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Hydrodynamic shadowing effect during precipitation of dendrites in channel flow
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A supersaturated fluid flowing over a reactive, rough surface leads to complex precipitation patterns. We study
the growth and interaction between discrete precipitates along a reactive wall in a nonlaminar channel flow. We
show that the competition between advective transport, diffusion, and mixing strongly influences the downstream
precipitates morphology and the typical correlation length between different precipitates.
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I. INTRODUCTION

Mineral scale formation due to the precipitation of dis-
solved solids is a significant problem in many fluid-bearing
systems that are saturated with one or more solid components.
This phenomenon may lead to clogging or a substantial
decrease of transport efficiency in pipeline systems. Many
industrial and domestic applications rely on pipes to transport
fluids, such as oil and gas [1], renewable energy such as
geothermal [2,3], chemical manufacturing, and many others.
In such cases, the precipitation from a supersaturated fluid
is a common phenomenon that can block the system from
operating effectively. Hindering or removing the mineral scale
is often a costly, time-consuming process and most often
challenging to control. It would therefore be of practical value
to better understand the process of precipitation under flow in
pipelines in order to assess the controlling parameters for the
growth conditions that may lead to pipe blockage and clogging.

Surface growth processes have been extensively stud-
ied both theoretically and experimentally, e.g., Refs. [4–7].
Nonetheless, the precipitation dynamics and pattern formation
are well understood mainly in the diffusion-limited growth
regime or under a laminar flow [8,9], but there are open
challenges remaining as soon as the surface growth is in
the presence of a nonhomogeneous and nonlaminar flow.
The generic features of the precipitation patterns are rather
robust with respect to changes in the detailed aqueous
chemistry and interfacial composition, and are similar to the
solidification patterns that are developing during growth from
a supercooled liquid [6,10]. The similarity between generic
growth morphologies during freezing and precipitation also
suggests a generic deposition model that would be able to
capture the universal features of these growth processes.

At the continuum level, the modeling approach to a surface
growth process is based on boundary tracking methods, either
in the sharp-interface formulation as in the level-set method,
e.g., Ref. [11] or in the diffuse interface approximation used
in the phase-field method, e.g., Refs. [12,13]. Although,
the phase-field approach aims at modeling generic growth
features, the solidification patterns obtained with this model
share many properties similar to those observed in nature and
experiments [9,14]. Recently a phase-field model for precipi-
tation has been proposed as an efficient tool to study surface
morphology developed by precipitation from a supersaturated
solution [5,15]. For certain conditions of supersaturation and
interfacial energy, the precipitation surface develops dendritic

structures similar to those developed during solidification from
an undercooled liquid in hydrostatic equilibrium [4].

To study the problem of mineral scaling in pipes with high
flow rates and turbulent mixing, we couple the phase-field
model for the precipitation growth with a lattice Boltzmann
model for the fluid dynamics. These two models were chosen
for their simplicity especially in the lattice Boltzmann models
handling of complex, evolving geometries, accuracy, and
compatibility (i.e., both defined on a regular grid). Here we
focus particularly on the nonlaminar effects and the mixing
due to the creation and shedding of vortices from the growing
precipitates.

Crystal growth in the presence of laminar, shear flow has
previously been shown to cause growth which leans towards
the flow source, e.g., Ref. [16]. In Ref. [17] we investigated the
morphology and growth orientation of an isolated precipitate
growing from a supersaturated fluid with a single dissolved
component at much greater flow rates and in a nonlaminar
channel flow. The growth kinetics of the precipitate was
assumed isotropic, i.e., without any crystallographic control on
growth direction and local growth rates, and the precipitation
occurs on one of the pipe’s walls that has the same composition
as the solute. In this paper we extend our setup to a discrete
system of multiple precipitates and study the long-range inter-
action between precipitates and their effect on the downstream
growth. This is a better approximation to pipeline systems
where growth occurs in many locations upon a rough wall.

In Sec. I we motivate the paper by the field observation of
precipitates in geothermal pipelines in Iceland. Good agree-
ment is found at the generic level between our precipitation
patterns and the silica scales observed in pipelines. The theo-
retical model for the precipitation under pipe flow is discussed
in detail in Sec. II. We continue in Sec. III with the numerical
approach to solving the sharp-interface model formulation
from Sec. II and introduce the phase-field model coupled with
the lattice Boltzmann. Some of the numerical implementation
details are covered in Appendices A and B. In Sec. IV we
discuss the numerical results and quantify the shadowing effect
between downstream precipitates depending on dimensionless
numbers as the Reynolds number, Re, and Péclet number, Pe.
Concluding remarks are summarized Sec. V.

II. FIELD OBSERVATIONS AND MOTIVATION

Figure 1 shows an example of incipient precipitation of
amorphous silica on a plate of stainless steel inserted into
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FIG. 1. (Color online) (a) Amorphous silica (SiO2) precipitated
on plates of stainless steel at the Hillisheiði geothermal power plant,
Iceland. The width of the steel plate is ca. 25 mm, and the typical
length of the precipitates is 1–3 mm. The plate was injected in the
middle of a geothermal water pipe, and precipitation took place at
a temperature of 120 ◦C over a period of about 2 months at a flow
rate around 1 m/s. (b) Numerically simulated precipitation dendrites
in pipe flows at different Pe numbers. Our model captures very well
the tilted growth towards the oncoming fluid and the overall shape
of the precipitates, with the downstream side being more smooth
while the upstream side is developing complex side branching.

the central part of a geothermal pipeline of hot water with
dissolved silica at an average concentration of 800–900 ppm
of SiO2 and flowing at 1 ms−1. The pipeline is about 1 m in
diameter and located at the Hillisheði geothermal power plant,
about 25 km east of Reykjavik, Iceland.

Two general features can be noticed from a first glance:
(1) the precipitated silica structures are leaning towards the
incoming flow (main flow direction is from left to right) and
(2) the downstream side of each precipitate is smooth, while
the upstream side tends to develop an intricate morphology.
Instead of studying the particular features that may depend
on the chemistry of silica precipitation or the complex,
three-dimensional setup, we focus here on first understanding
the generic features, such as the tilted growth and typical
morphology, using an idealistic model of coupled flow and
precipitation in a two-dimensional cross section of a pipeline.
The right side of Fig. 1 shows few snapshots of our numerical
simulated precipitation dendrites.

The samples collected from geothermal pipelines in Iceland
show considerable similarity to the simulated pattern, espe-
cially at the level of generic features. It is interesting to mention
that the generic growth properties of an isolated precipitate
were predicted in Ref. [17] preceding the collection of sample
data from geothermal pipelines. Although the results are
qualitatively similar, there are some differences in the specifics,
most notably the angle at which the main dendrite grows, but
also the density of the upstream branching. A more detailed
study that is able to capture more quantitatively the characteris-
tics of silica precipitates is the subject of a future investigation.

III. PRECIPITATION UNDER FLOW

We consider that a first-order precipitation kinetics occurs
at a reactive liquid-solid boundary where a single mobile solid
component is transported from one phase to another. From the
mass balance condition at the liquid-solid interface, it follows

that the diffusive flux in the liquid near the interface equals the
precipitation rate, equivalently expressed as

Dn · ∇C = k(C − Ce), (1)

where D is the diffusion coefficient, C is the concentration of
the dissolved solute, the equilibrium concentration is Ce, n is
the normal to the interface pointing into the fluid, and k is the
constant reaction rate. The normal growth of the precipitate is
described by the growth velocity vn, which is proportional to
the reaction rate as

ρsvn = ρf k(C − Ce), (2)

with ρs being the mass density of the solid and ρf the fluid
density. Surface tension energy may also contribute to the
normal growth, but, for now, we neglect surface tension effects.
The solute in the fluid is diffusing and being advected by the
channel flow according to the diffusion-advection equation

∂C

∂t
+ v · ∇C = D∇2C, (3)

where the fluid velocity v satisfies the Navier-Stokes equations
for an incompressible fluid, i.e., ∇ · v = 0,

∂v
∂t

+ v · ∇v = − 1

ρf

∇p + ν∇2v + 1

ρf

f, (4)

with p being the fluid pressure field, ν the kinematic viscosity,
and f the external stirring force. We assume that the solid
wall is otherwise rigid and chemically inert, hence there is no
diffusion or deformation in the solid phase. These equations
can be rewritten in terms of the normalized concentration c =
(C − Ce)/Ce.

IV. NUMERICAL MODEL

A. The phase-field model

Precipitation under flow is solved numerically in two-
dimensions using the phase-field model for surface growth [5]
coupled with the lattice Boltzmann method for fluid dynamics.
In the phase-field approach the liquid-solid reactive boundary
is treated as a diffuse interface such that the sharp interface
conditions, Eqs. (1) and (2), can be included as bulk terms into
Eq. (3). A field variable φ describes the phase continuum that
takes the constant values of φ = −1 for a pure solid phase and
φ = 1 for a pure liquid phase. The φ values in between are
located in a narrow transition region that defines the diffuse
interface; this region converges to zero in the sharp-interface
limit. The dynamics of the phase field is controlled by a free
energy that depends on φ and its gradient, as well as the solute
concentration in the liquid phase, and it is assumed to take the
following form:

F =
∫

V

[
ε2

2
|∇φ|2 + f (φ,c)

]
dV, (5)

where ε is a parameter related to the diffuse interface thickness
and f (φ,c) is the local free energy density that depends linearly
on the concentration field c as follows:

f (φ,c) =
(

−φ2

2
+ φ4

4

)
+ λc

(
φ − φ3

3

)
. (6)
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The first two terms correspond to the local energy density
associated with a system that allows for two equilibrium phases
at φ = −1 and φ = 1. In the absence of the other terms, these
two equilibria are degenerate; i.e., they correspond to the
same ground-state energy. The coupling terms to the solute
concentration introduce an asymmetry in the free energy such
that the solid phase is more preferable, thus mimicking the
precipitation growth. λ is a dimensionless coupling parameter.
From the free energyF , the evolution of the φ field is described
by a non-Fickian diffusion along the gradient of the chemical
potential μ = δF/δφ and thus is given as

τ
∂φ

∂t
= ε2∇2φ + ∂f (φ,c)

∂φ
− ε2κ |∇φ|, (7)

where the last term related to the interface curvature κ = ∇ ·
(∇φ/|∇φ|) is added to remove the surface tension effects, and
τ is a microscopic time parameter of the phase field φ.

The evolution of the concentration field is then described
by a single equation that also includes the surface precipitation
condition through the φ field:

∂c

∂t
+ v · ∇c=D∇2c + A1

∂φ

∂t
+ A2

∂φ/∂t

|∇φ|
(

D∇2φ − ∂φ

∂t

)
.

(8)

The second term on the right-hand side acts as a net source
or sink of solute due to the discontinuity in the solute
concentration gradient across the interface, whereas the last
term corresponds to a net flux of solute arising from the
discontinuity in the solute concentration across the interface.
The constants in front of these terms, A1 and A2, are
determined by ensuring that in the sharp-interface limit,
ε → 0, Eq. (8) reduced to the interfacial boundary conditions
in Eqs. (1) and (2), which in terms of the dimensionless
concentration read as

vn = βkc, Dn · ∇c = kc, (9)

where β = Ceρf /ρs . This was done in Ref. [5] in the absence
of the fluid advection, and, for completeness, we redo the
calculation of A1 and A2 and show that the fluid flow has no
effect on the interfacial conditions. Equation (8) can be written
in the comoving curvilinear coordinates of the interface using
that ∇2 ≡ ∂2/∂n2 + κ∂/∂n, ∇ ≡ ∂/∂n, and ∂/∂t ≡ −vn∂/∂n

to arrive at

−(v · n)
∂c

∂n
+ D

∂2c

∂n2
+ (Dκ + vn)

∂c

∂n

= (
A1vn + A2v

2
n

)∂φ

∂n
+ A2vnD

(
∂2φ

∂n2
+ κ

∂φ

∂n

)
. (10)

The first term on the left-hand side comes from the advec-
tion term in Eq. (8) but vanishes at the interface due to
the impermeable boundary condition of the fluid dynamics,
v · n = 0. We integrate the above equation across the interface
and take the sharp interface limit in which the φ field becomes
a step function with φ|0+

0− = 2 and ∂nφ|0+
0− = 0. Thus, Eq. (10)

reduces to

Dn · ∇c|0+
0− + (Dκ + vn)c|0+

0− = 2vnA1 + 2vnA2(Dκ + vn).

(11)

Using Eq. (9), and identifying the terms corresponding to the
same powers of vn, it follows that A1 = 1/(2β) and A2 =
1/(2βk). Equation (8) can now be rewritten in a dimensionless
form by rescaling space and time by typical length scale x0 set
by the diameter of the pipe and typical time scale t0 related
to the maximum inlet velocity v0 by the relation t0 = x0/v0.
From this rescalings, we introduce the dimensionless numbers
the Péclet number, Pe = x0v0/D, which measures the effect
of fluid transport relative to diffusion, the Damköhler num-
berDa = kx0/D, which measures precipitation rate relative
to the diffusion transport rate, and the Reynolds number
Re = v0x0/ν, which measures the strength turbulence in the
pipe. In dimensionless units, Eq. (8) reduces to

∂c

∂t
= 1

Pe
∇2c + 1

2β

∂φ

∂t
+ Pe

2βDa

∂φ/∂t

|∇φ|
(

1

Pe
∇2φ − ∂φ

∂t

)
,

(12)

and the phase field Eq. (7) becomes equal to

∂φ

∂t
= Per

Pe

[
ε2

x2
0

(∇2φ − κ|∇φ|) + ∂f

∂φ

]
, (13)

where Per = x2
0/(Dτ ) is the ratio of interface advection (due

to reaction) and diffusion, and ε/x0 relates to the interface
sharpness. Equations (12) and (13) are solved numerically
using a finite difference scheme outlined in Appendix A.

B. Lattice Boltzmann: phase-field coupling

The lattice Boltzmann implementation [18] is detailed in
Appendix B. Since the lattice Boltzmann and phase field sim-
ulations both run on regular square grids, it is straightforward
to couple the two methods. In particular, the value of the φ field
enters into the fluid viscosity parameter such that as φ → −1,
viscosity tends to infinity; i.e., the solid phase is rigid. This can
be implemented in the fluid dynamics where the Navier-Stokes
equations now become

ρf

[
∂f (φ)v

∂t
+ f (φ)v · ∇v

]

= −f (φ)∇p + μ∇2f (φ)v + Md, (14)

where f (φ) = (1 + φ)/2, which describes the change in the
local viscosity based on the φ field. The last term on the
right-hand side ensures that the velocity of the fluid is forced
to zero as φ → 0, and it takes the general form

Md = −νb(1 − f [φ)]2f (φ)v

ε2
. (15)

The dimensionless constant b is determined to be 2.757 by
requiring that the velocity profile of the lattice Boltzmann
coupled with phase-field model coincides, away from the
interface and in the laminar regime, with the quadratic velocity
profile of the Poiseuille flow.

In addition to the modification to the fluid viscosity it is also
necessary to convert fluid cells within the lattice Boltzmann
model to solid cells. This occurs when the phase value
decreases below zero (φ < 0). Solid cells are then subjected
to the appropriate no-slip boundary conditions.
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C. Numerical benchmarks

We performed convergence tests of the phase-field model
at a given spatial resolution and interface thickness. The
convergence to the sharp-interface limit is assumed achieved
when the velocity of the growing interface is unaffected by
increases in resolution and interface sharpness. Further tests
are run regarding the width of the interface against the size
of the smallest growing dendrites. It is noted that in the case
where the thickness of the interface is comparable to or greater
than the smallest structures, the small-scale structures become
unresolved, while the overall growth rates remain essentially
the same.

The implementation of the lattice Boltzmann model is
benchmarked against known solutions for pressure-driven
channel flow for low and high Re numbers, and the errors
are consistent with those obtained by other implementations
of the same type [19]. Further tests regarding the generation
of turbulent structures show qualitative agreement when
compared against results generated for flow past including
objects [18].

V. RESULTS AND DISCUSSION

A. Growth structures

We consider a two-dimensional setup of pipe flow with
O(10) discrete reaction sites that are randomly spaced upon
one of the walls of the pipe. Since we are not modeling the
nucleation of the precipitation sites, we assumed they have
already been seeded and represent each of them by a half-circle
of small radius where the phase field takes the value φ = −1.
The first 200 lattice points from the inlet are kept clear of
reaction sites to ensure that no precipitate grows outside of the
boundary within the time span of the simulation. The pipe walls
take no primary phase value, and hence no initial growth occurs
upon them. Flow in the channel is induced by a constant inlet
flux where the velocity has a parabolic profile with maximum
v0 at the center of the pipe. In the absence of precipitation
the velocity profile remains constant. Fluid is removed at the
outlet through the open boundary conditions where the fluid
velocity and concentration gradients vanish. Initially the fluid
is uniformly supersaturated with a concentration field given by
c = 1 in dimensionless units. Snapshots of the precipitation
structures in a pipe flow at Pe = 5 and two different Re
numbers are shown in Fig. 2, where we notice that the shape
and size of the dendrites vary heterogeneously down the pipe.

FIG. 2. (Color online) Snapshots of the growth morphology of a
random array of precipitates that are growing in a supersaturated fluid
flowing at two different Re numbers and at Pe = 5. The color coding
corresponds to the dimensionless concentration field.

FIG. 3. Reference of labeled points corresponding to different
parts of a dendrite.

The evolution and morphology of the precipitates are
perhaps better explained if we differentiate between different
growth regions along a selected dendrite. These key areas are
labeled as (A) for the tip of the dendrite, (B) for the downstream
side of the dendrite relative to the flow direction, and (C)
for the upstream side. These regions are also illustrated in
Fig. 3 and, as we will show below, may experience different
hydrodynamic environments.

In Fig. 4 we compare between different typical morpholo-
gies of a dendrite in a system of several growing dendrites for
different Re and Pe numbers, where, in each case, the selected
dendrite is growing from the same initial nucleation point and
represents the most dominant dendrite in the system. One of
the first features that we notice is that the side branching gets
more suppressed with increasing Re number or as the flow
becomes more nonlinear. Thus, the structures appear more
columnar and their orientation is mainly determined by the
inclination of the dendrites tips.

To better quantify the main growth direction, we calculated
the growth angle of a precipitate as the average of the
angles for each part of the dendrite relative to the horizontal
axis. Thus, for a symmetric, normal growth, the dendrite
angle is at 90◦. This growth angle provides an estimate of
the deviation from the normal growth characteristic to the
diffusion-limited regime of an isolated dendrite. The main
angle or asymmetry is primarily determined by the inclination
at which the tip [region (A)] of the dendrite grows (this is
also illustrated in Fig. 4). Thus, side branching and growth on
the downstream side in region (B) act to reduce asymmetry,
while the growth on the upstream side in region (C) acts to
increase it. Figure 5 (top) shows the main growth angle of a
dendrite tip for different Pe and Re numbers. This is calculated
for the selected dendrite as presented in Fig. 4. We notice that
even in the diffusion-limited regime, i.e., Pe → 0, the main
inclination of the dendrite deviates slightly from 90◦ due to
its competition with neighboring dendrites. Each precipitate
affects the concentration gradient locally, and thus it influences
the precipitation rate of the nearest neighbors. The deviation
from the normal growth in the diffusion-limited regime is thus
entirely determined by the mean separation distance between
dendrites, such that in the dilute limit where the separation
between dendrites is much larger than the diffusion length
scale we expect the growth to be normal.

We also computed a global asymmetry angle by averaging
the growth angle over all dendrites in the system excluding the
one closest to the inlet, since it is not affected by any upstream
structures. In Fig. 5 (bottom plot) we show the average
asymmetry angle as a function of Pe and Re numbers. Both for
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FIG. 4. Simulated evolution of the precipitation growth of a dendrite within a system of dendrites for various Pe and Re numbers. Contour
lines show the position of the precipitation front at different times with time separation between 10 s.

the tip angle and the average growth angle, the most dramatic
inclination happens around Pe ∼ 1 where the diffusive and
advective transport occur on similar time scales. While the tip
angle keeps increasing towards 90◦ with increasing Pe number,
we notice that the average angle of the precipitates eventually
becomes independent of the Pe number. Interestingly, the main
inclination angle of the dendrite tip gets more oblique with
increasing Re number, while the average growth angle tends
to come closer to 90◦. Because of the enhanced diffusion in
region (B) due to turbulent mixing, the smooth downstream
side of the dendrite becomes unstable and side branching may
occur as seen in Fig. 4, which effectively brings the average
growth angle towards 90◦.

In what follows, we are going to detail the effect that
different transport mechanisms, i.e., advection, diffusion, and
mixing, have on the solute concentration field in the pipe, and
hence on the morphology of the precipitates.

B. Advection

Growing structures that protrude into the pipe deform
the fluid streamline around them such that the highest fluid

velocities are present at the point extending furthest into the
channel, i.e., the tip of the dendrite (A). Fluid velocities are
considerably lower on the dendrite sides, i.e., regions (B) and
(C) in Fig. 3; hence the local growth rates in these regions
are controlled by diffusion and, at high Re, by turbulent
mixing. In region (A), the solute-depleted fluid is advected
downstream, thus exposing the dendrite tip to supersaturated
fluid and higher precipitation rates. The most upstream part
in region (A) experiences the steepest concentration gradients,
hence at low advection rates (low Pe) the growth tends to
also tilt steeply towards the oncoming fluid. By increasing
the advective transport, a greater area of the surface in region
(A) is exposed predominantly in the downstream direction;
this increases not only the tilt angle but also the width of the
main dendrite. This is clear in the top half of Fig. 5 where the
main angle drops to its lowest point around Pe ≈ 1–3 before
increasing again for higher Pe numbers. Figure 6 demonstrates
this further by showing the effect which advection has upon the
concentration field and hence the growth angle of the dendrite.

In Fig. 7 we show that the nonlaminar flow also has a major
influence on the main precipitation angle. With increasing Re
number, a larger area in region (A) gets exposed to higher
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FIG. 5. (Color online) (a) The angle of tip of the growing dendrite
plotted at a fixed time for different values of Pe and Re numbers.
(b) The growth angle of asymmetry averaged over all dendrites and
plotted at a fixed time for different values of Pe and Re numbers. The
curves trace the numerical data points.

fluid velocities. Thus the solute-depleted fluid near the dendrite
tip gets quickly advected and mixed with the supersaturated
fluid downstream through the generation and shedding of
vortices. Thus the downstream side in region (B) experiences
a more mixed concentration field, and the growth becomes
diffusive-like but with a faster precipitation rate since mixing
enhances the effective diffusivity coefficient. Eventually the
solute-depleted fluid from other upstream dendrites will also
reach region (C), depending on the fluid velocity (and therefore
the Re number). At higher Re numbers, the effect of the
upstream dendrites on the region (C) of the reference dendrite
will also be more pronounced resulting in the suppression
of side branching on the upstream side and the formation of
columnar-like structures.

C. Diffusion

In the diffusion-dominated region, all sides of an isolated
dendrite experience a symmetric concentration field. Thus the

FIG. 6. Simulated advection of a diffusing source with fluid flow
over a semicircular inclusion attached to a channel wall for Re = 100.
Contour plots of the concentration field after it has diffused by the
same distance. Arrows show the direction of steepest concentration
gradient away from the surface and hence indicate the direction along
which the surface grows most rapidly.

diffusive growth of a dendrite is normal, unless it is affected
by the presence of other competing precipitates that change
the concentration gradient around them. The dendritic or
tree-like pattern of the growth results from surface instabilities
and a dynamic selection mechanism of the spacing between
side branches. This has been studied extensively in crystal

FIG. 7. Simulated flow over a semicircular inclusion attached to
a channel wall for various Re numbers. Contour plots of the fluid
streamlines. In each case the dotted lines indicate the area over which
the fluid velocity exceeds the same defined velocity value indicating
how the advection over the surface changes the growth angle and the
dendrite width for different Re numbers.
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growth from undercooled liquids, e.g., Refs. [4,20]. We
observe similar dendritic structures also during precipitation
from a supersaturated fluid [17]. The typical length scale of
growing structures is dependent upon the diffusion coefficient
and the imposed mean flow. As the Pe number increases, the
typical length scale reduces, and therefore finer structures are
observed in regions forced to grow in a diffusion-controlled
environment (B) and (C).

The concentration field is clearly lower around any evolving
structure on the pipe wall, and this hinders growth in the
surrounding regions. Growth will therefore be much faster
in regions that are more isolated from the other preexisting
structures. In our setup of a channel with randomly spaced
nucleation sites, the growth will predominantly be directed
away from the channel wall and towards the center of the pipe.

D. Mixing

Vortices formed behind growing precipitates promote effi-
cient momentum transport across the pipe. This enables the
solute-depleted fluid near the precipitation to mix faster with
the supersaturated main stream fluid. In particular, mixing
becomes an efficient solute transport process with increasing
Re number. For an isolated precipitate growing in the presence
of fluid flow, vortices will form downstream and eventually
shed off and mix with the bulk flow. Thus, in region (B) the
concentration field quickly becomes more uniform due to mix-
ing than in region (C) so that the downstream side is typically
smooth while the upstream side that experiences a diffusive
field with nonuniform gradients has a dendritic texture.

For a random array of precipitates scattered on the pipe’s
wall, mixing occurs predominantly in the spacing between
growing dendrites (see Fig. 8 for the depiction of the
standing vortices between obstacles for different Re numbers).

FIG. 8. Velocity vector field of a simulated flow over two
simplified structures attached to a solid wall at various Re.

Therefore, both regions (B) and (C) of the selected dendrite
will be affected by local mixing of the concentration field. This
effect becomes more dominant with increasing Re number
leading to a more even suppression of side branching in (B)
and (C) and hence the formation of columnar or needle-like
precipitates as seen in Fig. 4.

E. Shadowing length

Pipe flow has an drastic effect on the typical interaction
length scale Ls between fast-growing dendrites. To have an
estimate of how Ls depends on Pe and Re numbers, we
consider a setup where the initial asperities on the pipe’s wall
are spaced with an increasing distance between them. The
spacing between the first two rough elements is 20 lattice
points, and it increases to 40 grid points for the next two
asperities, 60 grid points for the third pair, and so on. The
dendrites that are almost independent of each other will have
a maximum growth relative to the other dendrites that are
overshadowed. We measure the minimum distance between
these fast-growing dendrites as a proxy of the shadowing
length. We also run a second set of simulations for each Pe
and Re numbers, where the initial distance between asperities
decreases downstream. This provides a better estimate of
the shadowing length scale obtained as the average of the
minimum distance calculated from the two protocols.

Figure 9(a) shows the shadowing length Ls as a function of
Pe and Re. Large Ls means a longer-range interaction between
fast-growing dendrites and the presence of more overshadowed
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FIG. 9. (Color online) (a) Plot of the minimum distance between
fast growing dendrites for different values of Pe and Re numbers.
(b) Simulations of equally spaced nucleation sites with spacing (L =
{80,100,140,160}) above and below the observed shadowing length
calculated at Ls ≈ 120, for Re = 100 and Pe = 2.
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FIG. 10. Contour plot of the concentration field around two
precipitation dendrites growing in the presence of other dendrites
in the pipe for different values of Pe and Re numbers. The main flow
is from the left to the right.

dendrites in between. Slow-growing dendrites evolve in a
calmer environment with less fluid streaming. This causes
them to grow more diffusive-like, but their main orientation
is still dictated by fast-growing structures around them. The
growth direction of the slow dendrites is typically along
the path where no other growing structures are present. To
eliminate the possible effects of a nonuniform spacing between
precipitates, we have also run simulations of equally spaced
dendrites where the spacing takes values slightly above and
slightly below the calculated shadow length Ls from Fig. 9(a).
An example of this is shown in Fig. 9(b) for Re = 100 and
Pe = 2, where a clear difference can be seen for spacing above
and below the shadow length of Ls ≈ 120.

Figure 10 shows the concentration field around two
neighboring dendrities for several Pe and Re numbers. The
contours of the concentration field provide an illustration of
the shadowing effect that takes place where the concentration
field affects the growth rate of dendrites in the downstream
direction. The shadowing length depends both on the diffusion
and advection/mixing length scales, and it peaks when these
two typical lengths are of the same order of magnitude, i.e.,
Pe ≈ 1 as seen in Fig. 9. As the simulation is set up to run on
the advective time scale, varying the Pe number is equivalent
to changing the rate of diffusion while keeping advection
constant for a given Re number. Hence increasing the Pe
number reduces the shadowing length. Larger values of Re
number enhance the advection rate at the interface, therefore
increasing the advective length and hence the shadow length.

As the Re number increases the vortex which forms
in between two neiboring dendrites increases in size and
magnitude (also shown in Fig. 8). At high Re and Pe numbers
(where mixing is the dominant transport mechanism) the
vortex is able to effectively trap solute-depleted fluid flowing
downstream stopping it from reaching region (A). This allows
the tips to grow more freely at closer distances causing an
apparent shorter shadowing length.

F. Growth rate

In addition to growth morphology, the overall growth rate
also varies significantly as seen from Fig. 4; most notably the
rate decreases for increasing Pe number and for the most part
increases with increasing Re number.

The dependence of the growth rate on Pe number can be
determined (see Appendix C) for a flat interface in the laminar

regime, in which case vn ∝ 1/Pe. The inverse proportionality
of the interface velocity with the Pe number is consistent
with the growth rates observed from Fig. 4. The effect of
the Re number on the growth velocity is harder to quantity.
Overall, our numerical simulations suggest that increasing the
advection rate at the solid-liquid interface acts to increase the
growth rate of the system. However, it is also apparent that
the growth rate initially decreases with increasing Re number.
For a fixed Pe, a minimum growth rate is observed around
Re ≈ 500–1000. From Fig. 9, we notice that this slow growth
regime corresponds to the largest shadowing length.

VI. CONCLUSIONS

This paper studies the effects of interaction between grow-
ing precipitates in a channel flow at varying flow rates. Three
mechanisms work in competition to determine the morphology
of the dendrites which develop on one of the pipe’s reactive
walls. Diffusion acts equally in all areas to produce largely
isotropic dendritic structures with a typical finger width that
decreases with decreasing diffusion rate. Advective transport
promotes an increase in the solute concentration at points
that protrude into the channel by removing solute-depleted
fluid further downstream, and thus accelerating the growth
against the mainstream flow direction. Shallowest growth
angles (the most directed towards oncoming flow) occur at
low advection rates where only the most upstream regions
affected by advection are introduced to supersaturated fluid.
With increasing flow rates, the regions further downstream
are also exposed to the incoming fluid, and this increases the
finger’s width and the growth angle of the dendrites. Increased
Re effectively amounts to a more asymmetric growth towards
the incoming fluid and a wider width of the main dendritic
branch. Solute-depleted fluid is transported downstream where
it hinders precipitation growth, and the size of the affected area
is dependent upon the rate of advection relative to the growth
time scale. Enhanced mixing occurs in the presence of vortices
shed downstream from the growing dendrites. The interaction
between eddies promotes momentum transport across the pipe
diameter and thus mixes the solute concentration much faster
than by molecular diffusion. Mixing is dependent upon Re
number and acts faster with increasing Re. The effect of
mixing on the precipitation growth is such that it induces a
more diffusive-like growth of the precipitates but much larger
precipitation rates due to larger effective diffusivity.

The typical shadowing length between interacting dendri-
ties in pipe flow is controlled by the combination of diffusion
and advection length scales on the time scale of growth. In the
laminar regime, an increase in diffusive or advective length
scales will correspond to an increase in shadowing length. At
higher Re numbers, however, the flow pattern and increased
circulation velocities between dendrites force depleted fluid
away from the tip, reducing the length between dominant
dendrites.
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APPENDIX A: FINITE DIFFERENCE

Equations (12) and (13) are solved by an isotropic finite
difference method where nearest and next-nearest neighbors
are considered. The partial derivatives and Laplacian operator
are discretized as

∂φi,j

∂x
= 1

8ds
(φi+1,j+1 + 2φi+1,j − φi−1,j−1

−φi−1,j+1 − 2φi−1,j + φi+1,j−1), (A1)

∂φi,j

∂y
= 1

8ds

(
φi+1,j+1 + 2φi,j+1 − φi−1,j−1

−φi−1,j+1 − 2φi,j−1 + φi+1,j−1), (A2)

∇2φi,j = 1

2ds2
(φi+1,j + φi−1,j + φi,j+1 + φi,j−1) − 3φi,j

ds2

+ 1

4ds2
(φi+1,j+1 + φi−1,j−1 + φi−1,j+1 + φi+1,j−1),

(A3)

where ds is the lattice spacing, and (i,j ) represents the
(x,y) position in a discrete rectangular lattice. The equations
are then propagated in time using an explicit middle point
discretization,

f (t + 
t) = 
t

2
[f (t − 
t) + f (t)], (A4)

with 
t being the time step of the simulation.

APPENDIX B: LATTICE BOLTZMANN MODEL

The lattice Boltzmann model (for more details see Ref. [18])
solves the Navier-Stokes equations on a regular grid by
combining the properties of mass, momentum, and energy
conservation with an isotropic relaxation of the stress. The
method is based on the idea that the fluid can be represented
by a cloud of free moving particles (“momentum carriers”)
which occasionally interact leading to energy and momentum
exchange. These particles are restricted to move at a constant
speed along a discrete set of specific directions only. For
two-dimensional simulations, nine directions of travel with
unit vectors ei , for i = 0, . . . ,8, create a regular square
lattice grid; this is also the base grid type for most other
numerical techniques [18]. The vector labels i are numbered
(anticlockwise) in Fig. 11.

Additionally, fluid particles are grouped together to drasti-
cally reduce the quantity of data and numerical computations.
This is possible since at any grid point there is a large number
of particles traveling along the same paths with the same speed.
Therefore, one can define a set of particle density functions ni

with i = 0, . . . ,8 corresponding to each direction of motion.

FIG. 11. Lattice representation of the discrete orientations. A
d2q9 lattice is used (two dimensions, nine directions); i = 0
represents particles at rest.

The final component is the interaction of particles. In the
case of the lattice Boltzmann model, due to restrictions of
direction and speed, particles are simply scattered from one
direction to another or rather from one cloud of particles to
another. The evolution of the particle functions by relaxation
proceeds as

ni(xa + cia,t + 
t) = ni(xa,t) − 1

τ
[ni(xa,t) − n

eq

i (xa,t)],

(B1)

where a = 1,2 for x,y respectively, c is the lattice sounds
speed, and t is the time and 
t the time step. The second term
describes the particle interactions via collisions which push
the system towards equilibrium. Here the relaxation time τ is
related to the fluid viscosity as

τ = 6ν + 1

2


x2


t
, (B2)

ν being the viscosity and 
x the grid spacing. The local
equilibrium distribution n

eq

i to second order is

n
eq

i = wiρ

(
1 + 3eiaua

c2
+ 9eiaeibuaub

2c4
− 3uaua

2c2

)
, (B3)

where u is the velocity, a and b take the values 1,2 representing
x,y as before, and summation is implied over indices a and
b. The weights wi are

w0 = 4
9 , w1,2,3,4 = 1

9 , w5,6,7,8 = 1
36 . (B4)

At each grid point the total mass and velocity of the fluid can be
inferred by summing the contributions from each particle func-
tion. The velocity u and the density ρ are hence calculated as

ρ =
∑

i

ni, u = 1

ρ

∑
i

niei . (B5)

The lattice Boltzmann model proceeds through the following
stages. First, a uniform grid is set up with particle density
functions moving along each of the chosen directions. At each
time step, the functions move along their respective directions
of travel to the adjacent lattice point. The equilibrium functions
at each lattice point is then calculated, and the system is relaxed
towards equilibrium. While one may (correctly) assume that
on a microscopic scale the method may not be an accurate rep-
resentation of a true fluid, the lattice Boltzmann method is able
to capture the macroscopic details of fluids with great accuracy.
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1. Boundary conditions

No-slip boundary conditions are used on the wall of the
pipe and for the solid interface. These are implemented within
the lattice Boltzmann model using bounce-back boundary
conditions; i.e., any fluid particle density functions entering the
solid phase are simply reversed in direction (hence canceling
out the velocity component in that direction).

For the pipe’s inlet, we set a constant fluid velocity profile,
while at the outlet open boundaries are implemented.

2. Incompressible lattice Boltzmann model

Various incompressible modifications to the lattice Boltz-
mann model have been derived to create a more constant
density field. We use the method developed by Zou et al. [21].
Fluid velocity is assumed to be independent of the density and
equal to

u =
∑

i

niei (B6)

to ensure that the velocity field remains divergence free.

3. Turbulence

Simulating turbulent fluid dynamics at every scale is
computationally impractical [22]. Instead we seek to model
the resolved scales of turbulent motion. Scales below these
are taken into account through a subgrid model which filters
out the small-scale motion via a renormalization of the local
viscosity. The effective viscosity becomes

ν = ν0 + νt . (B7)

Here ν0 is the fluid viscosity and νt the modeled eddy
viscosity. We use the Smagorinsky model [23] to determine
the small unresolved scale motion. Here the eddy viscosity
νt is calculated from the filtered rate of strain tensor Si,j =
(∂jui + ∂iuj )/2:

νt = (Cs
)2S, S =
√

2
∑
i,j

Si,j Si,j , (B8)

where 
 is the filter width and Cs is the Smagorinsky constant.
The total modified relaxation time can now be written as

τ = 1

2

√
τ 2

0 + 18
√

2

ρ0
C2

s 
S + τ0. (B9)

In the lattice Boltzmann model, the rate of strain tensor can
be calculated from the local nonequilibrium particle densities
and given as

Sa,b =
∑

i

eiaeib

(
ni − n

eq

i

)
. (B10)

APPENDIX C: GROWTH VELOCITY OF A FLAT
INTERFACE

An analytic solution of the precipitation growth velocity
vn can be obtained for a laminar flow, v = (vx,0), near a flat
interface [5]. In the steady-state and comoving frame of the
interface propagating with a constant velocity vn, the evolution
equation of the concentration field reads as

1

Pe

d2c

dy2
+ vn

dc

dy
= 0, (C1)

where c(y) is the steady-state concentration field [c = (C −
Ce)/Ce] away from the interface, assuming that it is homo-
geneous along the interface in the x direction. The general
solution of the above equation follows:

c = c1 + c2e
−vnPe y, (C2)

where the integration constants are determined from the
boundary conditions. We use the mass continuity at the
interface c′(y) = Da c(y), at y = 0, and the far field condition
c(y) = c∞ as y → ∞. Thus,

c = c∞ − Da c∞
Da + vnPe

e−vnPe y. (C3)

The normal growth velocity follows from interfacial boundary
condition Pe vn = βDa c(y) at y = 0 and is equal to

vn = Da(βc∞ − 1)

Pe
. (C4)
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