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Lehmann rotation of the cholesteric helix in droplets oriented by an electric field
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We study the Lehmann rotation of the cholesteric helix in droplets of the liquid crystal N-(p-
methoxybenzilidene)-p-butylaniline doped with a small amount of the chiral molecule R811 when they are
subjected to a temperature gradient. We show that the helix rotates much faster when it is parallel to the
temperature gradient than when it is perpendicular to it. The first configuration is obtained by submitting the
droplets to an ac electric field parallel to the temperature gradient, whereas the second one is observed at zero
field. We show that the rotation velocity of the helix strongly depends on the droplet radius, even when the
helix is parallel to the temperature gradient. This observation supports the idea that the Leslie thermomechanical
coupling cannot explain alone the Lehmann effect.
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I. INTRODUCTION

In 1900, Lehmann [1] observed the continuous rotation of
the internal texture of cholesteric droplets when subjected to a
temperature gradient. The experiment was first reproduced in
2008 by using a compensated cholesteric (mixture of octyloxy-
cyanobiphenyl and cholesteryl chloride in equal proportions)
[2,3] and 1 year later by using diluted cholesteric mixtures (i.e.,
nematic phase doped with a small amount of chiral molecules)
[4,5]. In all of these experiments, the droplets coexist with
their isotropic liquid and have a banded texture, indicating
that the helical axis is rather perpendicular to the temperature
gradient. The rotation of the texture was explained within the
model of Leslie taking into account the chiral terms in the
constitutive equations of the cholesteric phase [6]. According
to this model, the director experiences a torque proportional to
the temperature gradient �G of the expression

��Leslie = ν�n × (�n × �G), (1)

where ν is the so-called Lehmann coefficient. By writing
that this torque equilibrates with the viscous torque and by
assuming that there is no flow of matter (we will come back
later to this assumption), it was shown that the droplets rotate
with an angular velocity ω given by [2,3]

− νG

γ1ω
= 1 +

∫∫∫
drop

[�ez · ∂ �n
∂θ

× �n + (
∂ �n
∂θ

)2]
dV∫∫∫

drop

[�ez · ∂ �n
∂θ

× �n + 1 − (�ez · �n)2
]
dV

. (2)

In this expression, �ez is the unit vector parallel to the
temperature gradient, θ the polar angle, and γ1 the rotational
viscosity. This equation shows that the texture angular velocity
is proportional to G and has the form ω = −(1 + A)νG/γ1,
where A is a dimensionless coefficient which depends on the
director field and on the drop geometry. This coefficient was
calculated by making different assumptions on the shape of
the droplet (flattened cylindrical box or spherical cap [7,8])
and the structure of the director field (perfect helix [7,8] or
helix strongly deformed by the the anchoring conditions at the
surface of the droplet [2]). In all cases, it was shown that A
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was an even and rapidly increasing function of the product
kR, where k is the wave vector of the banded texture (in
practice, always close to q, the equilibrium twist of the phase)
and R the radius of the droplet. In addition, it was shown
that A → 0 when R → 0. As a consequence, it is sufficient
to extrapolate the curve ω(R)/G to R = 0 to obtain the ratio
ν/γ1. The application of this procedure to different cholesteric
mixtures showed that the Lehmann coefficient ν is proportional
to the equilibrium twist (and so to the concentration of chiral
molecules in diluted cholesteric mixtures).

On the other hand, a very surprising result was that the
coefficient ν obtained in this way was systematically much
larger than the coefficient ν measured below the transition
temperature in the Leslie geometry (i.e., when the helix is
parallel to the temperature gradient and can freely rotate on
the glass plates limiting the sample) [7–9]. Our conclusion was
that the coefficient ν obtained from the droplet rotation was
perhaps not the true Leslie coefficient given by Eq. (1), but
an effective coefficient taking into account other phenomena
neglected in the calculation leading to Eq. (2), such as a
possible macroscopic flow.

In this paper, we propose to test again the simplified model
of Refs. [2,3] by changing the orientation of the helix in the
droplets. For this purpose, we use a cholesteric liquid crystal
of negative dielectric anisotropy and apply an ac electric field
parallel to the temperature gradient to change the orientation
of the helix. In this way, the helix can be oriented parallel
to the temperature gradient inside the droplets providing that
the electric field is large enough. In that case, the director
orientation must become independent of the polar angle θ if
the director is not strongly anchored on the contour of the
droplet and A = 0. Thus, the simplified model predicts that
the helix should rotate at constant speed ω = −νG/γ1 inside
the droplets, whatever their radii. We propose to test this
prediction experimentally and to compare the rotation velocity
of the helix depending on whether it is parallel or perpendicular
to the temperature gradient.

II. EXPERIMENTAL DETAILS

The liquid crystal chosen was N -(p-methoxybenzilidene)-
p-butylaniline (MBBA from Frinton Laboratories, Inc)
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and the chiral dopant was R-(+)-octan-2-yl 4-((4-
(hexyloxy)benzoyl)oxy) benzoate (R811 from Merck Ltd).
We prepared three mixtures with concentration C of R811
of 0.5, 1, and 2 wt%, respectively. The helical twist power
of R811 [HTP defined to be 1/(PC) with P the pitch and
C the concentration in wt%] was measured at the transition
temperature to the isotropic liquid by using the Cano-wedge
method. We found HTP = 9.6 μm−1 wt%−1. The samples, of
thickness 30 μm, were prepared between two parallel glass
plates coated with ITO (tin-doped indium oxide) and a thin
layer of a polymercaptan, a surface treatment that gives a planar
and sliding anchoring (for more details see Refs. [10,11]). The
setup used to impose a temperature gradient perpendicular to
the glass plates was described in a previous publication [2]. In
the following, we denote by �T the difference of temperature
between the top and bottom ovens. To a good approximation,
the temperature gradient is given by G = �T

4e

κg

κLC
, where e is the

thickness of the glass plates (1 mm) and κg/κLC the ratio of the
conductivities of the glass and of the liquid crystal, close to 3
by taking κg ≈ 1.1 Wm−1 s−1 [12] and κLC ≈ 0.37 Wm−1 s−1

[13,14]. With these values, one obtains G (Km−1) ≈ 0.012�T

(K). A function generator HP3325B coupled to a homemade
amplifier (×20; response time, 0.5 μs) is used to impose
the large amplitude ac electric field necessary to change the
orientation of the helix.

III. DROPLET ROTATION WITHOUT ELECTRIC FIELD

We first performed the experiment without an electric
field. A few droplets are shown in Fig. 1. They are quite
similar to the droplets observed in our previous experiments
with biphenyls. Their banded structure of wavelength close
to P/2 indicates that the helix is little deformed and aligns
perpendicularly to the temperature gradient. In this figure,
the droplets rotate clockwise while the temperature gradient
points towards the observer which means that their rotation
vector and the temperature gradient are oriented in opposite
directions. As a consequence, ν > 0, which was expected
for R811 [4,5]. For each concentration, we measured the
rotation period 
⊥ = 2π/ω⊥ of the droplets as a function
of their radius R and the temperature difference �T . The
subscript ⊥ indicates that in these experiments, the helix is
perpendicular to the temperature gradient. As can be seen in
Fig. 2(a), the data obtained at each concentration collapse on

FIG. 1. Droplets of the cholesteric phase which coexist with the
isotropic liquid in the absence of an electric field. The time interval
between the two pictures taken in natural light is equal to 21 s.
C = 1 wt% and �T = 10 ◦C. The arrow indicates the sense of
rotation. The bar is 30 μm long.
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FIG. 2. (Color online) (a) Product 
⊥�T as a function of R. (b)
Product 
⊥�T C as a function of qR.

a single curve on the condition to plot the product 
⊥�T

as a function of R. This shows that ω ∝ G at fixed radius,
in agreement with the simplified model [see Eq. (1)]. On
the other hand, it was not possible to collapse all the data
onto a universal curve (in particular the data obtained at the
smallest concentration of 0.5 wt%) by plotting 
⊥C�T as
a function of qR [with q = 2πHTP × C] [Fig. 2(b)], as the
simplified model suggests. This indicates that the function
A(qR) changes with the concentration, in particular, when the
drop thickness becomes comparable to or smaller than the
equilibrium pitch, what happens at the lowest concentration.
In this case, the helix partly unwinds and the simplified
model predicts a lower dissipation than when the helix is not
deformed. This could qualitatively explain why the droplets
observed in the mixture at 0.5 wt% rotate comparatively faster
than the droplets of similar radii observed in the two other
mixtures at 1 and 2 wt%. Unfortunately, the data are too much
dispersed to allow a confident extrapolation of the data at zero
radius and a serious determination of the Lehmann coefficient
ν. This dispersion, which is larger than in our experiments
with the biphenyls, is mainly due to a pollution of the MBBA
with the polymercaptan. This pollution leads to a continuous
decrease of the melting temperature during the experiments,
in particular, during the first hours following the filling of the
samples. This effect is accompanied by a viscosity increase
[15] that leads to a slowing down of the droplets (of the order of
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20% for a temperature decrease of 3–4 ◦C). Experimentally, we
stop measurements with the same sample when its transition
temperature has decreased by more than 5 ◦C, which happens
typically 3 days after filling.

IV. DROPLET ROTATION UNDER ELECTRIC FIELD

In order to orient the helix parallel to the temperature
gradient, we submitted the droplets to a large ac electric field
(we recall that MBBA is of negative dielectric anisotropy [16]).
In practice, a voltage of amplitude 40 Vrms was largely
enough to produce this effect in all samples. In order to
avoid convective instabilities, we worked at high frequency,
typically 10 kHz. We checked that all the results presented
in this section were completely independent of the frequency
and the amplitude of the voltage (which we changed from
2 to 100 kHz and from 30 to 150 Vrms, respectively). This
indicates that the only effect of the field is to orient the helix
parallel to the temperature gradient. When the field is applied,
the banded texture disappears and no rotation can be detected
in natural light. In order to detect a helix rotation, the sample
must be placed between crossed polarizers. Doing this, we first
observed that the transmitted intensity was only a function of
the distance r from the center of the droplets. This indicates
that the helix orientation is independent of the polar angle θ . On
the other hand, we cannot say whether the intensity variation
along r is only due to the droplet thickness variation along r

or is also due to a disorientation of the helix as a function of
r , as these two phenomena produce the same effect. Then, we
observed that the intensity oscillated inside the droplets as can
be seen in Fig. 3. This clearly indicates that the helix rotates

with a period equal to 4 times the period of the optical signal
(this can be easily checked from the complete calculation of the
transmitted intensity given in Ref. [17], p. 126). By rotating the
polarizers, we checked that the rotation vector of the helix and
the temperature gradient pointed in opposite directions, which
indicates that ν > 0. We then systematically measured the
period of rotation of the helix 
‖ as a function of R, �T , and
C. As before, we found that it was possible to collapse all the
data measured at a given concentration by plotting 
‖�T as a
function of R [Fig. 4(a)]. In this case, the dependence on R is
linear. More interestingly, and in contrast with the experiments
without an electric field, we found that it was possible to
collapse all the data onto a single line by plotting 
‖�T C

as a function of R [Fig. 4(b)]. This result is particularly
interesting in many respects. First, it shows that, as expected,
the helix rotation velocity measured in droplets is proportional
to the temperature gradient and to the concentration of chiral
molecules. Second, it shows that the helix rotation velocity is
inversely proportional to the droplet radius. This dependence,
on the other hand, is surprising because it disagrees with the
simplified model of Ref. [2] that predicts a constant rotation
velocity: ω‖ = νG/γ1 according to Eq. (1). We nevertheless
note that the helix rotation velocity extrapolated at R = 0 from
these measurements is compatible with the rotation velocity
of the smallest droplets observed in zero field. This is normal
because the orientation of the director must be the same in
these two limiting cases.

Finally, we performed an experiment in the Leslie geometry
[6] by preparing a planar sample just below the melting
temperature. In that case, the cholesteric layer is in contact
with the two polymercaptan layers and the electric field
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FIG. 3. (Color online) Droplets observed between crossed polarizers under the electric field (10 kHz, 40 Vrms). The top photograph was
taken at time t = 12.5 s and the bottom one at time t = 17.5 s. The three graphs show the intensity measured in the middle of the droplets
marked 1, 2, and 3 in the top photograph. The bar is 30 μm long.
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may be suppressed while keeping the helix parallel to the
temperature gradient. We observed that in all samples, the
helix was not visibly rotating. This indicates that the Lehmann
coefficient ν (one should rather speak of the thermomechanical
Leslie coefficient ν as we know that we really measure this
coefficient in this geometry) is extremely small and almost
impossible to measure below the transition temperature. This
result is compatible with our previous measurements in the
diluted mixtures made with biphenyl liquid crystals [8]. The
same behavior was observed by partly melting the cholesteric
layer from the hot plate. In that case, the planar orientation
was maintained by applying an electric field (if not the
structure destabilizes and bands form). This result is obviously
compatible with the fact that in droplets, ω‖ ∝ 1/R and thus
tends to 0 when R diverges.

V. FEEDBACK ON THE THEORETICAL MODEL

These new results clearly show that the simplified model of
Ref. [2] is, if not wrong, at least incomplete. One reason could
be that this model implicitly supposes that there is no flow.
This is the case in the Leslie geometry when the cholesteric
layer has an infinite extension in the horizontal plane and the
helix is parallel to the temperature gradient [6]. On the other
hand, there are certainly flows in the droplets when the helix is

perpendicular to the temperature gradient, but the calculations
are impossible to carry out analytically in this geometry. The
same question obviously arises in the droplets under an electric
field when the helix is parallel to the temperature gradient. In
particular, one could ask whether the boundary conditions on
the side surfaces of the droplets are satisfied in the simplified
model and, if not, if they are responsible for the variation of
the helix rotation velocity observed in this geometry when the
droplet radius changes.

To answer this question, we assume that the droplets have
the shape of cylindrical boxes of radius R in which the helix
is oriented parallel to the temperature gradient and we assume
that the Leslie solution is still valid inside. Let φ be the angle
between the director �n and the x axis. According to Leslie [6],
φ only depends on z and t and reads

φ = qz + ωt. (3)

Substitution into the bulk torque equation

γ1
∂φ

∂t
= K2

∂2φ

∂z2
− νG (4)

gives the angular rotation velocity: ω = − νG
γ1

. If the anchoring
is fully sliding on the surface of the droplet (no anchoring and
no surface viscosity, which are the assumptions made in the
model of Ref. [2]), this solution also satisfies the surface torque
equation on the surface of the droplet. This solution must also
satisfy the bulk linear momentum equation and the associated
boundary conditions which read

divσ = 0 (5)

in the bulk and

σ �κ = −PI �κ (6)

on the surface (in the absence of flows), by denoting by �κ the
unit vector normal to the surface and pointing outwards and
by PI the pressure in the isotropic liquid. Because the helix is
not distorted, the elastic stress tensor σ e vanishes so that the
total stress tensor reduces to

σ = −PI + σv. (7)

Here, P is the hydrostatic pressure and σv the viscous stress
tensor of components in the absence of flow [18]:

σv
ij = α2nj ṅi + α3niṅj − μ1( �G · �n)inj − μ2( �G · �n)jni, (8)

where �G = G�ez is the temperature gradient, α2 and α3 are
two of the five Leslie viscosities (with γ1 = α3 − α2), and μ1

and μ2 are the two thermomechanical Leslie coefficients (with
ν = μ1 − μ2).

From Eqs. (3) and (8), we calculate

σv
xx = −σv

yy = 1
2 sin(2φ)[G(μ1 + μ2) − ω(α2 + α3)],

σ v
xy = (μ1G − α2ω) sin2 φ − (μ2G − α3ω) cos2 φ,

σ v
yx = (μ2G − α3ω) sin2 φ − (μ1G − α2ω) cos2 φ,

σ v
xz = σv

zx = σv
yz = σv

zy = σv
zz = 0. (9)

As φ only depends on z, it comes divσv = 0 so that P =
constant according to Eq. (5).
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Finally, the application of Eq. (6) on the horizontal faces of
the droplet gives P = PI , while its application on the vertical
side gives

σv
xxκx + σv

xyκy = 0,
(10)

σv
yxκx + σv

yyκy = 0.

The stress field given in Eq. (9) does not satisfy these boundary
conditions on the vertical side of the droplet at each point,
but only on average along z. Indeed, averaging along z gives
〈sin(2φ)〉 = 0 and 〈sin2 φ〉 = 〈cos2 φ〉 = 1

2 , so that 〈σv
xx〉 =

〈σv
yy〉 = 0 and 〈σv

xy〉 = 〈σv
yx〉 = 1

2 (νG + γ1ω). The boundary
conditions (10) are thus satisfied on average along z if ω =
− νG

γ1
. This velocity is the same as the one obtained from the

bulk torque equation (4).
Another way to calculate ω consists of applying the angular

momentum theorem to the droplet. This gives

d �M
dt

=
∫
S

(�r × σ �κ + C�κ)dS, (11)

where �M is the angular momentum, σ = −PI + σ e + σv

the total stress tensor, C�κ the surface elastic torque, and �κ
the unit vector pointing outwards of the droplet. Note that
the right-hand side of this equation is nothing else than the
torque that the isotropic liquid exerts on the surface of the
droplet. In the stationary regime, this torque must vanish (in
the absence of external forces) because d �M/dt = 0. This is
compatible with our assumption that the isotropic liquid is at
rest. In our model, we assume that the helix is not distorted. As
a consequence, C and the elastic stress tensor σ e also vanish.
Finally, we must have∫

S
(�r × σv �κ)dS = 0, (12)

where the components of the viscous stress tensor σv are
given in Eq. (9). A straightforward calculation shows that this
equation is satisfied (whatever the height of the droplet along
z) if ω = − νG

γ1
.

Again, we find the same velocity as the one obtained from
the bulk torque equation (4).

For this reason, we think that this approximate solution is
close to the exact solution for a droplet of finite size. The
problem, on the other hand, is that this solution predicts a
constant rotation velocity of the helix whatever the radius
of the droplet, which is in complete disagreement with the
experiment (see Fig. 4).

The fact that the isotropic liquid exerts no torque on the
surface of the droplet may seem surprising at first sight if
one thinks about the apparently similar problem of a droplet
subjected to a rotating magnetic field. In this case, the director
also rotates under the action of the magnetic torque, but we

know that the nematic phase exerts on its surface a torque equal
to the torque that the magnetic field exerts on the bulk nematic
phase [19,20]. This is due to the fact that the magnetic torque
is an external torque [it must be added in the right-hand side
of Eq. (11)], whereas the Leslie torque is an internal torque.

For the moment, we cannot say with certainty whether there
is a flow in or out of the droplets. So far, we assumed that
there is no flow and that the rotation of the texture was only
due to the rotation of the molecules around their centers of
gravity at angular velocity ω. Nonetheless, a rigid rotation of
the droplets at angular velocity ω could explain as well our
optical observations. If such a solution exists, the isotropic
liquid should be sheared in the vicinity of the droplets, which
means that each droplet should exert a torque different from
0 on the isotropic liquid. The previous calculation shows that
this hypothesis is incompatible with the Leslie model.

As a consequence, the temperature gradient does not act,
at least in the Leslie model, as a rotating magnetic field or a
rotating electric field, even if the phenomena seem to be similar
at first sight. We emphasize that the same conclusion holds in
the case of a nematic droplet subjected to the electric field of a
circularly polarized laser light. In this case, the droplets have
been shown to rotate to a good approximation as rigid bodies
[21]. This is not incompatible with our analysis because the
droplets are here submitted to a torque different from 0 due
the external field of the laser light.

VI. CONCLUSION

To conclude this paper, we would like to stress that the
droplets rotate independently of each other, even when they
are almost in contact, close to coalescence. In particular, two
neighboring droplets never turn on a circle as two vortices with
identical circulation would do in a fluid at rest at infinity. This
observation and the fact that we never detected any motion
of dust particles in the isotropic liquid close to the droplets
suggest that there is no flow in the isotropic liquid, which
would imply that the droplets do not rotate as rigid bodies.
This remark is compatible with the Leslie theory and the
observations of Lehmann who pointed out that it is the internal
texture of the droplets which is rotating and not the droplets
themselves. On the other hand, the Leslie thermomechanical
coupling seems to be not strong enough to explain alone the
observations. In addition, it fails to explain the decrease of the
rotation speed of the helix in the droplets oriented under an
electric field. For these two reasons, we suspect that another,
more efficient, mechanism exists to explain the Lehmann
effect. One possibility could be a Marangoni effect due to a
gradient of surface tension at the curved surface of the droplets.
The induced flow could couple with the macroscopic helix
and make it rotate, whence the crucial importance of detecting
flows in or out of the droplets in the future. New experiments
are in progress to address this issue.
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