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Constitutive modeling of strain-induced crystallization in filled rubbers
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Strain-induced crystallization is a unique crystallization process taking place solely in polymers subjected to
large deformations. It plays a major role for reinforcement and improvement of mechanical properties of polymers
with a high regularity of the molecular structure. In this paper, we develop a micromechanical model for the
strain-induced crystallization in filled rubbers. Accordingly, the strain-induced crystallization is considered as
a process triggered by fully stretched and continued by semistretched polymer chains. The model extends the
previously proposed network evolution model [Dargazany and Itskov, Int. J. Solids Struct. 46, 2967 (2009)]
and can thus, in addition to the stress upturn and evolution of crystallinity, take into account several inelastic
features of filled rubbers, such as the Mullins effect, permanent set, and induced anisotropy. Finally, the accuracy
of the model is verified against different set of experimental data both with respect to the stress-strain and
crystallization-strain relations. The model exhibits good agreement with the experimental results, which, besides
its relative simplicity, makes it a good option for finite-element implementations.
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I. INTRODUCTION

Crystallization is an important type of reinforcement used
in various natural and industrial materials, such as spider silk,
moth silk, rubbers, and so on.

In polymers, the crystallization process can be triggered
by applied deformation, reduction of the melt temperature,
or evaporation of the solvent. Deformation- or strain-induced
crystallization (SIC) takes place only in certain polymers
that possess regular and oriented polymer chains as, for
example, polybutadiene (BR), butyl (IIR), polyisoprene (IR),
polychloroprene (CR), and natural rubber (NR).

Generally, one can consider two important aspects in
understanding SIC. The first one is the crystalline morphology
which explains the mechanism of crystalline formation. The
second one is a constitutive model which proposes concepts
for the stress upturn and stress softening observed in cyclic
loading of NR undergoing SIC.

In the past few decades, the morphology of crystals
formed by SIC has been extensively studied, and its different
features have been investigated experimentally and described
by several theories, which can be categorized into the three
groups itemized below.

Fringed-micelle: This was one of the earliest models
developed to describe the morphology of crystals in a
semicrystallized rubber matrix [1]. The model considers
crystals as a compact alignment of different polymer chains at
certain points. Thereby, a polymer chain takes part in several
crystallites (Fig. 1). The model explains the existence of
fibrillar crystallites and predicts their growth direction normal
to the chain axis.

Folded chain model: In contrast to the fringed micelle
model, early electron diffraction observations [2,3] suggest
the formation of thin lamella-like plates of polymers normal
to the stretch direction. To describe these plates, the folded
chain model was developed.

The first generation of the folded chain models were based
on the adjacent re-entry concept [4], where chains are assumed

to come back and forth into one lamella and form loops with
identical lengths [Fig. 2(a)]. Thus, the resultant lamella has
a clear cuboid shape which was later used to explain the
existence of the spherulite structures.

Shortly afterwards, Flory [5] demonstrated that the adjacent
re-entry model cannot precisely describe the crystal formation
in long chain molecules. He showed mathematically that a
significant amount of chains do not return to the lamella after
departure from it. Thus, an irregular re-entry model based on
variable lengths of chain loops in the lamella [see Fig. 2(b)]
was proposed. It is also possible that some chains do not
re-enter the same lamella but rather join other ones. These
chains may eventually come back to the amorphous region.
This conformation of chain folding is often referred to as the
switchboard model, since the irregular entrance and exit of
chains from the lamella surface makes the lamella look like
old switchboards.

The switchboard model can also be applied to explain the
crystallization from the melt in polymers [6,7]. The model also
confirms the existence of multilayer crystals and loose end
chains which were found by small-angle neutron scattering
experiments of melt-crystallized polymers [8,9].

Extended chain model: This is an extension of the folded
chain model aimed to further take the formation of fibrillar
crystals into account. The model considers fibrillar crystals
as nuclei around which the spherulites are formed. Thus, the
final crystal, generally referred to as a shish-kebab structure,
is a combination of both fibrillar and lamellar crystals (see
Fig. 3). Accordingly, the model considers a two-step nucleation
and growth procedure. The first step is associated with the
formation of fibrillar crystals (shish) from extended polymers
while the second one includes the formation of spherulites
around the fibrillar crystals.

In spite of this progress in crystalline morphology, the
modeling of SIC still remains somewhat restricted. Most stud-
ies on the polymer crystallization focus on the temperature-
induced crystallization rather than on the strain-induced
one [10,11].
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FIG. 1. (Color online) Illustration of the fringed micelle model.

Early approaches to the modeling of SIC were focused
mostly on the thermodynamic formulation of crystallization
[12,13]. Thus, Flory proposed that the degree of crystallization
can be expressed in terms of the change in the melting point
Tm, which in turn is a function of the stretch ratio. On the
basis of the deformation calorimetry, Göritz and Müller [14,15]
showed that this relation between the degree of crystallization
and elongation [12] is applicable only for crystallization in the
extended state of polymer chains.

Considering crystallines to be mainly of the lamellar
type, Saidan [16] developed an isotropic model where the
semicrystallized network acts in series with the amorphous
region. On the contrary, other models considered the crys-
tallized and amorphous networks to operate parallel to each
other. Their individual contributions were formulated by a
phenomenological law [17,18].

Flory [12,19] suggested that induced crystallites can be
regarded as a source of reinforcement in rubbers. Following
this idea, Rault et al. [20] assumed a two-network system
where crystallites play a role of highly functional cross-links.

Fukahori [21] elaborated another mechanism for the strain-
induced crystallization in natural rubber. Accordingly, crystals
are formed by un-cross-linked polymer chains which further
act as linkages in the rubber network and lead to the stress
upturn at large extensions.

(a) (b)

FIG. 2. (Color online) A schematic view of a lamella in the (a)
adjacent re-entry and (b) switchboard models.

Toki et al. [22–24] proposed to decompose the rubber
matrix after SIC into three phases: (i) an unoriented amorphous
phase, (ii) an oriented amorphous phase, and (iii) a crystalline
phase. Expanding this idea, Tosaka et al. [25] developed a
micromechanical concept that considers existence of different
chain lengths between two constraints (aggregates or cross-
links). Accordingly, under tension the shorter chains become
fully stretched and subsequently form nucleation sites for
crystallites.

Kroon [26] further developed this idea by implementing it
into a full network model which takes the anisotropic crystal
nucleation of the unfilled rubber into account. The model is
based on an empirical approach and is able to predict both the
stress-stretch hysteresis and the evolution of the crystallization
degree under deformation.

Recently, Zhang et al. [27] studied SIC behavior of the
polychloroprene rubber (CR) where the polymer network is
assumed to contain regular trans-CR zones surrounded by
cross-linked amorphous zones. At ambient temperature, the
cross-linking hinders the crystallization of CR. Large strains
of the cross-link network accelerate the alignment of trans-CR
segments and lead then to the SIC. In another approach,
a mechanism for the SIC in a nanoclay filled rubber is
proposed following the concept of the dual crystallization [28].
Accordingly, alignments of clay layers in the stretch direction
are considered to decrease the chain entropy and therefore to
promote the crystallization process [29].

In the present work, we propose a new micromechanical
model of SIC which extends our previous network evolution
concept [30–33]. Accordingly, the model describes typical
inelastic effects of filled rubbers such as the Mullins effect,
permanent set, and deformation-induced anisotropy. In order
to exclude the TIC, lower temperatures (below the room
temperature) are not considered. Coexistence of fibrillar and
lamellar crystals in the shish-kebab structure is assumed
[21,25,34]. Polymer chains immobilized by crystallization are
subdivided into stretched and flexible chains. Thus, in addition
to the classical CC and PP networks [33] two separate networks
of stretched (ST) and flexed (FL) chains are introduced (Fig. 4).
These networks describe the stress upturn induced by SIC.

The paper is organized as follows. In Sec. II we briefly recall
the network evolution model [33] for the fully amorphous
network. In Sec. III the procedure of phase transition between
amorphous and crystallines is described. The constitutive
formulation is further derived in Sec. IV. In Sec. V prediction
capabilities of the model are evaluated in comparison with
different in situ experimental data [34,35] for the stress-strain
relation and the crystallinity evolution. In addition, restrictions
on material parameters and the thermodynamic consistency of
the proposed model are discussed in Appendices A and B,
respectively.

II. AMORPHOUS NETWORK MODELING

A. Statistical mechanics of a single chain

We consider a polymer chain with n segments and the
end-to-end distance R spanned between to aggregate surfaces.
Assuming that none of the segments between number 1 and n

is joined to an aggregate surface, the probability of existence
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FIG. 3. (Color online) The formation of a shish-kebab crystal. The (a) amorphous polymer chains form (b) fibrillar crystals under tension,
which acts as (c) a nucleus in the formation of spherulites. This procedure leads to the creation of (d) shish-kebab crystals.

of the chain is given by (see, e.g., Ref. [33])
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where κ is the relative average area of active adsorption sites
on the aggregate surface available for one bond and α = 3

2 .
The overbar •̄ = •

l
denotes a normalized value with respect to

the segment length l.
Let us denote the position vectors of the chain ends in the

reference and current configuration by R and r and their lengths
by R and r , respectively. Accordingly, one has

r = FmR, r = d
λR, (3)

where Fm denotes the deformation gradient in the microscale,

and
d
λ is the microstretch in a direction specified by the unit vec-

tor d. Hereafter, the following font styles are used for scalar X,
vector X, second-order X, microstretch λ, and macrostretch χ .

According to the non-Gaussian statistics, the strain energy
of a chain per unit referential volume of the rubber matrix is
written by

ψ(n,r̄) = nKT

(
r̄

n
β + ln

β

sinh β

)
, (4)

where β = L−1( r̄
n

) and L−1 denotes the inverse Langevin
function. Further, K and T denote Boltzmann’s constant and
absolute temperature, respectively.

A proper approximation approach for the inverse Langevin
function can be chosen depending on the elongation range
of polymer chains. In the case of moderate and large defor-
mations, the Taylor expansion appears to be more favorable
(see Ref. [36]). However, if chain breakage occurs in the state
very close to the fully stretched state where 0.96 < r̄

n
< 13,

then rational functions, as, for example, the Padé approximant

Polymer chain

Carbon black aggregate

Fibrillar crystal

Lamellar crystal

Pure rubber (CC) network Polymer-Aggregate (PP) network Aggregate-fibrillar crystal (ST) network Aggregate-lamellar crystal (FL) network

FIG. 4. (Color online) Decomposition of the rubber matrix into four networks (CC, PP, ST, and FL).
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FIG. 5. (Color online) Illustration of the network decomposition concept.

L−1(x) ≈ 3x
1−x3 [37], show better agreement with the exact

values [36].

B. Strain energy of the amorphous rubber matrix

The amorphous rubber matrix is decomposed into a pure
rubber network (CC) and a polymer-filler network (PP), which
act parallel to each other [33,38,39]. Accordingly, the strain
energy of the rubber matrix 	M relative to its reference volume
is represented by

	M = 	cc + 	pp, (5)

where 	cc and 	pp denote the strain energies of the CC and
PP networks, respectively (see Fig. 5).

C. Pure rubber network

The pure rubber network is considered as an ideally elastic
network with affine motion of cross-links and the identical
chains that are initially in the unperturbed state. Accordingly,
the entropic energy of a single chain subjected to elongation

is represented by (4) as ψ(n,
d
χ ) = ψ(n,

d
χ R̄0), where the

microstretch
d
λ is equal to the macrostretch

d
χ . In order to

obtain the strain energy of the CC network, Nc chains with nc

segments are considered in each spatial direction, so that

	cc = 1

As

∫
S

Ncψ
(
nc,

d
χ

)
d

d
s , (6)

where As represents the surface area of the microsphere

and d
d
s is an infinitesimal area of a surface with the normal

direction d.

D. Polymer-filler network

The evolution of the polymer-filler network is assumed to
be responsible for damage in rubber. Let Ñ (n,r̄) be the number
of chains with the number of segments (relative length) n and
the relative end-to-end distance r̄ . The integration over the
whole set DA of chains available in the direction specified
by the unit vector d yields the free energy of chains in this
direction as

d
	 =

∫
DA

Ñ (n,r̄)ψ(n,r̄)dn. (7)

The network evolution concept considers aggregate-polymer
debonding and network rearrangement as two simultaneous
interacting processes. In the course of deformation, polymer
chains begin to slide on or debond from aggregates. This
debonding starts with the shortest chain and gradually involves
longer and longer chains. Under unloading, the debonded

chains do not reattach back to the aggregates and, thus,
the maximal microstretch previously reached in the loading
history

d
λmax = max

τ∈(−∞,t]

d
λ(τ ) (8)

is crucial for the description of the polymer-filler debonding
[40, cf. 41]. Accordingly, the length of the shortest available
chain in the deformed subnetwork is then obtained by

nmin
(d
λmax

) = ν
d
λmaxR̄, (9)

where ν > 1 denotes a sliding ratio treated as a material
parameter.

Furthermore, we assume an upper limit for the length of
a chain between two aggregates, denoted in the following
by nmax (for details see Ref. [33]). Accordingly, the set of
available relative lengths of chains bounded to aggregates in
the direction d can be expressed by

DA

(d
λmax

) = {n|nmin � n � nmax}. (10)

The concept of chain rearrangement in rubber network
suggests that the total number of active segments remains
constant [33]. This assumption yields

Ñ (n,r̄) = N0�
(d
λmax

)
P (n,R̄) = N0�

(d
λmax

)
P̂ (n), (11)

where

�(x) =
(∫

DA(x)
P̂ (n)ndn

)−1

. (12)

We consider R̄ as a material constant and denote P̂ (n) =
P (n,R̄). N0 represents the number of active chains per unit
undeformed volume and will also be considered as a material
parameter. Finally, considering (11) and (10) in (7), the energy
of a subnetwork in direction d is expressed by

d
	 = N0�

(d
λmax

) ∫
DA(

d
λmax)

P̂ (n)ψ
(
n,

d
λ R̄

)
dn. (13)

E. Strain amplification

In filled rubbers, the stretch applied to the polymer chains is
referred to as microstretch. It is usually larger than the stretch
applied to the rubber matrix referred to as macro-stretch. Thus,
the inhomogeneity of the material leads to the inhomogeneity
in the micro-stretch distribution [20]. Accordingly, an ampli-
fication function X establishing a relationship between the
microstretch

d
λ and the macrostretch

d
χ is defined by

d
λ = X

( d
χ

) =
d
χ −Cp

1 − Cp
, (14)
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FIG. 6. (Color online) Evolution of different chain types under deformation: (a) amorphous phase in the virgin state, (b) debonding of
shorter chains before crystallization, and (c) formation of the semicrystallized phase besides the amorphous phase.

where C ∈ (0,1) represents the volume fraction of filler per
unit volume of rubber matrix (C < 0.3 in most studies),
while p depends on the structure of the filler network.
Bueche [42] showed that the constant p = 1

3 in the case of
a statistically homogeneous distribution of spherical particles
(see, for example, Refs. [43,44]). The influence of p and C

on the material parameters {κ,R,nmax} has been discussed
in Ref. [31]. Let us represent parameters related to fillers,
polymers, crystals, additives, and the rubber matrix by the
subscripts f , p, c, a, and r , respectively. Then

C = Vf

Vr

, Vr = Vf + Vp + Va, (15)

where V denotes the volume.

III. STRAIN-INDUCED CRYSTALLIZATION

A. Crystallization

We denote a stretch at which the formation of the crystals
begins under loading by χcr and a stretch at which the last

crystal melts under unloading by χml. These values depend on
the temperature and the compound.

Before crystallization, all polymer chains in the rubber
matrix are in the amorphous phase. With the onset of crystal-
lization, some parts of amorphous polymer chains crystallize
[24,46]. These polymer chains are referred in the following to
as semicrystallized chains.

In order to model the nucleation of crystals during SIC,
the semicrystallized polymer chains are further categorized
into stretched and flexible chains according to their flexibility
ratio ( n

r̄
). The stretched chains are highly elongated chains

forming fibrous crystals that act as a nucleus for the creation of
spherulites. The flexible chains, on the other hand, participate
in the formation of the spherulites by folding back and forth
into the spherulites lamellae (kebab structures). The flexible
and stretched chains can frequently transform into each other,
as observed by the back-and-forth conversion of the spherulites
to and back from the fibrillar crystals under loading and
unloading [47].

Let us further denote the critical flexibility ratio that
specifies the boundary between stretched and flexible chains
by ab. Accordingly, the following chain decomposition holds
under loading:

Loading condition λ � 1 1 < λ � λcr λcr < λ

State of chain
nmin < n amorphous

nmin � n broken
nmin < n amorphous

nmin � n broken
nmin < n � nb stretched

nb < n flexible

, (16)

where nb = abλmaxR̄ and λcr is the microstretch (cor-
responding to the macrostretch χcr) at the onset of
crystallization.

Thus, the set of active stretched Dst and flexible Dfl chains
can be represented by

Dst = {n|nmin � n � nb},
(17)

Dfl = {n|nb < n � nmax}.

In the course of deformation, shorter chains begin to debond
from aggregates and the number of active chains decreases
(see Fig. 6), which leads to the stress softening. When
the micro-stretch ratio reaches λcr, SIC takes place almost
instantaneously [45] and some amorphous chains convert
into semicrystallized chains [24,46]. The volume ratio of the

crystals to the whole matrix

ζ = number of crystallized segments

total number of segments
(18)

is referred to as the degree of crystallization.
Experimental results show that only a small number of

polymer chains are crystallized under extension [22,24,46].
By denoting the fraction of the crystal phase as η, the strain
energy of the rubber matrix ψM can be expressed by [48,49]

	M = 	cc + (1 − η)	pp + η(	st + 	fl), (19)

where 	st and 	fl denote the strain energy of semicrystallized
stretched and flexible chains, respectively. It is seen that (19)
is a generalization of (5) for η > 0.
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FIG. 7. (Color online) A schematical diagram of the crystalliza-
tion degree in the first loading cycle versus macrostretch. Last crystal
melts at χml, the residual crystals at the stress-free state are referred
to as elastic set.

B. Decrystallization

The fibrillar crystals melt first; the melting process starts
with the longest crystal and continues with shorter ones.
The last crystal melts at χml (Fig. 7). Disappearance of the

nucleus in the shish-kebab is then followed by melting of the
spherulites and partial release of the semicrystallized flexible
chains [47].

Slight disorientation of crystallites during unloading
[25,50] suggests that the melting process has no directional
preferences. Similarly to the crystallization, the melting
process is also assumed to be governed by chain length
distribution (see Fig. 8). The crystallization degree at the
beginning of the unloading is influenced by both melting of
the lamellar crystals and transformation of the fibrillar crystals
into the lamellar ones [46]. Thus, due to the fact that the
melting rate of lamellar crystals is higher than their formation
rate, the degree of crystallization is expected to decrease
during unloading [51]. However, some polymers demonstrate
higher formation rate at the beginning of the unloading [35],
which leads to a bump in the crystallization degree graph (see
Fig. 7). In this case, the dominant melting procedure might
not start immediately with the unloading where λ = λm but
after an offset ES , such that the melting starts at λ = Esλmax

(see Fig. 7).
Thus, under unloading, polymer chains can be categorized

as follows:

Loading condition λml < λ λ � λml

State of chain

nmin � n broken
nmin < n � nm stretched

nm < n � nb amorphous (melted)
nb < n flexible + amorphous

nmin � n broken
nmin < n amorphous , (20)

where λml is the microstretch corresponding to the
macrostretch χml and nm represents the relative length of the
shortest melted chain. The flexibility ratio am = âm(λ) can be
expressed from the condition nm = âm(λ)R̄.

Thus, the sets of active stretched Dst and flexible Dfl chains
are given under unloading by

Dst = {n|nmin � n � nm}, Dfl = {n|nb < n � nmax}. (21)

C. Strain energy of stretched chains

At the onset of the melting procedure nm = nb at λ =
Esλmax(see Fig. 8). Thus,

amR̄|λ=Esλmax
= abλmaxR̄ ⇒ am|Esλmax

= abλmax. (22)

Taking into account that the last crystal melts at λml, one
obtains

am|λml = νλmax. (23)

For the sake of simplification, am can be represented by a linear
function which can be expressed in view of (22) and (23) as

am = âm(λ) = abλmax − (Esλmax − λ)
abλmax − νλmax

Esλmax − λml
.

(24)

Since the crystallization degree under unloading is higher
than under loading (see Fig. 7), one has nm|λmax

> nb, which
can be satisfied by setting ab > ν (see Appendix A for further

details). Accordingly, in view of (17) and (21), Dst in each
direction can be given as

Dst = {n|nmin < n < max[min{nm,nb},nmin]}, (25)

where min{nm,nb} represents the length of the longest
crystallized stretched chain, and max[min{nm,nb},nmin] is to
guarantee that this length cannot become smaller than the
length of the shortest amorphous chain.

Experimental observations show that the crystallite sizes
remain almost constant during deformation [24,25,46]. Thus,
SIC mainly develops through the nucleation of new crystals
rather than through the growth of the existing crystallites [51].
The constant crystallite size can be taken into account by
considering the ratio

Ic = crystallized segments of a chain

total segments of a chain
(26)

as a material constant.
In the following we assume that the fibrillar crystal

forms in the middle of the stretched chain in its end-to-end
direction [Fig. 9(c)]. Since the crystallite sizes are constant, the
energy contribution of the crystallized part of the chain were
neglected. However, crystallites are considered as conceptual
cross-links [12,13] and thus influence the entropic contribution
of semicrystallized chains. Accordingly, the entropic energy
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FIG. 8. (Color online) Evolution of the polymer chain types during unloading: (a) amorphous and semicrystallized phases and (b) melting
completed, no crystals.

of the amorphous part can be given by [52, cf. (4)]

ψ st(n,r̄) = ψc

(
nst,

(λR̄ − nIc)

2

)
, (27)

where nst = n(1−Ic)
2 . Thus, in view of (13), the total strain

energy of stretched chains in a direction d is given by
N0�(λmax)

∫
Dst

2P̂ (n)ψ st(n,λR̄)dn. During unloading, some
of those stretched chains melt and become amorphous again
[see Fig. 8(a)]. The domain of these amorphous chains is given
by

Dam = {n| max[min{nm,nb},nmin] < n < max[nb,nmin]}.
(28)

The fraction of fibrillar crystals in the direction d can further
be expressed by

gst(d) =
[

0 if λ � λcr ∧ λ̇ > 0
N st(d)
N st

max(d) otherwise
, (29)

where

N st(d) = N0

∫
Dst

φ(λm)P̂ (n)dn,

(30)
N st

max(d) = max
τ∈(−∞,t]

N st(d)

denote the number of fibrillar crystals in the direction d and
the maximum number of previously formed fibrillar crystals,
respectively. Thus, the entropic energy of a semicrystallized
subnetwork of stretched chains in a direction d can be
expressed for the complete loading cycle by

d
	st = N0�(λmax)

[
gst

∫
Dst

2P̂ (n)ψ st(n,r̄)dn

+ [1 − gst]
∫

Dam

P̂ (n)ψ(n,r̄)dn

]
, (31)

where the second term represents the entropic energy of
melted chains. This term is zero during loading, since
nb = min{nm,nb}.

D. Strain energy of flexible chains

At the onset of crystallization, a flexible chain is converted
into two smaller chains and a lamellar crystal in the plane
normal to the fibrillar crystal [Fig. 9(b)]. Experimental results
show that most of crystallites are oriented in the extension
direction [24,46,51,53,54]. We also assume that the lamellar
crystals form at the middle of the interaggregates distance
[Fig. 9(d)]. By neglecting the thickness of the lamellar crystal,
one can thus express the end-to-end vectors of the two

2
flr1

flr

cnlIstr
r

(d)(b)

(c)(a)

Fibrillar crystals

Lamellar crystals

Stretched chains

Flexible chains

r

FIG. 9. (Color online) Semicrystallized ST and FL chains: (a) the virgin rubber matrix, (b) onset of crystallization, (c) formation of ST
chains from stretched chains, and (d) formation of FL chains from flexible chains.
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newly created flexible chains as r̄fl
1 = r̄fl

2 = r̄
2 =

d
λ R̄
2 , where

r̄fl
i = ‖r̄fl

i ‖.
The energy of an FL chain in a direction d can be given by

ψfl(n,r̄) = ψ

(
nfl,

d
λ

R̄

2

)
, (32)

where nfl = n(1−IC )
2 denotes the number of segments.

Under simultaneous melting of fibrillar and lamellar crys-
tals, their fractions in a direction d are equal so that

gfl(d) = gst(d),

where gst(d) is defined by (29). Thus, in view of (31), the
energy of a semicrystallized subnetwork of flexible chains in
the direction d can be represented by

d
	f l = N0�(λmax)

[
gst

∫
Dfl

2P̂ (n)ψfl(n,r̄)dn

+ [1 − gst]
∫

Dfl

P̂ (n)ψ(n,r̄)dn

]
, (33)

where the last term describes the entropic energy of melted
chains.

IV. CONSTITUTIVE MODELING

A. 3D generalization

Assuming an initially isotropic spatial distribution of
polymer chains in the rubber matrix, the macroscopic energy

of a three-dimensional network can be obtained similarly to
(6) by the integration over the unit sphere as

	pp = 1

As

∫
S

d
	 d

d
s, 	st = 1

As

∫
S

d
	std

d
s,

(34)

	fl = 1

As

∫
S

d
	fld

d
s.

The integration is carried out numerically by

	cc ≈ Nc

k∑
i=1

ψ
(
nc,

di

χ
)
wi, 	pp ≈

k∑
i=1

di

	 wi,

(35)

	st ≈
k∑

i=1

di

	st wi, 	fl ≈
k∑

i=1

di

	fl wi,

where wi are weight factors corresponding to the collocation
directions di (i = 1,2, . . . ,k). In this study, we utilize the
numerical scheme by Heo and Xu [55] which was shown
by Ehret et al. [56] to provide the best trade-off between
the least error with respect to the induced anisotropy and the
computational costs. Accordingly, a set of k = 45 integration
points on the half sphere is chosen, and the coordinate of an
arbitrary point i in the orthogonal basis is represented by the
unit vector di . Substitution of (13) and (31) into (35) yields
the energy of the rubber matrix as

	M = 	cc + (1 − η)	pp + η(	st + 	fl) = Nc

k∑
i=1

wiψ
(
nc,

di

χ
) + (1 − η)N0

k∑
i=1

wi

∫
DA

�
(di

λmax
)
P̂ (n)ψ

(
n,

di

λ R̄
)
dn

+ ηN0

k∑
i=1

wi�
(di

λmax
)[

gst

∫
Dst

2P̂ (n)ψ st(n,r̄)dn + [1 − gst]
∫

Dam

P̂ (n)ψ(n,r̄)dn

]

+ ηN0

k∑
i=1

wi�
(di

λmax
)[

gst
∫

Dfl

2P̂ (n)ψfl(n,r̄)dn + [1 − gst]
∫

Dfl

P̂ (n)ψ(n,r̄)dn

]
. (36)

Before the onset of crystallization, the total network
energy (36) reduces to the simple form according to
the network evolution model [33] for purely amorphous
systems.

B. Evolution of the crystallization degree

In view of the constant length of crystals during deforma-
tion, ζ can be considered to be proportional to the crystal
fraction of each chain Ic, to the number of fibrillar crystals
NST in the matrix, and to 〈n〉

nall
, where 〈n〉 denotes the average

number of chain segments in one chain while nall is the total
number of segments. The latter two values do not change under
deformation. Accordingly, one can write

ζ ∝ IcN
ST 〈n〉

nall
⇒ ζ = ζ0N

ST, (37)

where ζ0 denotes a material constant, and the to-
tal number of fibrillar crystals in the network NST is

calculated as

NST = η

As

∫
S

N st(d)d
d
s. (38)

C. Macroscale behavior

While filled rubber is normally treated as an incompressible
material, strain-induced crystallite may change its macro-
scopic volume. However, there has been very less experimental
evidence confirming the compressibility of filled rubber
undergoing SIC (see, e.g., Ref. [57]). In the current model
we assume that the amorphous matter and the crystallite part
in the rubber matrix keep the same density under deformation
[58–60]. Taking into account the incompressibility condition
detF = 1, we can now obtain the constitutive equation for the
first Piola-Kirchhoff stress tensor by

P = ∂	

∂F
− pF−T , (39)
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FIG. 10. (Color online) Comparison of the model prediction with the experimental data on uniaxial tension of 40phr NR: (a) stress-stretch
relation and (b) integrated intensity (proportional to the crystallization degree ζ ) versus stretch ratio.

where p denotes an unknown parameter related to the
hydrostatic pressure and 	 is given by (36). The derivative
of this expression is obtained by means of the chain rule of
differentiation and by using the following identities:

∂
di

λ

∂
di

χ

= 1

1 − Cp
,

∂
di

χ

∂F
= ∂diCdi

∂F
= 2FDi ,

where Di = di ⊗ di , (40)

∂ψ(n,x)

∂x
= √

nKTL−1

(
x√
n

)
. (41)

V. EXPERIMENTAL EVALUATION

In this section, the model predictions are compared with the
results of in situ experiments on samples with two different

filler concentrations, N339 40phr [35] and N234 45phr [34].
In these experiments unaxial tension cycles with increasing
stretch amplitudes of 3.0, 4.0, 5.0 and 2.75, 3.3, 3.75 were
performed for both filler concentrations. The experimental
data are presented in Figs. 10 and 11, respectively. There, the
nominal stress P and the so-called integrated intensity of the
crystallization halo which is proportional to the crystallization
degree ζ are plotted versus stretch �.

The model was fitted to these experimental data by means
of 10 material parameters listed in Table I. To this end,
the least-squares error criterion both with respect to the
stress-stretch and crystallization-stretch results was utilized.
The least-squares residual was minimized with the aid of
the Levenberg-Marquardt algorithm. First, the values of ab,
Ic, and ζ0 are approximated using the crystallization-stretch
graph. Then the parameters of the network evolution model
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FIG. 11. (Color online) Comparison of the model prediction with the experimental data on uniaxial tension of 45phr NR: (a) stress-stretch
relation and (b) crystallization degree versus stretch ratio.
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TABLE I. Material parameters found in the fitting procedure.

Network evolution model SIC model

Material κ ν R̄ nmax nc Ñ0KT ÑcKT ac Ic ζ0

NR-40H 55.18 1.0088 17.52 250 80 8.522[MPa] 0.01[MPa] 1.15 0.2 660e3
NR-45 450 1.0208 19.52 200 80 6.622[MPa] 0.01[MPa] 1.18 0.2 431

are approximated by fitting to the stress-stretch relation. The
obtained values were then further improved by recursive
application of the aforementioned fitting procedure.

The so-obtained material parameters are given in Table I.
The other physical values were directly taken from experimen-
tal measurements (see Table II). The resulting stress-stretch
and crystallization-stretch curves predicted by the model are
plotted in Figs. 10 and 11 against the experimental data. For
both filled rubbers one can observe good agreement with
respect to the stress-stretch relation as well as evolution of
crystallinity.

The parameters {κ,R,nmax} are directly influenced by
the filler concentration and {ν,ac} by the type of filler.
The parameters {nc,Ñ0,Ñc} depend on the cross-linking and
monomer properties. The value of the crystallized segment
fraction in a polymer chain Ic belongs to the range 20–25%
known from the literature [21].

VI. CONCLUSIONS

A micromechanical model for the strain-induced crystal-
lization of filled rubbers has been presented in this paper.
The model extends the previously proposed network evolution
model and takes thus other inelastic effects of filled rubbers
into account such as permanent set, stress softening, and
induced anisotropy. The model subdivides semicrystallized
polymer chains into stretched chains that form fibrillar
crystals and into flexible chains that form lamellar crystals.
Accordingly, two networks of stretched and flexible chains are
introduced in addition to the classical CC and PP networks. The
stress upturn resulting from the crystalline nucleation is well
predicted by the model. The model is described by a relative
few number of additional material constants and demonstrates
good agreement with experimental data both with respect to
the stress-stretch and crystalization-stretch behavior.
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TABLE II. Experimentally measured physical model parameters
for rubbers with different filler contents.

Material χcr χml Es C η

NR-40H 2.6 1.9 0.85 0.20 0.28
NR-45 2.1 1.5 0.9 0.22 0.28

APPENDIX A: CRYSTALLIZATION
AND MELTING CONDITIONS

According to the experimental observations the crystalliza-
tion degree in unloading (λ̇ < 0) is higher than in loading
(λ̇ > 0) (see Fig. 7). In this section we prove that our model
satisfies this condition if we set ab � ν (see Sec. III C).
This ensures also the conditions crystallization and melting
(see Figs. 6 and 8).

In an unloading direction (λ̇ < 0) the function am is linearly
increasing with λ, so below the stretch value Esλmax (Fig. 12)
we have

abλmax = am(Esλmax) � am(λ), (A1)

which leads to nb � nm after the onset of melting. Substitution
into (25) gives Dst = {n|nmin < n < nm} (in accord with
Fig. 8). Above Esλmax the formation rate is larger than the
melting rate, so that nm � nb (Fig. 12).

Next, we show that the condition ab � ν also ensures
that nm � nb and, consequently, Dst = {n|nmin < n < nb} in
a loading direction (λ̇ > 0) (in accord with Fig. 6). Indeed,
before the onset of crystallization ab = ν and λm = λmax.
Inserting these conditions into (24) yields

âm(λ) = abλmax. (A2)

After the the onset of crystallization in a loading direction
ab > ν, λ = λmax, and Es � 1. Thus,

am(λ) = abλmax − (Esλmax − λ)
abλmax − νλmax

Esλmax − λml
� abλmax.

(A3)

maxba

max

maxml

maxba

Lo
ad
ing

maxsE λcr

A

B
CUnloading

ma ma

FIG. 12. (Color online) Flexibility ratio am and ab versus stretch.
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Combination of (A2), (A3), and (A1) gives

nm � nb∀λ|λ̇ > 0
(A4)

nm < nb∀λ|λ̇ < 0 ∧ λ < Esλmax,

where

ab =
[

ν if λ � λcr ∧ λ̇ > 0
ab > ν otherwise

. (A5)

APPENDIX B: THERMODYNAMICAL CONSISTENCY

The strain energy of the rubber matrix depends on
di

λ max,
which represent internal variables. Thus, one can write

	M = 	M (C,�), (B1)

where

� = {di

λ max : di ∈ E3 ∧ ‖di‖ = 1
}

(B2)

and E3 denotes the three-dimensional Euclidean space (see,
e.g., Ref. [61]). Accordingly, the Clausius-Duhem inequality
resulting from the second law of thermodynamics reduces to
− ∂	M

∂λmax
λ̇max � 0. Under unloading λ̇max = 0, while λ̇max > 0

in the primary loading. Thus the above condition is satisfied if
in the primary loading

− ∂	M

∂λmax
� 0 (B3)

in all directions. In view of (36),

∂ψpp

∂λmax
� 0,

∂ψst

∂λmax
+ ∂ψfl

∂λmax
� 0 (B4)

are sufficient conditions for (B3). We will prove (B4) for an
arbitrary direction di .

For the sake of brevity we write in the following x instead

of
di

λ max. The first condition in (B4)

∂

∂x

∫ nmax

nmin(x)
�(x)P̂ (n)ψ(n,λR̄)dn � 0 (B5)

has been proved in Ref. [31]. Here, we focus on the second
condition in (B4).

Taking into account that under the primary loading

max[min{nm,nb},nmin] = max[nb,nmin], gst = 1, (B6)

the inequality (B4)2 can further be expressed by

∂

∂x

∫ nb(x)

nmin(x)
�(x)2P̂ (n)ψ st(n,λR̄)dn

+ ∂

∂x

∫ nmax

nb(x)
�(x)2P̂ (n)ψf l(n,λR̄)dn � 0, (B7)

In view of (B5), ∂
∂x

∫ nmax

nb(x) �(x)2P̂ (n)[ψfl(n,λR̄) − ψ st(n,λR̄)]

dn � 0 holds since nb(x) = ab

ν
nmin(x) and ψfl(n,λR̄) −

ψ st(n,λR̄) > 0 [see (27) and (32)]. Thus, one can prove (B7)
if the following inequality holds:

∂

∂x

∫ nb(x)

nmin(x)
�(x)2P̂ (n)ψ st(n,λR̄)dn + ∂

∂x

∫ nmax

nb(x)
�(x)2P̂ (n)ψ st(n,λR̄)dn � 0 ⇔ ∂�(x)

∂x

∫ nmax

nmin(x)
2P̂ (n)ψ st(n,λR̄)dn

−�(x)
∂nmin(x)

∂x
2P̂ [nmin(x)]ψ st(nmin(x),λR̄) � 0, (B8)

where

∂�(x)

∂x
= nmin(x)

∂nmin(x)

∂x
�2(x)P̂ [nmin(x)] ⇔ nmin(x)

∫ nmax

nmin(x)
P̂ (n)ψ st(n,λR̄)dn −

[ ∫ nmax

nmin(x)
P̂ (n)ndn

]
ψ st(nmin(x),λR̄) � 0.

(B9)

The last inequality holds because the following conditions:

nmin(x) �
∫ nmax

nmin(x)
P̂ (n)ndn, where nmin(x) � n∀n ∈ {nmin(x),nmax},

∫ nmax

nmin(x)
P̂ (n)ψ st(n,λR̄)dn < ψ st(nmin(x),λR̄)

are satisfied in view of (1).
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