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Metallic alloys, such as Al and Cu or mild steel, display plastic instabilities in a well-defined range of
temperatures and deformation rates, a phenomenon known as the Portevin–Le Chatelelier effect. The stick-slip
behavior, or serration, typical of this effect is due to the discontinuous motion of dislocations as they interact
with solute atoms. Here we study a simple model of interacting dislocations and show how the classical Einstein
fluctuation-dissipation relation can be used to define the temperature over a range of model parameters and to
construct a phase diagram of serration that can be compared to experimental results. Furthermore, by performing
analytic calculations and numerically integrating the equations of motion, we clarify the crucial role played by
dislocation mutual interactions in serration.
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I. INTRODUCTION

Dislocation dynamics is a complex intermittent phe-
nomenon involving the collective motion of many dislocations
interacting with each other as well as with obstacles eventually
present in the material, such as solute atoms and quenched
dislocations from other glide planes [1–3]. The long-range
stress produced by dislocations may lead to jamming and
avalanche-like phenomena even in the absence of obstacles
[4]. The presence of obstacles changes the local properties of
the host material, resulting in a pinning force on nearby dislo-
cations [5,6]. Usually, this source of disorder for dislocations
is taken to be quenched, so that its properties do not change
within the relevant timescales of the system [7]. However,
under specific conditions, the mobility of solute atoms in
metallic alloys [8,9], or oxygen vacancies in superconductors
[10], plays an important role in the dynamics of these
systems.

Here we are interested in studying the dynamics of
interacting dislocations mediated by mobile impurities. The
interplay between dislocation mutual interactions and pinning
by mobile impurities is believed to be at the origin of plastic
instabilities observed in metallic alloys under suitable loading
conditions and temperatures. One of the best-studied forms
of instability propagation is the Portevin–Le Chatelier (PLC)
effect [11–16]. When a specimen of a dilute alloy (such as an
Al or Cu alloy or mild steel) is strained in uniaxial loading,
the mechanical response is often discontinuous. In constant
applied strain rate tests, the stress-versus-strain (or time, which
is proportional to strain) curves exhibit a succession of stress
drops and reloading sequences (serration).

From a dynamical point of view, the jerky or stick-slip
behavior of stress is related to the discontinuous motion of
dislocations, namely, the pinning (stick) and unpinning (slip)
of dislocations. The classical explanation of the PLC effect
is via the dynamic strain aging concept [17–24]. It is based
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on the interplay between the diffusivity of solute atoms and
dislocations that can be arrested temporarily at obstacles
during their waiting time. Thus, the longer the dislocations
are arrested, the higher will be the stress required to unpin
them. As a result, when the contribution from aging is large
enough, the critical stress to move a dislocation increases with
increasing waiting time or decreasing imposed strain rate.
When these dislocations are unpinned, they move at a high
speed until they are arrested again. At high strain rates (or low
temperatures), the time available for solute atoms to diffuse
towards the dislocations in order to age them decreases and
hence the stress required to unpin them decreases. Thus, in the
range of strain rates and temperatures where these two time
scales are of the same order of magnitude, the PLC instability
manifests. The competition between the slow rate of aging
and the sudden unpinning of the dislocations translates, at the
macroscopic level, into a negative strain rate sensitivity of
the flow stress as a function of the strain rate [19]. This basic
instability mechanism, used in most phenomenological models
for the PLC effect [25], is based on the behavior of individual
dislocation and thus does not explain how dislocation motion
can synchronize to yield macroscopic strain bursts.

Current theoretical approaches to modeling the PLC effect
are based on a mesoscopic descriptive level (where a coarse-
grained dislocation density is considered) in which phe-
nomenological parameters are needed to construct the relative
dynamical equations [25]. Modeling plastic deformation phe-
nomena taking into account inhomogeneity at the dislocation
level offers fundamental advantages compared to continuum
mechanics approaches. Discrete dislocation dynamical (DDD)
approaches allow us, for example, to account for the intrinsic
length scales, such as the grain size, the mesh length of
a dislocation network, and the cross-slip height, which is
necessary to understand the formation of spatial dislocation
structures, such as persistent slip bands [26], and plastic
instabilities, such as Lüders band and the PLC effect [25]. The
problem of spatial and temporal coupling in heterogeneously
deforming materials, and the associated length and time scales
to be included in constitutive laws, is a central issue in
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current attempts to bridge a gap between dislocation-based
constitutive models and continuum mechanics.

The general three-dimensional dynamical problem of dis-
location lines interacting among each other is a complex
problem due to the necessity of considering flexible lines,
conserving their connectivity and line length, and taking care
of line interactions [27–33]. In several instances, however,
dislocations are arranged into regular structures that are
amenable to analytic treatment and a more efficient simulation
approach. Here we analyze the dynamics of the effective
one-dimensional dislocation array called a pileup interacting
with mobile impurities. A slip band can be envisaged as a queue
of dislocations, a pileup, pushed through a series of obstacles
(solute atoms or immobile dislocations from other glide
planes). In our case the obstacles perform a diffusive motion,
due to thermal effects, and interact with dislocations. This
system can be viewed as a coupled one-dimensional channel of
particles [34], in which particles in one channel (dislocations)
are driven by an external force and experience a drag from
the undriven particles (impurities) in the other channel. In
the following we discuss the problem of a single dislocation
in a cloud of mobile impurities, analyzed in Ref. [35], and
then we propose a generalization of the equations in the case
of many interacting dislocations in a landscape of mobile
impurities.

II. SINGLE DISLOCATION INTERACTING
WITH MOBILE IMPURITIES

Recently the dynamics of a particle interacting with
diffusing impurities in one dimension has been investigated
by Laurson and Alava [35]. Despite the simplicity of the
model, which makes it analytically tractable, it exhibits a rich
dynamics. Here we describe this model as an introduction
to the following section, in which we generalize the relative
equations to the case of many interacting dislocations.

In the full formulation of the model discussed in Ref. [35],
a particle in a cloud composed of a fixed number of Np

impurities driven by an external force F is considered. The
force is given by F = k(V t − x), where V is the driving
velocity and k is a spring constant characterizing the response
of the driving mechanism. The region of the parameter space
is restricted to that in which the impurities have a vanishingly
low probability of escaping from the vicinity of the particle
within the time scale of the simulation. Thus, the particle is
dragging an impurity cloud with a fixed number of impurity
particles without escaping from it. The equations of motion are

μ
∂x

∂t
=

Np∑
i=1

f (x − xs,i) + F,

(1)
∂xs,i

∂t
= −f (x − xs,i) + ηi,

where x and xs are the positions of the particle and the
impurity particles, respectively. f (z) is the interaction force
between the particle and the impurity particle, μ defines
the relative mobility of the impurity and the particle, and
ηi are Gaussian white noise with standard deviation δη and
mean 0. The only condition imposed on the expression of the

force f (z) is ∂zf (z)|z=0 = −f0. Here we are interested, in
particular, in the behavior of the external force F , which in
experiments represents the shear stress acting on dislocations.
For z = x − xs close to 0, the following expression for the
stochastic process ∂tF is derived in Ref. [35]:

∂2
t F = −k∂2

t x = −
[

k

μ
+ f0

μ
(Np + μ)

]
∂tF + kf0

μ

Np∑
i=1

ηi

+ kf0

μ
[V (Np + μ) − F ]. (2)

Now, assuming that in the stationary state the last term on the
right-hand side of Eq. (2) has 0 mean (〈V (Np + μ) − F 〉 = 0)
and that fluctuations are small compared to those of the white
noise term (δF � √

Npδη), Eq. (2) reduces to the following
Ornstein-Uhlenbeck process for ∂tF :

∂2
t F = −

[
k

μ
+ f0

μ
(Np + μ)

]
∂tF + kf0

μ

Np∑
i=1

ηi. (3)

The condition of small fluctuations δF � √
Npδη is fulfilled

for most of the relevant parameter value conditions; only
for kf0 � 1 is this not the case. From Eq. (3) it is possible
to see that, after an initial transient, the system reaches the
stationary state in which the external force F fluctuates
around a constant average value and these fluctuations are
uncorrelated in time [35]. Therefore, a system composed of
a single dislocation in a cloud of mobile impurities does not
display a serration-type behavior.

Equation (2) can be solved exactly, without imposing
conditions on fluctuations. Indeed it is possible to rewrite it as a
two-dimensional (2D) Ornstein-Uhlenbeck process. Introduc-
ing the new variable F ∗ = F − V (Np + μ) and considering
F ∗ and Ḟ ∗ as the components of a 2D vector, Eq. (2) can be
written as a 2D Ornstein-Uhlenbeck process [36] for the vector
variable (F ∗,Ḟ ∗),

d

dt

(
F ∗

Ḟ ∗

)
= −

(
0 −1
ω2

0 γ

) (
F ∗

Ḟ ∗

)
+

(
0
�(t)

)
, (4)

where

γ = 1

μ
[k + f0(Np + μ)], ω2

0 = kf0

μ
, �(t) = kf0

μ

Np∑
i=1

ηi.

(5)

The solution for the average 〈F ∗〉 is

〈F ∗〉 = e−γ t |11 F ∗(0) + e−γ t |12 Ḟ ∗(0), (6)

where

F ∗(0) = F (0) − V (Np + μ) = −V (Np + μ),

Ḟ ∗(0) = Ḟ (0) = kV,

(7)

and matrix γ is

γ =
(

0 −1

ω2
0 γ

)
. (8)
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Diagonalizing the exponential matrix e−γ t , we can write explicitly the expression of the average force 〈F 〉 as

〈F 〉 = 〈F ∗〉 + V (Np + μ) = V (Np + μ)[1 − e−γ t |11] + kV e−γ t |12

= V (Np + μ)

[
1 + λ1e

−λ2t − λ2e
−λ1t

λ1 − λ2

]
+ kV

[
e−λ1t − e−λ2t

(λ1 − λ2)t

]
, (9)

where λ1,2 are the eigenvalues of γ . The only case in which we can have fluctuations in the average force is obtained for
(γ 2 − 4ω2

0) < 0, which leads to the expression

〈F 〉 = V (Np + μ)

⎧⎨
⎩1 + e− γ

2 t

⎡
⎣γ

2

sin
(√

4ω2
0 − γ 2t/2

)
√

4ω2
0 − γ 2/2

− cos
(√

4ω2
0 − γ 2t/2

)⎤⎦
⎫⎬
⎭ − kV e− γ

2 t
sin

(√
4ω2

0 − γ 2t/2
)

√
4ω2

0 − γ 2t/2
. (10)

In this case oscillations (serration) emerge, but they decay
exponentially rapidly. On the other hand, performing the
stationary limit, one finds

lim
t→∞〈F 〉 = V (Np + μ). (11)

Therefore, for any parameter value conditions, serration-type
behavior is not observed in the model of a single dislocation
in a cloud of mobile impurities.

III. DISLOCATION PILEUP INTERACTING
WITH MOBILE IMPURITIES

As the PLC effect is widely believed to be due to the
dynamic interaction of dislocations with diffusing solute
atoms, a natural formulation of the problem, in the framework
of the DDD approach, is to consider Eq. (1) for N dislocations
in a landscape of Np mobile impurities. To describe the
dynamics of dislocations we use, as in [35], an overdamped
equation, so that the velocity of a dislocation depends linearly
on the resolved shear stress exerted on it [37]. Therefore, the
equations of motion, Eq. (1), are generalized as

μ
dxi

dt
= G

N∑
j = 1

(j 	= i)

bibj

xi − xj

+ biσ
l
i +

Np∑
j=1

fP (xi − xs,j ),

χ
dxs,j

dt
= −

N∑
i=1

fP (xi − xs,j ) + ηj , (12)

where G is the shear modulus, bi is the Burgers vector of
the dislocation i, and μ and χ are the damping constant of
dislocations and impurities respectively. The external force F

is now explicitly indicated as the local shear stress σ l
i acting

on each dislocation i, whose expression is

σ l
i = k

[
V t −

∫ t

0
bi

dxi(t ′)
dt ′

dt ′
]

= k[V t − bi(xi(t) − xi(0))],

(13)

while for the pinning force fP (z), with z = xi − xs,j , and the
noise term ηj we have the expressions

fP (z) = −f0
z

ξP

e−(z/ξP )2
, 〈ηj (t)〉 = 0,

(14)
〈ηj (t)ηj (t ′)〉 = Dδ(t − t ′)δij .

The detailed shape of the interaction force fP (z) is inessential
for most purposes, provided it is of a short-range nature. As
done in other similar work, we have chosen for fP (z) a function
that satisfies this requirement and that is regular (derivable). To
emulate the behavior of a material in the bulk, we consider that
N point dislocations and Np impurities move along a line of
size L when periodic boundary conditions are chosen. In order
to correctly take into account the effect of periodic boundary
conditions, the interactions between dislocations are summed
over their images [38].

We are interested in the total average stress exerted on
dislocations, σ = 1/N

∑N
i=1 σ l

i (i.e., the external stress that
must be applied to the material to obtain a constant strain rate).
To study the behavior of the stress σ in relation to the PLC
effect, which is regulated principally by the temperature and
strain rate as discussed in Sec. I, we have imposed the relations
bi = b = 1, G = μ = ξP = 1, f0 = 0.01, and k = 0.1, which
fix the time, space, and force scales. The free parameters of
the model are now V , χ , and D. In real materials impurities
have already exerted aging effects over dislocations before the
experiments (i.e., before an external stress is imposed on the
material). To take this effect into account the system is left to
evolve without external stress (k = 0) for a waiting time tw.
The initial configuration of the system (at time t = 0) consists
of a random distribution of dislocations and pinning centers.
We choose tw = 106 × dt = 104, where the integration step
is dt = 10−2. This value of tw is sufficient for the system
to stabilize its elastic energy during the initial part of the
dynamics (for t < tw and k = 0) [1].

IV. THE CONDITIONS FOR SERRATION

Before integrating numerically Eqs. (12), (13), and (14),
we can obtain a set of necessary conditions for serration. First,
we can observe that if dislocations do not interact with any
pinning center [fP (z) = 0], the first Eq. (12) does not possess
normal modes of oscillation. This can be found by employing
a linear perturbative approach, as done in Ref. [39] to study
the discrete cosmological N-body problem, or observing that
the first Eq. (12) describes the so-called Coulomb gas for the
variables xi − (V/b)t at 0 temperature [40].

If we now consider that dislocations interact with pinning
centers [fP (z) 	= 0], but with the last ones quenched (that

022403-3



FABIO LEONI AND STEFANO ZAPPERI PHYSICAL REVIEW E 89, 022403 (2014)

means dxs,j /dt = 0), from Eqs. (12)–(14) we obtain

μ
dx

dt
= bσ + 1

N

N∑
i=1

Np∑
j=1

fP (xi − xs,j ),

xs,j = cj ,

=⇒ ∂tσ = kV − kb2

μ
σ + �(t,σ l

i ,cj ) (15)

where cj are constants and the function � can be obtained
using the relation between xi and σ l

i in Eq. (13). Performing the
ensemble average and the time integral in Eq. (15), we obtain
that 〈σ 〉 = μV/b2 (so we do not have serration) if 〈�〉 = 0,
that is, if the constants cj do not correlate the variables σ l

i

between them [i.e., if the cj do not depend in a specific way
on the position of the variables xi(0)]. To find this result
we employed the relation

∑N
i=1(i 	=j )

∑N
j=1 1/(xi − xj ) = 0,

introduced the variable x = 1/N
∑N

i=1 xi , and considered the
ensemble average with respect to the {cj } configurations.

Another necessary condition for serration can be found
by observing that in the range of parameters for which the
impurities have a vanishingly low probability of escaping from
dislocations (the same case studied in Ref. [35] for the single-
dislocation problem), we can approximate the expression of
the interacting force f (z) for small z as fP (z) � fP (0) +
z∂zfP (z)|z=0 = −f0z. Employing this approximation, from
Eqs. (12)–(14), we find for σ the following 2D Ornstein-
Uhlenbeck equation:

∂2
t σ = − 1

μ

[
kb2 + f0Np + f0μN

χ

]
∂tσ − f0kb2N

μχ
σ

+ f0k

μ

[
V

(
Np + μN

χ

)
+ kb3N

χ
x(0)

]
− f0kb

μχ

Np∑
i=1

ηi,

(16)

which does not display serration as shown above. To obtain
Eq. (16), the relations

∑N
i=1(i 	=j )

∑N
j=1 1/(xi − xj ) = 0 and∑N

i=1(i 	=j )

∑N
j=1 ∂t (xi − xj )/(xi − xj )2 = 0 were employed.

Finally, from Eqs. (12)–(14) we have found four conditions
necessary for serration. (i) First, the system must be composed
of more than one dislocation [as found in Ref. [35] in
the low-noise limit and as results in the general case from
Eq. (11)]. In other words, serration in the stress response of
the system, when present, comes from a collective effect of
many interacting dislocations. To verify this, we studied the
role of the interaction force between dislocations, analyzing
the average stress 〈σ 〉 as a function of time (or strain) for
different values of the interaction force itself (obtained by
changing the value of the shear modulus G), for parameter
values at which serration is observed [μ/χ = 0.5, 1/T =
104 (see the definition of T below), and V = 0.003]. In
Fig. 1 we displayed the average stress 〈σ 〉 (performed on
50 samples) as a function of time obtained by integrating
numerically Eqs. (12) and (13). From it we can see that
serration disappears when the strength of the interaction force
between dislocations decreases. In particular, for vanishing
interaction force (G = 0), the stationary average stress is
given by the expression 〈σ 〉s = V [(Np/N )χ + μ] � 0.051, as

0 2×104 4×104 6×104 8×104 1×105

t-tw

0

0.01

0.02

0.03

0.04

0.05

<σ
>

G = 1
G = 0.5
G = 0.1
G = 0.01
G = 0

FIG. 1. (Color online) Average stress 〈σ 〉 (performed on 50
samples) as a function of time obtained by integrating numerically
Eqs. (12) and (13). The parameters of the system (μ/χ = 0.5,
1/T = 104, and V = 0.003) are chosen in the range in which
serration is observed in order to investigate the role of the interaction
force between dislocations changing the value of the shear modulus
G. From it we can see that serration disappears when the strength of
the interaction force between dislocations decreases.

discussed in the following analysis of Fig. 2. (ii) Dislocations
must interact with pinning centers. (iii) Pinning centers must
not all be quenched [see Eq. (15)]. (iv) Finally, dislocations
must not all be pinned by impurities [see Eq. (16)]. These
conditions are all in agreement with the dynamic strain aging
concept.

In order to verify the four conditions necessary for serration,
and to investigate the behavior of the system in the entire
free parameter space (V,χ,D), we integrated numerically
Eqs. (12) and (13) using the Euler method with the fixed step
dt = 0.01. We considered N = 32 dislocations with an average
spacing d = 16 and average pinning center spacing dp =
L/Np = 2. Because L = dN , Np = dN/dp = 8N . Instead
of using the set of parameters (V,χ,D), we employed the
set (V,μ/χ,1/T ), where T is the temperature of the system
defined in the following. Although we choose, without loss of
generality, μ = 1, we prefer to keep explicitly the ratio μ/χ .
On the other hand, the explicit introduction of the temperature
variable permits us to compare the phase diagram of the
PLC effect (in Fig. 3) with results in the literature [41]. The
definition of temperature is not something obvious in DDD
models. Here we introduce the temperature T of the system
as obtained from the Einstein fluctuation-dissipation relation:
T = 2D/χ . One difficulty in deriving a general theory of
plasticity is due to the presence of thermal as well as athermal
dislocation activated processes [25]. For this reason a clear
definition of temperature in DDD models is still lacking. The
simple one we use here can be considered a good definition
for high temperatures, disregarding the possibility of cross-
slip, and low stresses, in which case diffusional deformation
mechanisms become predominant [1]. In any case, we analyze
the system over the entire range of parameter values and we dis-
cuss, in the regimes in which this definition of T is not a good
approximation, how it is related to the behavior of the system.
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<σ
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FIG. 2. (Color online) Average stress 〈σ 〉, obtained by integrating numerically Eqs. (12) and (13), as a function of time t − tw , for tw = 106 ×
dt = 104, driving velocity V = 0.001 and 0.003, mobility ratio μ/χ = 0, 0.5, and 1, and inverse temperature 1/T → ∞ and 1/T = 104,
2 × 103, and 4 × 102.

In Fig. 2 the average stress 〈σ 〉, obtained by integrating
numerically Eqs. (12) and (13), as a function of time t − tw
is plotted for driving velocity V = 0.001 and 0.003, mobility
ratio μ/χ = 0, 0.5, and 1, and inverse temperature 1/T → ∞
and 1/T = 104, 2 × 103, and 4 × 102. The average 〈·〉 is

FIG. 3. (Color online) Semiquantitative phase diagram for the
PLC effect in the parameter space (1/T ,V ) for μ/χ = 0.5. In the
range of parameters inside the shaded (gray) region, the PLC effect
takes place (i.e., the average stress 〈σ 〉 displays serration). Dashed
(red) lines indicate where the model described by Eqs. (12) and (13)
start to fail in predicting the PLC effect.

performed on 50 samples. In the analysis in Fig. 2 we
distinguish two cases: the first for μ/χ = 0 and the second
for μ/χ > 0. The case μ/χ = 0 corresponds to quenched
pinning centers [dxs,j /dt = 0; see Eq. (15)]. From Figs. 2(a)
and 2(b) we see that for μ/χ = 0, the average stress, after
oscillations decreasing in time, reach the stationary value
〈σ 〉s = limt→∞〈σ 〉 = V μ.

In the case of μ/χ > 0 we expect that at low temperatures
and low driving velocities, or at low temperatures and
high driving velocities, but high values of mobility ratio,
dislocations are pinned by impurities. This is confirmed in
Figs. 2(c)–2(f), from which we can see that the stationary
value of the average stress is given by the relation 〈σ 〉s =
V [(Np/N )χ + μ], as can be obtained from Eq. (16). To
understand the role of dislocation interaction when they are
pinned during the whole dynamics, we can consider Eq. (11)
obtained for the dynamics of a single dislocation generalized
to the case in which the damping constant of each impurity is
χ . Therefore the expression of the stationary external force
becomes limt→∞〈F 〉 = V (Npχ + μ), in which Np is the
number of impurities around the only present dislocation. In
the case of N dislocations pinned by Np impurities over the
whole dynamics, we have that on average each dislocation i is
pinned by Np/N impurities (considering that the initial spatial
distribution of dislocations and pinning centers is a random
flat one). If we now suppose that under these conditions
(obstacles that cannot unpin from dislocations), dislocations
do not fluctuate too much around their equilibrium positions
(which is a configuration of equidistant dislocations), we can

022403-5



FABIO LEONI AND STEFANO ZAPPERI PHYSICAL REVIEW E 89, 022403 (2014)

conclude that the average stationary stress can be obtained
from the formula for the case of a single dislocation pinned by
NP /N obstacles. This means that 〈σ 〉s = 〈F (Np → Np/N)〉s ,
which can be verified by employing the previous generalized
version of Eq. (11). When T or V increases, the number of
impurities that pin dislocations decreases, so 〈σ 〉s decreases.

In Fig. 2 we can see that stationary fluctuations in the
stress (serration) emerge for the parameter values V = 0.003,
μ/χ = 0.5, and 1/T = 104. In Fig. 2 results for driving
velocities higher than V = 0.003 and temperatures T lower
than 10−4 are not reported because in these regimes we reach
the limit of our model, which continues to give serration in the
stationary average stress, while in real systems we would not
have serration [25,41]. Negative values of stress fluctuations
at the earliest times correspond to sudden increases in the
dislocation average position [see Eq. (13)], which happen
when dislocations escape from many pinning centers. Indeed,
when it happens, we can observe this effect at the earliest times
of the dynamics (for t > tw), because the absence of external
stress for 0 < t < tw permits dislocations to accumulate
pinning centers. To verify that finite-size effects do not affect
our results, we performed simulations for systems of N = 16,
32, 48, and 64 dislocations. We found that oscillations in the
serration regime become bigger with increasing N , especially
in the initial part of the dynamics, while after the order of 10
oscillations the serration stabilizes already for N = 32. The
reason that oscillations become bigger with increasing N in the
initial part of the dynamics is probably related to the fact that
increasing the value of Np, even though the average pinning
center spacing does not change, increases the probability of a
dislocation collecting a large number of pinning centers during
the waiting time (from t = 0 to t = tw). This probability should
saturate with increasing system size (that is, increasing N ). We
suggest a more systematic finite-size analysis for a possible
future work aimed at improving this model.

In order to summarize the results obtained from the present
model and to compare them with experimental [41] and other
theoretical [25] approaches, we depict in Fig. 3, relying
on data displayed in Fig. 2 and other data not displayed
there, a phase diagram for the PLC effect in the parameter
space (1/T ,V ) for μ/χ = 0.5. In the range of parameters
within the shaded (gray) region, the PLC effect takes place.
The dashed (red) lines indicate where the model described
by Eqs. (12) and (13) starts to fail in predicting the PLC
effect. In particular, for high driving velocities new dislocation
mechanisms, such as dislocation multiplication, climbing,
and other complex behaviors, must be taken into account.
Considering these mechanisms, serration must disappear for
high driving velocities irrespective of the other parameter
values. However, in the case of low temperatures, nonthermal
dislocation processes become relevant in relation to thermal
ones, and the Einstein fluctuation-dissipation relation does not
hold anymore. Also in this case, considering the presence of
nonthermal dislocation processes, serration must disappear at
low temperatures irrespective of the other parameter values.

The phase diagram of the PLC effect in the parameter
space (1/T ,V ), as depicted in Fig. 3, can also be analyzed
in the framework of the self-organized avalanche oscillator
approach recently introduced in Ref. [42]. Indeed, in that work
it is shown that in a physical system under slowly increasing

stress, in which fast and slow degrees of freedom are normally
averaged out, if the slow degrees of freedom rearrange the
pinning landscape at rates comparable to the external field driv-
ing rates, these slow processes can affect the behavior of the
system, which can depend on these slow process rates. In our
case, the external field driving rate is V , while the rearranging
rate of the pinning landscape is related to the temperature T .

V. THE RELEVANT TIME SCALES IN SERRATION

The behavior of the system described by Eqs. (12)–(14)
can be analyzed in terms of time scales. The fundamental time
scales are: (i) the capturing time tc, which accounts for the
average time needed for a dislocation to capture a pinning
center; and (ii) the aging time ta , which accounts for the
average time needed for a dislocation to escape from a pinning
center. In order to compute these times we consider that a
pinning center pins a dislocation if the distance between them
is smaller then ξc = 3ξP = 3 (otherwise the attraction force
between them is considered negligible). In Table I we report
the time ratio ta/tc for the same values of driving velocity V ,
mobility ratio μ/χ , and inverse temperature 1/T for which the
average stress 〈σ 〉 was computed and is displayed in Fig. 2.
First, we can observe that for V → ∞ or μ/χ → 0 or 1/T →
0, the time ratio becomes ta/tc = (2 · ξc)/(d − 2 · ξc) = 0.6,
where d is the dislocation average interdistance. Indeed, under
these conditions we can consider the pinning centers to be
fixed wih respect to dislocations (or vice versa) during the
dynamics and the ratio ta/tc becomes nothing more than the
ratio between the average (in time) length per dislocation and
pinning center over which dislocations are considered pinned
[that is, α(tav) · 2 · ξc] to that over which they are not [that is
α(tav) · (d − 2 · ξc)], where α(tav) is the same parameter for the
two lengths and depends only on the time tav over which the
average is performed. Looking at the values listed in Table I,
we can observe that in general the time ratio ta/tc decreases
significantly as V increases, or as μ/χ or 1/T decreases,
but only for μ/χ = 0.5 and V = 0.003 do we have that
ta/tc remains small (larger than, but near, the value 0.6) with
changing 1/T . In particular, for μ/χ = 0.5, V = 0.003, and
1/T = 104 and 2 × 103, the two times ta and tc (whose ratio
is displayed in Table I) are of the same order of magnitude, but
the pinning centers, for these parameter values, are not fixed
with respect to dislocations (or vice versa).

Finally, we can conclude that for the parameter values of V ,
μ/χ , and 1/T for which serration is observed, we have that the

TABLE I. Time scale ratio: ta/tc. The computational error is 1
over the last digit.

V = 0.001 V = 0.003

μ/χ = 0 0.60 for all 1/T 0.60 for all 1/T

μ/χ = 0.5 65.07 1/T = 104 0.75 1/T = 104

66.48 1/T = 2 × 103 0.75 1/T = 2 × 103

4.09 1/T = 4 × 102 0.64 1/T = 4 × 102

μ/χ = 1 78.73 1/T = 104 146.97 1/T = 104

37.93 1/T = 2 × 103 2.03 1/T = 2 × 103

1.13 1/T = 4 × 102 0.79 1/T = 4 × 102
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two relevant times ta and tc are of the same order of magnitude
(remembering that the value 0.6 corresponds to a special case
in our model). This is in agreement with phenomenological
models [25] and represents a link between microscopic DDD
model parameters [appearing in Eqs. (12)–(14)] from which
the quantities ta and tc can be computed and macroscopic
quantities like V , μ/χ , and T .

VI. SPATIOTEMPORAL DISTRIBUTION
OF DISLOCATIONS AND IMPURITIES

Analyzing spatiotemporal distributions of pinning centers
and dislocations can help us to better understand and unify
previous considerations and results. First, we computed the av-
erage pinning center distribution ρp.c., averaging each distribu-
tion of pinning centers around every dislocation and averaging
over 50 different realizations of the dynamics. In the lower pan-
els in Fig. 4 we display the average pinning center distributions
around dislocations for different times that correspond to dif-
ferent values of the average stress (these values are displayed in
the stress vs time graphic in the top panel). The most interesting
case, reported in Fig. 4 and corresponding to Fig. 2(d), is
that for which a changing temperature causes the appear-
ance or disappearance of serration (that is, for μ/χ = 0.5,

V = 0.003). The distributions ρp.c. are un-normalized so that
the average number of pinning centers that pins dislocations

is obtained by the integral
∫ ξc

−ξc
ρp.c.(xp.c.)dxp.c. = 〈Np〉. To

understand what happens when serration in the stress appears,
we report in Fig. 4 the distributions in correspondence of
stress drop, bump, and redrop. For temperatures for which
the stress does not develop serration (for 1/T = 4 × 102 and
2 × 103), the distribution shape of pinning centers around
dislocations does not change in time and displays a peak
more or less wide or narrow depending on the values of V ,
μ/χ , and 1/T . For temperatures at which serration develops
(for 1/T = 104), the distributions change in such a way that
when pinning centers reach dislocations from the right side
(indeed V = 0.003 > 0) [Fig. 4(b)] and start to pin them,
stress drops because dislocations are accelerated [see Eq. (13)],
then after a while the dislocation velocities go down because
they are pinned (when the corresponding distribution has
developed a high and narrow peak) [Figs. 4(c) and 4(d)].
Finally, when dislocations are able to depin and then their
velocities start to increase again, the stress redrops [Figs. 4(e)
and 4(f)].

Above, analyzing the stationary value of the stress (Fig. 2),
we have argued that at low temperatures [in Figs. 2(c)–2(f)]
dislocations are completely pinned and have verified that by
means of the formula 〈σ 〉s = V [(Np/N)χ + μ], previously
obtained from the equations of motion imposing the condition
of complete pinning. Integrating the distributions of pinning
centers, ρp.c., for low temperatures, we can obtain the average
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FIG. 4. (Color online) Spatiotemporal distribution of pinning centers around dislocations. The distributions are obtained by averaging for
a specific time the different distributions around every dislocation and averaging over 50 different realizations of the dynamics. xp.c., pinning
center position; xdisl., dislocation position. The dashed vertical (blue) line indicates the dislocation position and the two dotted vertical (blue)
lines indicate the cutoff ξc of the dislocation-pinning center interaction. In the upper panel, the average stress for a specific time region is
indicated. The corresponding complete curve is shown in Fig. 2.
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FIG. 5. (Color online) Representative portion of dislocations and pinning center motion for a single realization of the dynamics for the
following parameter values: V = 0.003, μ/χ = 0.5, and (a) 1/T = 4 × 102 and (b) 1/T = 104. The dark diagonal lines, with a slope equal to
V = 0.003, are dislocations, and the green lines are pinning centers. (b) Dotted and dashed vertical (red) lines correspond to times for which
the average stress has a minimum and a maximum, respectively. The horizontal dashed (blue) line, y ∼ vdrift, indicates the drift of pinning
centers that move at velocity vdrift � 2.5 × 10−4.

number of pinning centers around dislocations, that is, 〈Np〉 =
Np/N = 8, which confirms directly that in these cases all
pinning centers are pinning dislocations. Computing the
standard deviation of the average distribution in Fig. 4 confirms
that when serration emerges, for 1/T = 104, dislocations
depin in a coherent way. Indeed, in this case the standard
deviation is big near the peak of the distribution but quite
small away from it. In cases in which serration is not observed,
for 1/T = 104 and 4 × 102, the standard deviation is almost
constant in time and space. Considering this result and that, in
particular for 1/T = 4 × 102, the time ratio ta/tc (see Table I)
is the same as for the case 1/T = 104 and that the average
curve is constant in time, we can conclude that when serration
disappears, this means that dislocations depin in a incoherent
way (at different times).

In Fig. 5 we see a representative portion of dislocation
and pinning center motion in a case in which serration

is not present [Fig. 5(a)] and case in which it appears
[Fig. 5(b)]. The black lines are dislocations. They have a slope
equal to V = 0.003, unless there are small deviations in the
correspondence of pinning centers (the green lines) pinning
dislocations. In Fig. 5(b) the vertical dotted and dashed (red)
lines correspond to times for which the average stress has
a minimum and a maximum, respectively. The minimum in
the average stress corresponds to many dislocations that are
pinned; the successive maximum, to many dislocations that
depin. These processes are also present at intermediate times,
which cause the appearance of small oscillations in the average
stress between a big peak and a big valley [see Figs. 1 and 2(d)].
The dashed (blue) line, y ∼ vdriftt , indicates the drift of pinning
centers that move at velocity vdrift � 2.5 × 10−4. This drift is
caused by the interaction with dislocations.

In Fig. 6 we can see the entire dynamics of all dislocations
in a case in which there is no serration [Fig. 6(a)] and another
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FIG. 6. (Color online) Dynamics of all dislocations for a single realization of the dynamics for the following parameter values: V = 0.003,
μ/χ = 0.5, and (a) 1/T = 4 × 102 and (b) 1/T = 104. To demonstrate fluctuations, the dislocation positions, at which the term V t has been
subtracted, are rescaled in such a way that the average interdistance between them is 0.5 instead of d = 16. (b) The diagonal dashed (blue)
line, y ∼ −0.5/[d/(V − vdrift)]x = −0.875 × 10−4x], indicates clustering properties of pinning centers, as discussed in the text.
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FIG. 7. (Color online) With the lighter color (brown) we display the superposition of the position fluctuations of all dislocations,
�xi = (xi − V t) − 〈(xi − V t)〉t , where the positions xi are shown in Fig. 6, and the time average is performed on the entire dynamics.
The black curve shows the average of all �xi , with the relative standard deviation. (b) Vertical dotted and dashed (red) lines correspond to
times for which the average stress has a minimum and a maximum, respectively.

in which it appears [Fig. 6(b)]. In particular, the term V t is
subtracted from dislocation positions, so we have horizontal
lines, while in Fig. 5 we have lines with a slope equal to V .
Moreover, the positions of dislocations are rescaled in order
to have an average interdistance between them of 0.5 instead
of d = 16. The latter rescaling was done to demonstrate the
fluctuations of dislocation position. As in Fig. 5, the vertical
dotted and dashed (red) lines correspond to times for which the
average stress has a minimum and a maximum, respectively. In
Fig. 6(b) we see essentially two interesting things: minimum
and maximum values in the rescaled dislocation position
correspond to maximum and minimum values in the average
stress, respectively; and the fluctuation profile of the position of
one dislocation (in correspondence of serration) can propagate
at a velocity of V − vdrift. The latter point means that
when pinning centers start to cluster, they usually remain
clustered during the entire dynamics. The dashed (blue line),
y ∼ −0.5/[d/(V − vdrift)]x = −0.875 × 10−4x, in Fig. 6(b)
indicates this behavior of pinning centers.

In Fig. 7 we display the superposition of fluctuations in
the positions of all dislocations, �xi , in a case in which there
is no serration [Fig. 7(a)] and another in which it appears
[Fig. 7(b)]. These fluctuations were obtained as �xi = (xi −
V t) − 〈(xi − V t)〉t , where the time average is performed on
the entire dynamics. We also display the average of all �xi ,
with the relative standard deviation, and the vertical dotted
and dashed lines correspond to times for which the average
stress has a minimum and a maximum, respectively. We can
see another time that the minimum and maximum values of
the average fluctuation position correspond to the maximum
and minimum of the average stress, respectively.

VII. DISCUSSION

We have investigated the dynamics of a dislocation assem-
bly interacting with mobile impurities by studying the case
of a 1D dislocation pileup. In order to connect this model to
the PLC effect, we studied the stress response of the system
under an external constant strain rate. The free parameters

of the system have been reduced to the driving velocity V ,
which controls the imposed constant strain rate, the mobility
ratio μ/χ between dislocations and mobile impurities, and the
temperature T . To this end, we have employed an effective
definition of temperature that should be valid except at low
temperatures and high stresses. Analyzing the average stress
of the system 〈σ 〉 in the parameter space (V,μ/χ,1/T ), we
found a region characterized by stationary fluctuations in the
stress (serration) (see Fig. 3).

The interpretation of the onset of serration in the present
model agrees with the general concept of dynamic strain aging
but takes explicitly into account the role of dislocation mutual
interactions. The emergence of serration corresponds to the
situation in which impurities diffuse at a rate that allows them
to pin dislocations (i.e., the capturing time tc is not too high).
At the same time dislocations should be able to escape from
pinning centers after an aging time ta , which implies that ta
is not too high—otherwise, when dislocations unpinned, they
would move at a high speed until they were arrested again and
pinning centers would not be able to reach them—but also not
too low, because in that case pinning centers would not be able
to pin dislocations. Serration corresponds to the case in which
the two characteristic time scales, ta and tc, are of the same
order of magnitude (see Table I).

From another point of view, the origin of serration, over a
specific range of parameter values (V,μ/χ,T ), is due to the
localization of impurities in a limited number of clouds under
the action of dislocation induced stresses and to the possibility
of dislocations escaping from their pinning clouds without
randomizing excessively the spatial distribution of impurities.
The spatial localization of pinning centers is only possible due
to the coherent action of several interacting dislocations. If we
randomize the interaction between dislocations, for instance,
by choosing Burgers vectors bi for each dislocation i from
a bounded random distribution, serration disappears. Spatial
randomization of pinning centers results in an incoherent
contribution to the total stress fluctuations of each dislocation,
in the impossibility of clouds of pinning centers forming, and,
therefore, in the disappearance of serration. Only when the
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contribution of each dislocation to the total stress fluctuations
is coherent is serration observed.

The PLC effect displays many specific complex features
that it is not possible to address using the present model. For
example, in polycrystals, serration can be classified into three
types of bands (A, B, C) [16]. They correspond to different
dynamics of strain localization evolving from type C to type B
and to type A when the strain rate is increased or the tempera-
ture is decreased. By calculating the correlation dimension and
the Lyapunov spectrum of several sets of experimental time
series data, it has been concluded that the PLC stress serrations
are chaotic for low and medium strain rates and follow a power-
law dynamics for high strain rates [25,43,44]. Furthermore,
these studies show that there exists a correspondence between
chaos and type B bands observed at low and medium strain
rates, while the power-law regime present at high strain
rates can be identified with type A bands. This complex

dynamical behavior is likely to arise from the interaction of
dislocations along different slip planes or from the possibility
that pinning centers have a range of mobilities. Including
similar ingredients in the model could give rise to different
types of serrations observed under experimental conditions
where A, B, and C bands can be identified. A possible way to
identify other DDD mechanisms relevant to understanding all
complex features of serration is to follow the method suggested
by Groma in Ref. [45]: construct a dynamical equation for
the coarse-grained dislocation density and compare it to the
phenomenological equations developed for study of the PLC
effect [25].
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[6] H. Neuhäuser, Phys. Scr. T49B, 412 (1993).
[7] F. Leoni and S. Zapperi, Phys. Rev. Lett. 102, 115502 (2009).
[8] J. W. Cahn, Acta Metall. 10, 789 (1962).
[9] D. Blavette, E. Cadel, A. Fraczkiewicz, and A. Menand,

Science 286, 2317 (1999).
[10] E. M. Chudnovsky, Europhys. Lett. 43, 445 (1998).
[11] A. Portevin and F. Le Chatelier, C. R. Acad. Sci. Paris 176, 507

(1923).
[12] A. Kalk and Ch. Schwink, Phys. Stat. Sol. (b) 172, 133

(1992).
[13] A. Kalk and Ch. Schwink, Philos. Mag. A 72, 315 (1995).
[14] F. Springer, A. Nortmann, and Ch. Schwink, Phys. Stat. Sol. (a)

170, 63 (1998).
[15] K. Chihab, Y. Estrin, L. P. Kubin, and J. Vergnol, Scr. Metall.

21, 203 (1987).
[16] P. Hähner, A. Ziegenbein, E. Rizzi, and H. Neuhäuser,
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L. P. Kubin, Acta Mater. 48, 2529 (2000).
[42] S. Papanikolaou, D. M. Dimiduk, W. Choi, J. P. Sethna, M. D.

Uchic, C. F. Woodward, and S. Zapperi, Nature 490, 517 (2012).
[43] S. J. Noronha, G. Ananthakrishna, C. Fressengeas, and L. P.

Kubin, Int. J. Bifurcat. Chaos 07, 2577 (1997).
[44] S. Venkadesan, M. C. Valsakumar, K. P. N. Murthy, and S.

Rajasekar, Phys. Rev. E 54, 611 (1996).
[45] I. Groma, Phys. Rev. B 56, 5807 (1997).

022403-10

http://dx.doi.org/10.1080/00018730600583514
http://dx.doi.org/10.1080/00018730600583514
http://dx.doi.org/10.1080/00018730600583514
http://dx.doi.org/10.1080/00018730600583514
http://dx.doi.org/10.1021/jp963157f
http://dx.doi.org/10.1021/jp963157f
http://dx.doi.org/10.1021/jp963157f
http://dx.doi.org/10.1021/jp963157f
http://dx.doi.org/10.1038/35070524
http://dx.doi.org/10.1038/35070524
http://dx.doi.org/10.1038/35070524
http://dx.doi.org/10.1038/35070524
http://dx.doi.org/10.1103/PhysRevLett.89.165501
http://dx.doi.org/10.1103/PhysRevLett.89.165501
http://dx.doi.org/10.1103/PhysRevLett.89.165501
http://dx.doi.org/10.1103/PhysRevLett.89.165501
http://dx.doi.org/10.1007/BF00356192
http://dx.doi.org/10.1007/BF00356192
http://dx.doi.org/10.1007/BF00356192
http://dx.doi.org/10.1007/BF00356192
http://dx.doi.org/10.1088/0031-8949/1993/T49B/005
http://dx.doi.org/10.1088/0031-8949/1993/T49B/005
http://dx.doi.org/10.1088/0031-8949/1993/T49B/005
http://dx.doi.org/10.1088/0031-8949/1993/T49B/005
http://dx.doi.org/10.1103/PhysRevLett.102.115502
http://dx.doi.org/10.1103/PhysRevLett.102.115502
http://dx.doi.org/10.1103/PhysRevLett.102.115502
http://dx.doi.org/10.1103/PhysRevLett.102.115502
http://dx.doi.org/10.1016/0001-6160(62)90092-5
http://dx.doi.org/10.1016/0001-6160(62)90092-5
http://dx.doi.org/10.1016/0001-6160(62)90092-5
http://dx.doi.org/10.1016/0001-6160(62)90092-5
http://dx.doi.org/10.1126/science.286.5448.2317
http://dx.doi.org/10.1126/science.286.5448.2317
http://dx.doi.org/10.1126/science.286.5448.2317
http://dx.doi.org/10.1126/science.286.5448.2317
http://dx.doi.org/10.1209/epl/i1998-00379-x
http://dx.doi.org/10.1209/epl/i1998-00379-x
http://dx.doi.org/10.1209/epl/i1998-00379-x
http://dx.doi.org/10.1209/epl/i1998-00379-x
http://dx.doi.org/10.1002/pssb.2221720114
http://dx.doi.org/10.1002/pssb.2221720114
http://dx.doi.org/10.1002/pssb.2221720114
http://dx.doi.org/10.1002/pssb.2221720114
http://dx.doi.org/10.1080/01418619508239928
http://dx.doi.org/10.1080/01418619508239928
http://dx.doi.org/10.1080/01418619508239928
http://dx.doi.org/10.1080/01418619508239928
http://dx.doi.org/10.1002/(SICI)1521-396X(199811)170:1<63::AID-PSSA63>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1521-396X(199811)170:1<63::AID-PSSA63>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1521-396X(199811)170:1<63::AID-PSSA63>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1521-396X(199811)170:1<63::AID-PSSA63>3.0.CO;2-F
http://dx.doi.org/10.1016/0036-9748(87)90435-2
http://dx.doi.org/10.1016/0036-9748(87)90435-2
http://dx.doi.org/10.1016/0036-9748(87)90435-2
http://dx.doi.org/10.1016/0036-9748(87)90435-2
http://dx.doi.org/10.1103/PhysRevB.65.134109
http://dx.doi.org/10.1103/PhysRevB.65.134109
http://dx.doi.org/10.1103/PhysRevB.65.134109
http://dx.doi.org/10.1103/PhysRevB.65.134109
http://dx.doi.org/10.1088/0370-1298/62/1/308
http://dx.doi.org/10.1088/0370-1298/62/1/308
http://dx.doi.org/10.1088/0370-1298/62/1/308
http://dx.doi.org/10.1088/0370-1298/62/1/308
http://dx.doi.org/10.1016/0001-6160(85)90082-3
http://dx.doi.org/10.1016/0001-6160(85)90082-3
http://dx.doi.org/10.1016/0001-6160(85)90082-3
http://dx.doi.org/10.1016/0001-6160(85)90082-3
http://dx.doi.org/10.1016/0001-6160(72)90165-4
http://dx.doi.org/10.1016/0001-6160(72)90165-4
http://dx.doi.org/10.1016/0001-6160(72)90165-4
http://dx.doi.org/10.1016/0001-6160(72)90165-4
http://dx.doi.org/10.1016/0001-6160(73)90144-2
http://dx.doi.org/10.1016/0001-6160(73)90144-2
http://dx.doi.org/10.1016/0001-6160(73)90144-2
http://dx.doi.org/10.1016/0001-6160(73)90144-2
http://dx.doi.org/10.1002/pssa.2210300120
http://dx.doi.org/10.1002/pssa.2210300120
http://dx.doi.org/10.1002/pssa.2210300120
http://dx.doi.org/10.1002/pssa.2210300120
http://dx.doi.org/10.1016/0001-6160(58)90101-9
http://dx.doi.org/10.1016/0001-6160(58)90101-9
http://dx.doi.org/10.1016/0001-6160(58)90101-9
http://dx.doi.org/10.1016/0001-6160(58)90101-9
http://dx.doi.org/10.1016/0001-6160(80)90114-5
http://dx.doi.org/10.1016/0001-6160(80)90114-5
http://dx.doi.org/10.1016/0001-6160(80)90114-5
http://dx.doi.org/10.1016/0001-6160(80)90114-5
http://dx.doi.org/10.1016/0036-9748(81)90290-8
http://dx.doi.org/10.1016/0036-9748(81)90290-8
http://dx.doi.org/10.1016/0036-9748(81)90290-8
http://dx.doi.org/10.1016/0036-9748(81)90290-8
http://dx.doi.org/10.1016/j.physrep.2006.10.003
http://dx.doi.org/10.1016/j.physrep.2006.10.003
http://dx.doi.org/10.1016/j.physrep.2006.10.003
http://dx.doi.org/10.1016/j.physrep.2006.10.003
http://dx.doi.org/10.1016/S0921-5093(00)01766-4
http://dx.doi.org/10.1016/S0921-5093(00)01766-4
http://dx.doi.org/10.1016/S0921-5093(00)01766-4
http://dx.doi.org/10.1016/S0921-5093(00)01766-4
http://dx.doi.org/10.1080/14786430600860985
http://dx.doi.org/10.1080/14786430600860985
http://dx.doi.org/10.1080/14786430600860985
http://dx.doi.org/10.1080/14786430600860985
http://dx.doi.org/10.1126/science.1143719
http://dx.doi.org/10.1126/science.1143719
http://dx.doi.org/10.1126/science.1143719
http://dx.doi.org/10.1126/science.1143719
http://dx.doi.org/10.1126/science.1156101
http://dx.doi.org/10.1126/science.1156101
http://dx.doi.org/10.1126/science.1156101
http://dx.doi.org/10.1126/science.1156101
http://dx.doi.org/10.1016/j.scriptamat.2007.11.031
http://dx.doi.org/10.1016/j.scriptamat.2007.11.031
http://dx.doi.org/10.1016/j.scriptamat.2007.11.031
http://dx.doi.org/10.1016/j.scriptamat.2007.11.031
http://dx.doi.org/10.1016/j.actamat.2011.07.067
http://dx.doi.org/10.1016/j.actamat.2011.07.067
http://dx.doi.org/10.1016/j.actamat.2011.07.067
http://dx.doi.org/10.1016/j.actamat.2011.07.067
http://dx.doi.org/10.1016/j.actamat.2013.05.021
http://dx.doi.org/10.1016/j.actamat.2013.05.021
http://dx.doi.org/10.1016/j.actamat.2013.05.021
http://dx.doi.org/10.1016/j.actamat.2013.05.021
http://dx.doi.org/10.1209/0295-5075/94/18001
http://dx.doi.org/10.1209/0295-5075/94/18001
http://dx.doi.org/10.1209/0295-5075/94/18001
http://dx.doi.org/10.1209/0295-5075/94/18001
http://dx.doi.org/10.1088/1742-5468/2008/07/P07003
http://dx.doi.org/10.1088/1742-5468/2008/07/P07003
http://dx.doi.org/10.1088/1742-5468/2008/07/P07003
http://dx.doi.org/10.1080/14786436908228729
http://dx.doi.org/10.1080/14786436908228729
http://dx.doi.org/10.1080/14786436908228729
http://dx.doi.org/10.1080/14786436908228729
http://dx.doi.org/10.1103/PhysRevD.73.103507
http://dx.doi.org/10.1103/PhysRevD.73.103507
http://dx.doi.org/10.1103/PhysRevD.73.103507
http://dx.doi.org/10.1103/PhysRevD.73.103507
http://dx.doi.org/10.1063/1.1703862
http://dx.doi.org/10.1063/1.1703862
http://dx.doi.org/10.1063/1.1703862
http://dx.doi.org/10.1063/1.1703862
http://dx.doi.org/10.1016/S1359-6454(00)00067-7
http://dx.doi.org/10.1016/S1359-6454(00)00067-7
http://dx.doi.org/10.1016/S1359-6454(00)00067-7
http://dx.doi.org/10.1016/S1359-6454(00)00067-7
http://dx.doi.org/10.1038/nature11568
http://dx.doi.org/10.1038/nature11568
http://dx.doi.org/10.1038/nature11568
http://dx.doi.org/10.1038/nature11568
http://dx.doi.org/10.1142/S0218127497001734
http://dx.doi.org/10.1142/S0218127497001734
http://dx.doi.org/10.1142/S0218127497001734
http://dx.doi.org/10.1142/S0218127497001734
http://dx.doi.org/10.1103/PhysRevE.54.611
http://dx.doi.org/10.1103/PhysRevE.54.611
http://dx.doi.org/10.1103/PhysRevE.54.611
http://dx.doi.org/10.1103/PhysRevE.54.611
http://dx.doi.org/10.1103/PhysRevB.56.5807
http://dx.doi.org/10.1103/PhysRevB.56.5807
http://dx.doi.org/10.1103/PhysRevB.56.5807
http://dx.doi.org/10.1103/PhysRevB.56.5807



