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Kinetics of random sequential adsorption of nearly spherically symmetric particles
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Kinetics of random sequential adsorption (RSA) of disks on flat, two-dimensional surfaces is governed by a
power law with exponent −1/2. The study has shown that for RSA of nearly spherically symmetric particles this
exponent is −1/3, whereas other characteristics typically measured in RSA simulations approach values known
for disks with the increase of symmetry of the particles.
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I. INTRODUCTION

Random sequential adsorption (RSA) is one of the simplest
and therefore one of the most commonly used numerical
algorithms for modeling of irreversible adsorption processes
[1–4]. It is also still actively studied and developed [5–7]. The
algorithm is based on subsequent attempts to add a randomly
placed particle to an adsorption layer. If the particle does not
overlap with any previously added particles it is added to the
layer. Otherwise, it is removed. One of the most important
characteristics of an adsorption layer is its saturated coverage
ratio—the ratio of surface covered by adsorbed particles to the
whole collector area—when any further adsorption act is not
possible. To be sure that a coverage is saturated, usually huge
number of algorithm steps is needed, even when improved
version of RSA is used [6]. To estimate saturated coverage
ratio from relatively short simulation the kinetics of RSA layer
growth has to be known. Since the very first studies by Feder
[8] on spherical particles undergoing RSA procedure to form
an adsorption layer on a two-dimensional flat collector, it has
been observed that the coverage ratio kinetics is governed by
the following power law:

θ (t) = θmax − At
− 1

p , (1)

where θ (t) denotes the ratio of space covered by adsorbed
particles to the whole space of a collector after t algorithm
steps, θmax ≡ θ (t → ∞) is saturated coverage ratio, A is some
constant, and p = 2. For spherically symmetric particles, the
above relation was analytically confirmed valid also by other
investigators [9–11] and since then parameter p is known
to be equal to the dimension of a collector [12], which can
also be a fractal [13,14]. The situation changes slightly for
RSA of anisotropic particles, e.g., spheroids, spherocylinders,
rectangles and similar [15–19], and even for fibrinogens [20].
In all these cases parameter p in Eq. (1) has been found to
be equal to 3 as long as particles are stiff [19,21]. In general,
parameter p is equal to the number of degrees of freedom
of adsorbate particle [22]. The obvious question as to what
is the limiting elongation between p = 2 and p = 3 scenario
has been answered in Ref. [18]: for an ellipsoid having width
to height ratio of (1 + ε) the border lies around ε ≈ 0.25.
Interestingly, recent studies show that p = 3 also for tetramers
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[23] as well as for hexamers [24], and in the latter case ε is
smaller than 0.25. As these shapes are often approximated by
disks for numerical modeling purposes [5,25], it is possible
that obtained results could lead to wrong conclusions [26,27].
Therefore, the aim of this study is to check which exponent
p describes RSA kinetics of nearly spherically symmetric
molecules. To achieve this, a number of RSA simulation
for particles of the growing number of symmetry axes was
performed and analyzed.

II. MODEL

Adsorbate particles are rings built of 5 to 40 identical disks
of radius r0. An example of rings is presented in Fig. 1. Such
particles were thrown randomly on a flat square collector of
a side size of 1000 r0 according to RSA procedure [8,23,24].
Separate experiments were performed for particles of different
sizes. During the simulation, temporary number of adsorbed
particles n(t) has been measured. For each type of molecules
100 independent simulations were performed and each of them
included 105 t0 steps, where t0 = 106/Nπr2

0 is a dimensionless
time unit equal to the ratio of collector surface to single particle
surface. N denotes the number of disks in a ring. Note that any
specific value of the time unit does not affect exponent p in
Eq. (1) as long as it is proportional to the number of algorithm
steps.

III. RESULTS

Examples of monolayers built of different size rings are
presented in Fig. 2. As the figure contains only a small
fragment of the whole layer it is worth it to mention that
the average number of adsorbed rings on the whole collector
was 28 857, 14 691, and 6 020 for rings built of 5, 8, and 14
disks, respectively. The standard deviation did not exceed 10
particles.

A. RSA kinetics

RSA kinetics measured for rings of different sizes are
presented in Fig. 3. Validity of Eq. (1) has been confirmed
for a wide range of simulation times. Exponent p, which
corresponds to the slope of the lines in Fig. 3, almost does
not depend on ring size and, within the studied range, is close
to p = 3, even for the largest and most spherically symmetric
particles. This is a highly unexpected result because with the

1539-3755/2014/89(2)/022401(4) 022401-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.022401


MICHAŁ CIEŚLA AND JAKUB BARBASZ PHYSICAL REVIEW E 89, 022401 (2014)

FIG. 1. (Color online) Example of rings built of 5, 8, and 14
identical disks.

particle shape approaching sphere, the exponent p should
approach the value of 2. However, it is generally possible
that large rings do not approach disks in terms of properties
measured using RSA simulations. To check if this is the case,
other characteristics typically obtained from RSA simulations
were measured and compared with the ones obtained from the
RSA of disks.

B. Saturated random coverage ratio

The surface covered by the ring is equal to Nπr2
0 ; however,

the uncovered space inside the ring is also not available
for subsequent particles adsorption. To compare obtained
coverages with the disks adsorption case, the interior of the
ring should also be counted as covered. Therefore, the total
collector area occupied by a single ring built of N disks is

SN = Nr2
0

[
cot

(
π

N

)
+ π

N + 2

2N

]
. (2)

As mentioned at the beginning, the RSA simulation
approaches saturated coverage after an infinite number of
algorithm steps. Therefore, to find θmax the Eq. (1) is needed.
Having determined the exponent p, let y = t−1/p. Then Eq. (1)
converts into θ (y) = θmax − Ay, where A is a constant coeffi-
cient. Approximation of the linear relation for y = 0 gives the
saturated random coverage θmax ≡ θ (y = 0). Figure 4 presents
saturated random coverage ratios for different ring sizes. Data
for N = 3 and N = 4 were taken from Refs. [23] and [24],
respectively. For trimers (N = 3), random saturated coverage
ratio is only slightly lower than for disks. Significant drop of
θmax for larger N is probably connected with the peculiar shape
of medium-size rings, which effectively block slightly more
space. For larger rings, saturated random coverage ratio, as
expected, grows up to the value known for disks.
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FIG. 3. (Color online) Increments of adsorbed particles versus
number of RSA steps expressed in dimensionless time units t0 for
different sizes of rings. Inset shows the dependence of the exponent
in Eq. (1) on ring size. Statistical error is smaller than the size of
squares. Horizontal dashed lines correspond to p = 2 and p = 3.

C. Available surface function

Available surface function can be defined as a probability of
finding an uncovered space large enough to place there a sub-
sequent particle. For small coverages, it can be approximated
as

ASF(θ ) = 1 − C1θ + C2θ
2 + o(θ2). (3)

Expansion coefficient C1 corresponds to the area blocked by
a single particle, whereas C2 corresponds to a cross-section of
the surface blocked by two independent rings. Note that both
of them are directly related to the second B2 = 1/2C1 and
third B3 = 1/3C2

1 − 2/3C2 viral coefficient of the equilibrium
monolayer built of such particles [17,28]. Parameters C1 and
C2 for rings were determined by fitting the Eq. (3) to the
simulation data. Results presented in Fig. 5 show monotonic
decrease of both the parameters down to the analytic values
characterizing RSA of disks. In the case of C2, the parameter
drops even significantly below the expected value; however,
it should be noted that expansion of ASF(θ ) up to the second
order is valid only for small θ and estimation of C2 is much
more sensitive to that range than of C1. Here, for fitting
purposes, we assumed that θ < 0.2 θmax.

D. Density autocorrelation function

Density autocorrelation function gives an insight into
coverage structure and is defined as

G(r) = P (r)

2πrρ
, (4)

FIG. 2. (Color online) Examples of monolayers obtained using RSA procedure for rings built of 5, 8 and 14 identical disks.
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FIG. 4. Saturated random coverage ratio for rings of different
sizes. Dashed line corresponds to saturated random coverage ratio
for a monolayer built of disks [12,21]. Statistical errors are smaller
than the size of dots.

where P (r)dr is a probability of finding two particles in
a distance between r and r + dr . Here, the distance r is
measured between the geometric centers of molecules. As
ρ is the mean density of particles inside a covering layer,
thus G(r → ∞) = 1. To compare density autocorrelations for
different ring sizes, the length has to be rescaled and hence
r → r/RN , where

RN = r0

(
1

sin π
N

+ 1

)
(5)

is radius of the ring built of N disks. The comparison of
G(r/RN ) is presented in Fig. 6. Again, values obtained for
the largest rings approach the limit given by G(r) for disks.
This is yet another indication that random coverage properties
for large rings match the ones for disks.

IV. DISCUSSION

The difference between RSA kinetics for disks and for
nearly spherically symmetric particles is counterintuitive,
especially when considering results obtained by Viot et al.
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FIG. 5. (Color online) The ASF(θ ) coefficients C1 and C2 for
different ring sizes. Dashed lines correspond to their values for disks:
C1 = 4 and C2 = 6
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FIG. 6. (Color online) Density autocorrelation function for dif-
ferent ring sizes. The solid line corresponds to density autocorrelation
function for disks.

[18] for convex particles. In that study, RSA kinetics for
particles having the length-to-height ratio below 1.25 was
closer to one for disks (p = 2) than for elongated particles
p = 3. However, the behavior of RSA for concave particles
can be significantly different [29,30]. Therefore, to find out
where in this case the transition from p = 2 to p = 3 should
occur in our case, we studied RSA for particles built of two
identical, partially overlapped disks (see Fig. 7). As the ratio of
particle width to height is (1 + ε) the parameter ε can be used
as an anisotropy measure. The RSA kinetics exponent defined
in Eq. (1) for different ε is shown in Fig. 8. The transition
from p = 3 to p = 2 for partially overlapped disks begins
at ε ≈ 0.02, which is an order of magnitude lower than in
the case of convex ellipsoids or spherocylinders [18]. It is
worth noting that even for ε = 0.1, when particle looks almost
spherical (see Fig. 7), the RSA kinetics still behaves as for
elongated particles. In the case of previously simulated rings,
the anisotropy reaches 0.02 for N far larger than 100, which
partially explains why the transition has not been observed in
Fig. 3. On the other hand, the phenomenological explanation
of the transition from p = 2 to p = 3 for elongated particles
presented in Ref. [18] is still valid; however, the specific
value of the border elongation between those two cases
depends on the particular shape of a molecule and can be
surprisingly low.

V. SUMMARY

Although properties of saturated random coverages built of
disks and nearly spherically symmetric particles are almost the
same, the RSA kinetics is significantly different. Therefore,
to obtain saturated random coverage ratio θmax on a flat

FIG. 7. (Color online) Examples of particles built of two, par-
tially overlapped disks for anisotropy parameter ε equal to (from left)
0, 0.1, 0.25, and 0.5, respectively.
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FIG. 8. The exponent from Eq. (1) dependence on anisotropy
parameter ε. Dashed line corresponds to p = 3. The statistical errors
of presented data are below 0.003 and they are smaller than size of
dots. The full line connecting dots has been drawn to guide the eye.

two-dimensional surface from a finite-time simulation, the
−1/3 exponent in Eq. (1) should be used instead of −1/2,
which characterizes RSA of disks. Although the difference
between these two approximations is currently at the border
of accuracy of typical experiments, development of new
experimental techniques could make this difference signif-
icant. It was also shown that other characteristics typi-
cally measured in RSA simulation approach the value for
disks along with the growth of particle symmetry level.

ACKNOWLEDGMENT

This work was supported by Polish National Science Center
Grant No. UMO-2012/07/B/ST4/00559.

[1] Z. Adamczyk, Curr. Opin. Colloid Interface Sci. 17, 173 (2012).
[2] M. Rabe, D. Verdes, and S. Seeger, Adv. Colloid Interface Sci.

162, 87 (2011).
[3] E. A. Vogler, Biomaterials 33, 1201 (2012).
[4] B. J. Cowsill, P. D. Coffey, M. Yaseen, T. A. Waigh, N. J.

Freeman, and J. R. Lu, Soft Matter 7, 7223 (2011).
[5] C. Finch, T. Clarke, and J. J. Hickman, J. Comput. Phys. 244,

212 (2013).
[6] G. Zhang and S. Torquato, Phys. Rev. E 88, 053312 (2013).
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