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Effect of ridge-ridge interactions in crumpled thin sheets
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We study whether and how the energy scaling based on the single-ridge approximation is revised in an actual
crumpled sheet, namely, in the presence of ridge-ridge interactions. Molecular dynamics simulation is employed
for this purpose. In order to improve the data quality, modifications are introduced to the common protocol. As
crumpling proceeds, we find that the average storing energy changes from being proportional to one-third of
the ridge length to a linear relation, while the ratio of bending and stretching energies decreases from 5 to 2.
The discrepancy between previous simulations and experiments on the material-dependence for the power-law
exponent is resolved. We further determine the average ridge length to scale as 1/D1/3, the ridge number as
D2/3, and the average storing energy per unit ridge length as D0.881 where D denotes the volume density of
the crumpled ball. These results are accompanied by experimental proofs and are consistent with mean-field
predictions. Finally, we extend the existent simulations to the high-pressure region and verify the existence of a
scaling relation that is more general than the familiar power law at covering the whole density range.
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I. INTRODUCTION

Although crumpling is ubiquitous and simple to enact,
intense researches to understand its complexities only began
in the last thirty years or so. It has not only become relevant
to cutting-edge technologies like utilizing crumpled graphene
sheets [1] to harvest energies by converting motion into
electricity, but is of interest to the general phenomenon of
condensation of many outstanding problems in physics [2].
However, some properties of crumpling remain unresolved.
For instance, as the developable cones [3–6] increase in
number and form the familiar network [7–9] of ridges and
vertices, scientists still do not know how they collaborate to
produce stunningly simple power laws between the crumpled
ball size R and crumpling force F [10–19], R ∼ F−α , and
about the occurring frequency [20–22] of different noise
intensities. One challenge is to understand how the crumpled
sheet constructs spontaneously a highly porous and yet robust
structure [23–25]. Proper theoretical tools are also in demand
to tackle the complex many-body interactions among these
deformations, especially the self-avoidance that plays an
important role [14] at creating the glasslike interior after a
series of highly nonequilibrium processes [26], similar to the
random packing in a golf ball basket or salt jar.

In view of the theoretic inability, molecular dynamics
simulation becomes a powerful tool to obtain information,
such as the three-dimensional distribution of ridges and
facets before unfolding, the energy storage in each ridge,
and how the increase of crumpled ball density affects
these quantities. We are interested in the effect of ridge-ridge
interactions on the energy scaling predicted by the single-ridge
approximation [2,7,9]. Attentions are also paid to resolve
major disagreements between previous simulations [14,18]
and experiments [16,19]. In the mean time, we push the
simulation to a more-time-consuming region of large densities
to verify the existence of an alternative scaling law [19].
Finally, we study how the ridge number, average ridge length,

and energy cost per unit length evolve with the crumpled
ball density, and compare these relations with the mean-field
predictions.

II. MOLECULAR DYNAMICS SIMULATION

Our simulations follow a protocol which models a thin
sheet by a triangular lattice with bond length r = 1 [12,14,18].
Bending and stretching moduli [12], kB and kS , are imposed
on a two-dimensional circular membrane with radius R0 =
130 lattice sites, which composes of Nbead = 62 143 beads.
Simulation on a larger system of R0 = 500 sites, for test,
has been checked not to alter our conclusions. The Weeks-
Chandler-Andersen (WCA) [27] Lennard-Jones potential is
used to ensure that no bead can penetrate each other. Crumpling
force is simulated by a collapsing impenetrable spherical
wall that encloses the membrane. In order to compare the
simulations with the experiments, a realistic value of 1/3 is
assigned to the Poisson ratio and the relation kB/kS = 3h2/32
is used to constrain kS with each choice of kB . The bead
diameter is held constant, h = 0.9. We also include plasticity
by halving the magnitude of kB beyond a yield angle of 10◦
and requiring the strain to relax with the original kB .

III. MECHANICAL RESPONSE OF A SELF-AVOIDING
SHEET

We first verify that our simulation reproduces the correct
mechanical response. The data plotted in Fig. 1 show how the
(dimensionless) density inside the collapsing wall (of radius
Rwall) D1 ≡ Nbead[4π (h/2)3/3]/[4πR3

wall/3] varies with the
(dimensionless) external pressure P � ≡ (P/Y )(R0/h) where
P is the pressure and Y is Young’s modulus. The reason why
we show D1 vs P � here, instead of Rwall vs P (or F ), is
that this presentation collapses the simulation data of different
kB onto a master curve, irrespective of whether plasticity is
included. The results reveal a general scaling relation across
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FIG. 1. (Color online) Dimensionless density D1 vs dimension-
less pressure P � for elastic and plastoelastic sheets of different kB

by simulations. The ratio of yield stress to Young’s modulus for
the plastic case is set at 0.175. Experimental data [19] for Al and
HDPE are superimposed for comparison. The vertical dashed line
roughly marks the region of power-law behavior with the exponent
α = 0.25 ± 0.01.

the whole range of P , which can be reduced to a power law
D1 ∼ P �3α/(1+2α) at small densitities. We find that the exponent
α is 0.25, in good agreement with simulations obtained by
other groups [14,18]. However, a discrepancy is observed
when we superimpose experimental data [19] on the same
figure for comparison where the density πR2

0h/[4πR3/3]
is calculated from the empirically observed radius R of the
crumpled ball. The densities for aluminum foils (Al) and
high-density polyethylene (PE) film (HDPE) are significantly
larger than the simulation ones.

The first reason that leads to the discrepancy is the coarse-
grained triangular model used here. The numerator of D1 uses
the total volume of beads on the simulating sheet, Vbeads ≡
Nbead[4π (h/2)3/3], but actual samples like Al or HDPE have
no meshes. So Vbeads should be replaced by Vsheet ≡ πR2

0h.
Secondly, the volume V of the crumpled ball (of beaded
net) is overestimated by Vwall = 4πR3

wall/3 in the denominator
of D1. By the time the radius-force power law sets in, the
inside and outside of a crumpled ball can roughly be defined.
Similar to eggs in an egg carton, there are voids between
the crumpled ball and the confining wall, as demonstrated
by Fig. 2(b). Their volume difference �Vvoid = Vwall − V

constitutes another source of error to D1. Finally, since the
power law is expected to be strictly valid only in the limit of
V � Vsheet, it is natural to expect artifacts when V becomes
small. A serious example is the growing number of beads
that become wedged in the mesh of the triangular lattice,
as sketched in Fig. 2(a). Since a real paper sheet can not
cut into itself, we compensate for the crumpled ball volume
V by allowing it to swell by the same amount of volume
�Vwedged wedged inside all gray prisms in Fig. 2(a). Compared
to V which denotes the volume of a crumpled ball of beaded
net, V + �Vwedged represents more correctly the volume of a
crumpled ball of unbroken sheet. To avoid confusion, please
consult Table I for the definitions of the different volume and
density parameters used in our simulation.

In summary, a more precise definition for the dimension-
less density should be D2 = (πR2

0h)/(V + �Vwedged) where

TABLE I. Definitions of the different volume and density param-
eters used in our simulation.

Notation Definition Description

Vbeads Nbead[4π (h/2)3/3] Volume of beaded net
Vsheet πR2

0h Volume of unbroken sheet
Vwall 4πR3

wall/3 Volume of confining wall
V Volume of crumpled ball

of beaded net
V + �Vwedged Volume of crumpled ball

of unbroken sheet
�Vwedged Fig. 2(a) Wedged volume

inside all gray prisms
�Vvoid Vwall − V Volume of void

between confining wall
and outer surface
of crumpled ball

D1 Vbeads/Vwall Poor definition of
crumpled ball density

D2 Vsheet/(V + �Vwedged) Better definition of
crumpled ball density
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FIG. 2. (Color online) (a) Schematic plot for a (red) bead par-
tially wedged in the interior (the gray prism) of a triangular lattice
of (blue) beads. (b) The crumpled ball occupies a volume which,
if transformed into a sphere, is marked by the red dashed line with
a radius smaller than Rwall. The space between the collapsing wall
and outer surface of the ball is painted in black and denoted by
�Vvoid. (c) Dimensionless density D2 vs dimensionless pressure P �.
Data are replotted from Fig. 1. The power-law region shrinks from
P � � 1.8 to 0.28, and α decreases from 0.25 to about 0.22 ± 0.02.
The inset shows that �Vvoid/Vwall and �Vwedged/Vwall dominate the
small and large pressure regions, respectively, for the case of a
kB = 1000 elastic sheet.
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V = Vwall − �Vvoid. Figure 2(c) shows D2 vs P � for the differ-
ent sets of simulation data together with the experimental ones,
where the ratios for the volume differences, �Vvoid/Vwall and
�Vwedged/Vwall, are also shown in the inset for illustration. We
observe that the sets of simulation data are now collapsed with
the experimental ones, while retaining the scaling relation. In
the mean time, the power-law region shrinks and the exponent
reduces to around 0.22. The latter is not hard to understand
because �Vvoid/Vwall in the inset of Fig. 2(c) dominates at
small densities and raises D1, while �Vwedged/Vwall rules at
large densities to reduce D1. Both effects combine to level
off the line that represents the power law in Fig. 1. As for
the shortening of the already narrow pressure range, it may
highlight the possibility that crumpling just does not scale as
a power law.

Please notice that experimentalists usually focus on the
response in a relatively large density region where the power-
law relation is not so well-established, as shown in Fig. 2 for
Al and HDPE. It explains why α obtained from experiments
[16,19] is usually smaller and nonuniversal. This is because
there exists a lower limit to apply external pressure P in
crumpling experiments [16,19] where high-pressure nitrogen
gas was used to provide the ambient pressure. Since the
pressure is balanced, the sheet needs to be precrumpled and
packed by a polyvinylchloride (PVC) wrap with the wrap
interior maintained at atmospheric pressure via a PE tube
connecting to the outside of the pressure chamber. This
procedure sets a lower value to P and, therefore, it is not
easy for experimentalists to investigate crumpling in the
low-pressure region.

IV. ENERGY SCALING BEYOND THE SINGLE-RIDGE
APPROXIMATION

It is known that the single-ridge approximation [2,7,9]
predicts a scaling law for the energy E to create a folding
ridge on a sheet as a one-third power of the ridge length �. If
E is partitioned into the bending energy EB and the stretching
energy ES , the ratio of the two energies is shown to be
EB/ES = 5. Although the former prediction has been checked
by simulations for a solitary ridge [18], the two predictions
have not yet been verified in a realistic case of crumpling
where multiple ridges are formed and interact between each
other. Since the ridges are not formed in an equilibrium state,
a full relaxation of stress is not expected, particularly when the
sheet is crumpled into a very tight space.

We apply a watershed algorithm to determine the folding
ridges of the sheet. The data are improved manually by con-
necting broken segments of the ridges obtained [see Figs. 3(a)
and 3(b) for example]. We observe that the distribution of ridge
lengths follows a log-normal distribution as shown in Fig. 3,
which agrees with theoretical predictions [2,7], experiments
[28,29], and other simulations [14]. Moreover, we calculate
the energy associated with each ridge generated. The mean
energy E(�) exhibits a power-law dependence �γ on the ridge
length �, as shown in Fig. 4(a). The exponent γ is then plotted
in Fig. 4(b) as a function of inverse density D2. We find that the
predicted value 1/3 of Witten’s single-ridge approximation is
recovered in our simulations at low densities. As the density
increases, γ rises and saturates asymptotically to 1. In the mean

FIG. 3. (Color online) (a) Network of ridges on a crumpled
elastic net of beads with kB = 1000 at D2 = 0.339. (b) Same as
(a) but on a plastic net. (c) N (�) as a function of �. The distribution
is fitted by N (�) = A/(�B) exp{−[ln(�/�0)/B]2} with (A,B,�0) =
(279,0.87,24.7) for an elastic net (circles) and (364,0.75,21.6) for a
plastic net (squares).

while, the ratio EB/ES drops from the single-ridge value 5
to about 2 [see Fig. 4(c)]. Therefore, the weight of energy
gradually shifts from EB to ES as D2 increases, whereas
both energies are promoted by the ridge-ridge interactions.
Since the dependence of EB/ES on D2 cannot be predicted
by the single-ridge approximation, our results show that the
ridge-ridge interactions play an important role on the energy
storage of sheet.
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FIG. 4. (Color online) (a) Average storing energy E(�) in a ridge
as a function of � at D2 = 0.339 and kB = 1000. Least square fits
yield γ = 0.813 ± 0.100 and 0.943 ± 0.069 for the elastic and plastic
sheets, respectively. (b) γ vs 1/D2. (c) EB/ES vs 1/D2.
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FIG. 5. (Color online) (a)N�2
0 vs D2 for thin sheets with kB =

1000. (b) �0 vs D2. The straight-line fitting gives power-law exponents
of −0.389 ± 0.048 and −0.358 ± 0.037, respectively, for elastic
(circles) and plastic (squares) sheets. (c) Power law dependence of ε

on D2 with exponents 0.846 ± 0.147 and 0.916 ± 0.180, respectively.
The first data point at low confinement is not included in the fitting
because the radius-force power law has not yet set in. The red
dashed-dotted lines in (b) and (c) mark the region of the power-law
behavior in Fig. 2.

V. RIDGE LENGTH, RIDGE NUMBER, AND THE
MEAN-FIELD APPROXIMATION

Having seen how the ridge-ridge interactions complicate
and revise the energy scaling, we now study some other
properties that turn out to obey the prediction of a simple
mean-field theory. As shown in Fig. 5(a), the ridge number
N multiplied by the square of the mean ridge length �0

is essentially constant over the whole range of density D2.
Suppose that the ridges are arranged in a square lattice, then the
area of this checkerboard approximately equals N�2

0/2, which
is consistent with the sheet area πR2

0 = 5.3 × 104. Thus, the
fact that N�2

0 does not change with D2 can be explained within
a mean-field picture. Figure 5(b) shows that �0 ∼ 1/D

1/3
2 ,

which implies that the variation of �0 is mainly influenced by
the geometric confinement, although its magnitude depends
on the rigidness of a sheet. This conjecture is compatible
with the observation that the power-law behavior in Fig. 5(b)
enters at an earlier stage than Fig. 5(c) which involves the
mechanical response and energy consideration. Figures 5(a)
and 5(b) together say that N ∼ D

2/3
2 . Notice that these results

are consistent with the experimental findings of N ∼ D0.5 and
�0 ∼ 1/D0.27 in paper [30], but at odds with the prediction
N ∼ D4/3 and �0 ∼ 1/D0.55 by previous simulations [14,18]
for self-avoiding sheets. It is worth mentioning that the original
power laws for N , �0, and the average energy per unit ridge
length ε were discovered as a function of pressure which spans
more orders of magnitude than the density. The reason why
we decided to convert their dependence to D2 by use of the
power law in Fig. 2 is that this makes Fig. 5 more insightful.

Figure 5(c) shows that the average energy per unit ridge
length is not merely a material property, but increases with
density as ε ∼ D

η

2 where η ∼ 0.916 for elastic and 0.846 for

FIG. 6. (Color online) (a) �0 vs D2 reveals a power-law relation
with exponents −0.342 ± 0.100 for HDPE and −0.346 ± 0.130 for
Al. (b) N vs D2 gives exponents of 0.656 ± 0.09 for HDPE and
0.510 ± 0.07 for Al.

plastic sheets in the power-law region. It implies that the total
energy stored in the ridges, N�0ε, scales roughly as D1.214

2 .
In the mean time, the total work W done on the crumpling
force can be estimated by

∫ R

R0
F · dR′, which yields R(−1/α)+1.

Adopting the value α ≈ 0.22 obtained in Fig. 2(c), the scaling
of energy input W ∼ D1.182

2 is consistent with that of energy
storage N�0ε.

Regarding the discrepancy between Figs. 5(a), 5(b) and
previous simulations [14,18], we decide to resort to more
experimental proofs. Our sample preparation and crumpling
procedures have been described in Ref. [19]. The high-pressure
chamber provides a better-controlled ambient pressure
for the three-dimensional crumpling than hand-crushing [30].
The coordinate measuring machine is employed to measure
the sample topography, and an image process aided by the
calculation of the ridge response function is developed [31] to
detect the ridges automatically. Instead of linking the vertices
by straight lines [29], we achieve a better resolution that retains
the curvy nature of ridges. As shown in Fig. 6, the experimental
results are consistent with those of Ref. [30] and in support of
Figs. 5(a) and 5(b).

VI. CONCLUSIONS

In conclusion, molecular dynamics simulation has been
employed to study the effect of ridge-ridge interactions on
a crumpling of self-avoiding sheet. Energy scaling based on
the single-ridge approximation is valid only at low densities.
Revision is needed as the ridge-ridge interaction intensifies
in the high-density region. We manage to conciliate the
different exponents α between simulations and experiments.
We investigate how the average ridge number, the average
ridge length, and the average storing energy per unit length
vary with the ball density. The relations are accompanied
by experimental proofs and found to be consistent with the
mean-field predictions. In the mean time, we extend our
simulations to pressure beyond the validity of the power law
and confirm the existence of a more general scaling relation.
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