], as suggested by the different relaxations times as
determined in Eq. (14). In the intermediate semiflexible regime
there is again no data collapse if fc is rescaled by (γ τ ∗)−2/3. As
for linear polymers, the curves differ primarily by a shift of the
peak position to higher values of lp/L for stronger shear, and
an increase of fc with increasing γ τ ∗. However, the precise
numerical values of the scaling exponents are different. We
find the best data collapse upon rescaling the position of the
peaks by (γ τ ∗)−0.5, and the frequency fc by (γ τ ∗)−0.72.

VI. SUMMARY AND CONCLUSIONS

We have presented a comprehensive computational analysis
of the tumbling dynamics of single linear and ring polymers
in linear shear flow of strength γ . To this end we have
implemented a bead-rod algorithm following earlier work for
linear polymers [62–65], and generalized it to ring polymers.
Our numerical results confirm earlier analytical results for
flexible polymers and rigid rods. In both cases, though
the tumbling dynamics is qualitatively very different, the
tumbling frequency fc scales as fc ∼ Wi2/3 in the Weissenberg
number Wi = γ τ . While for rigid rods the characteristic
time τ scale is the global rotation time, it is the relaxation
time of the longest Rouse mode for flexible coils. Our
main finding is that for semiflexible polymers this simple
scaling picture breaks down. The Weissenberg number no
longer suffices to fully characterize the tumbling dynamics.
In addition to the Weissenberg number Wi = γ τ ∗, where τ ∗
is the time a polymer needs to diffuse its own length, the
tumbling frequency also depends on the polymer’s relative
stiffness lp/L. Moreover, there is a distinct (intermediate)
scaling law,

fcτ
∗ = Wi3/4f̂c(x), (20)

with the scaling variable x = (lp/L)Wi−1/3. The scaling
function f̂c exhibits a nonsymmetrical peak until a crossover
to Jeffery’s theory is reached. Both of these features can be
explained within a scaling picture analyzing the interplay
between shear flow and bending modes which leads to two
distinct types of buckling instabilities. Close to the Jeffery
limit, there is a shear-induced global Euler buckling instability
characterized by an ensuing overall bend conformation of
the polymer. With decreasing polymer stiffness there is a
second type of Euler instability where the quasistationary
conformation of the polymer in shear flow exhibits a local-
ized hairpinlike bend. These scaling pictures allowed us to
rationalize the observed scaling regimes.

We have also compared our simulation results with recent
experiments on single actin filaments in shear flow [37], and
find quantitative agreement without any adjustable parameter.
In particular, this shows that the 3/4 scaling law fits the
data significantly better than the classical 2/3 scaling law.
It would be interesting to test our numerical results also for
microtubules and carbon nanotubes [73,74]. Actually, because
of their length-dependent persistence length [6,7,77,78] the
dynamics of microtubules in shear flow may show an even
richer scaling behavior than F-actin.

Finally, we have studied the tumbling dynamics of a ring
polymer in shear flow. Similar to previous studies [56,57] we
find two distinct types of tumbling events: rapid turnovers and
tank treading. The scaling behavior of the tumbling frequency
is qualitatively similar to the results for linear polymers with
slightly different power laws.

It would be interesting to extend the theoretical analysis
of semiflexible polymers beyond the scaling picture presented
here and the force balance analysis given in Ref. [37]. We
suppose, however, that this will pose significant technical
challenges beyond the singular perturbation theory performed
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in Refs. [26,27,29,30,79] since the dynamics consists of two
very distinct regimes: rapid tumbling events interrupted by
extended quiescent periods in the neutral plane.

Further extension may account for a finite extensibility of
the polymer backbone [79–82], which one might expect to
become important for very strong shear flow.
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APPENDIX A: DERIVATION OF METRIC FORCES FOR A BEAD-ROD ALGORITHM OF RING POLYMERS

In this Appendix we derive the expression used for the metric forces required in the bead-rod algorithm to simulate ring
polymers. For details on the metric force and a derivation of the metric force in general, see Refs. [62,65,66]. Here we follow
closely the notation as introduced in Ref. [66], where the general expression for the metric force Fmet

i on the ith bead is given as

Fmet
i = −1

2
kBT

∂ ln det G

∂Ri

, (A1)

with Ri the position of the ith bead in a chain of N beads. The matrix G represents the constraints of the system and is defined
as [62,65,66]

Gμν =
∑

i

niμniν , (A2)

where niμ = ∂Cμ

∂Ri
is the derivative of the constraint Cμ with respect to the position of bead i. The constraints have to be of the

form Cμ(R1, . . . ,RN ) = const for μ = 1, . . . ,K with K the number of constraints. For the polymers under consideration the
constraints are of the form Cμ = |Rμ − Rμ+1| = b such that the distance between two beads is equal to the bond length b. For a
linear chain μ = 1, . . . ,N − 1, and it follows that the matrix G is a tridiagonal, symmetric matrix of the form,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c2 0 · · · . . .

c2 d c3 0
. . .

0 c3 d c4 0
. . .

...
. . .

. . .
. . .

. . .

0 cN−3 d cN−2 0

0 cN−2 d cN−1

. . . 0 cN−1 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

where d = 2 and ci = −ui · ui−1 for i = 2, . . . N − 1 [66]. Here ui = (Ri+1 − Ri)/b for i = 1, . . . N − 1 is the normalized
bond vector. Due to this specific form the metric force may be recast to [66]

Fmet
k = kBT

N−1∑
i=2

G−1
i−1,i

∂(ui · ui−1)

∂Rk

, (A4)

where G−1
i−1,i is the (i − 1,i) component of the inverse matrix of G. This has the advantage that it may be evaluated by an efficient

algorithm linear in the number of beads [66].
Here, we aim at keeping this advantage for the algorithm to simulate ring polymers. For a ring there are N constraints on the

bond length, which are of identical form as the constraints for linear polymers. We use periodic boundary conditions by setting
RN + 1 = R1 such that we can keep the previously stated form of Cμ, now with μ = 1, . . . ,N . Analogously the N th bond
vector is defined uN = (RN+1 − RN )/b = (R1 − RN )/b. Hence the matrix G is now of rank N × N and symmetric. However,
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in contrast to the linear case G is cyclic instead of tridiagonal for a ring polymer. With these definitions, one obtains

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c2 0 · · · . . . 0 c1

c2 d c3 0
. . . 0

0 c3 d c4 0
. . .

...
. . .

. . .
. . .

. . .

0 cN−3 d cN−2 0

0 cN−2 d cN−1 0

0
. . . 0 cN−1 d cN

c1 0
. . . 0 cN d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

where analogously to the linear chain d = 2 and ci = −ui · ui−1 for i = 2, . . . ,N , and we additionally define c1 = −u1 · uN in
accord with the periodic boundary conditions.

Starting from the general expression, Eq. (A1), we analogously to the linear case may reformulate the metric force to

Fmet
k = kBT

N∑
i=2

G−1
i−1,i

∂(ui · ui−1)

∂Rk

+ kBT G−1
N,1

∂(u1 · uN )

∂Rk

. (A6)

As compared to Eq. (A4) for linear polymers there is an additional term ensuing from the additional constraint. Since it is of the
same mathematical structure as the first term we may use an adjusted form of the algorithm developed in Ref. [66]. The basic
idea of this algorithm is to avoid the O(N3) inversion of G by only evaluating the required entries of G−1. This is achieved by
using Cramer’s rule and expressing the components of the inverse matrix by the determinant of G and the determinant of the
matrices resulting from removing a row and a column from G. For this task a linear, iterative scheme is developed in Ref. [66],
which is based on the special property of G being tridiagonal.

To adjust this algorithm for ring polymers with a cyclic matrix G we use Cramer’s rule to transform the cyclic matrix to a
tridiagonal or otherwise trivial matrices. Hence we get

det G = −c2
1 det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c3 0 · · · . . .

c3 d c4 0
. . .

0 c4 d c5 0
. . .

...
. . .

. . .
. . .

. . .

0 cN−4 d cN−3 0

0 cN−3 d cN−2 0

. . . 0 cN−2 d cN−1

. . . 0 cN−1 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− c2
N det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c2 0 · · · . . .

c2 d c3 0
. . .

0 c3 d c4 0
. . .

...
. . .

. . .
. . .

. . .

0 cN−5 d cN−4 0

0 cN−4 d cN−3 0

. . . 0 cN−3 d cN−2

. . . 0 cN−2 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ d det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c2 0 · · · . . .

c2 d c3 0
. . . 0

0 c3 d c4 0
. . .

...
. . .

. . .
. . .

. . .

0 cN−4 d cN−3 0

0 cN−3 d cN−2 0

. . . 0 cN−2 d cN−1

. . . 0 cN−1 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With this form we may use the iterative scheme from the linear chain to calculate the determinant of G in the ring case, also.
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Analogously we transform the matrices after removing row i and column i − 1 as required for the inverse of G at (i − 1,i).
We get

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c2 0 · · · . . . 0 c1

c2 d c3 0
. . . 0

. . .
. . .

. . .

0 ci−1 d 0 0
. . .

0 ci ci+1 0

0 ci+2 d ci+3 0

. . .
. . .

. . .

0
. . . 0 cN−1 d cN

c1 0
. . . 0 cN d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −c2
1 det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c3 0 · · · . . .

c3 d c4 0
. . .

. . .
. . .

. . .

0 ci−1 d 0 0
. . .

0 ci ci+1 0

0 ci+2 d ci+3 0

. . .
. . .

. . .

. . . 0 cN−2 d cN−1

. . . 0 cN−1 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− c2
N det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c2 0 · · · . . .

c2 d c3 0
. . .

. . .
. . .

. . .

0 ci−1 d 0 0
. . .

0 ci ci+1 0

0 ci+2 d ci+3 0

. . .
. . .

. . .

. . . 0 cN−3 d cN−2

. . . 0 cN−2 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ d det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c2 0 · · · . . .

c2 d c3 0
. . . 0

. . .
. . .

. . .

0 ci−1 d 0 0
. . .

0 ci ci+1 0

0 ci+2 d ci+3 0

. . .
. . .

. . .

. . . 0 cN−2 d cN−1

. . . 0 cN−1 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∏

1�k�N

k �=i

ck .

These two expressions for all required determinants are tridiagonal and hence compatible with the algorithm of Ref. [66] or
trivial to calculate. Hence we are able to calculate all required values using two times the iterative scheme introduced there, and
get an efficient algorithm which is O(N ).
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APPENDIX B: PARAMETERS USED IN SIMULATIONS

Here we give a complete list of the parameters used in
our simulations for generating the results as presented in the
paper. As stated there, we set kBT = ζ = 1 for all simulations.
Each chain consists of N beads with bond length δr and is
simulated with a time step δt . For the relaxation dynamics of
ring polymers we used the following set of parameters:

Used in Fig. N δr δt

1 10 1 0.0001
1 20 1 0.0000001
1 50 1 0.00000125
2 20 1 0.0000001

The linear relaxation curve in Fig. 2 was generated using N =
21, δr = 0.3, δt = 0.000001.

For the simulation of the tumbling in shear flow, the strength
of the shear may be determined from the dimensionless shear
rate in the paper using the parameters of the polymers as given
here. We used the following set of parameters:

Used in Fig. N δr δt lp

4 100 0.3 0.000001 60
5 100 0.25 0.00002 2
5 200 0.25 0.0000125 4
5 100 0.75 0.00002 6
5 50 0.5 0.000005 63
5 50 1 0.00004 125
5 100 0.75 0.00003 188

When varying the persistence length we adjusted the
parameters in the regions of extremal values of stiffness due
to numeric stability. The data was generated using the follow-
ing values:

Used in Fig. N δr δt lp

6/7 17 1.5 0.00001 1000–30 000
6/7 34 0.75 0.00005 15–5000
6/7 102 0.25 0.00001 1–30
6/7 255 0.1 0.000007 0.1–10
8 120 0.25 0.0000067 1.2
8 60 0.5 0.000002 6
8/9 60 0.5 0.000004 18
8 30 1 0.000005 60
8 20 1.5 0.000004 5000
8 20 1.5 0.000002 50 000

For the simulation of ring polymers under shear flow we
used the following:

Used in Fig. N δr δt

10 80 1 0.0000125
11/12 80 1 0.000005

APPENDIX C: CALCULATION OF THE INTERNAL
RELAXATION OF A SEMIFLEXIBLE RING POLYMER

To determine the contribution of internal relaxation to
the mean-square deviation of the diameter for a semiflexible
ring polymer δD2

shape, we apply the weakly bending limit
and follow closely the calculations as known for linear
polymers [23,26,61,68–70] and outlined in Sec. III. In thermal
equilibrium the contour of a semiflexible ring polymer with
lp > L is effectively constrained to a plane and acquires a
shape deviating only slightly from a circle. Therefore, we use
cylindrical coordinates and choose the origin such that the
polymer ring is in the xy plane. Analogously to the Monge
parametrization for linear polymers [23,26,61,68–70] we
introduce the following parametrization for the ring polymer:

r(s) = (R + ρ(s))êr (s) + φ(s)êφ(s) + z(s)êz(s), (C1)

where R = L/2π and êr , êφ , and êz are the unit vectors in r ,
φ, and z directions, respectively. The variables ρ(s), φ(s), and
z(s) characterize the small perturbation relative to the idealized
circlelike conformation. As for linear polymers these perturba-
tions are coupled by the inextensiblity constraint. Analogously
to the relation for longitudinal and transversal fluctuations in
the linear case one can show that the perturbations in ρ(s)
are dominant for δD2

shape, whereas φ and z are of higher
order. Using the parametrization and separating the equation
of motions for the perturbations analogous to the linear case
in Eq. (5), we arrive at

ζ
∂ρ(s,t)

∂t
= −κ

(
∂4 ρ(s,t)

∂s4
+ 1

R4
ρ + 2

R3

)
+ ηρ(s,t), (C2)

where for the noise ηρ(s,t) it holds 〈ηρ(s,t)〉 = 0 and
〈ηρ(s,t) ηρ(s ′,t ′)〉 = 2 ζ kBT δ(s − s ′) δ(t − t ′). We solved
this equation by a linear mode analysis using the modes
sin (sn/R) and cos (sn/R), where n is the mode number, to
obtain Eq. (13).
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