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Orientational glass in mixtures of elliptic and circular particles: Structural heterogeneities,
rotational dynamics, and rheology
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Using molecular dynamics simulation with an angle-dependent Lennard-Jones potential, we study orientational
glass with quadrupolar symmetry in mixtures of elliptic particles and circular impurities in two dimensions. With
a mild aspect ratio (=1.23) and a mild size ratio (=1.2), we realize a plastic crystal at relatively high temperature
T . With further lowering T , we find a structural phase transition for very small impurity concentration c and
pinned disordered orientations for not small c. The ellipses are anchored by the impurities in the planar alignment.
With increasing c, the orientation domains composed of isosceles triangles gradually become smaller, resulting in
orientational glass with crystal order. In our simulation, the impurity distribution becomes heterogeneous during
quenching from liquid, which then produces rotational dynamic heterogeneities. We also examine rheology in
orientational glass to predict a shape memory effect and a superelasticity effect, where a large fraction of the
strain is due to collective orientation changes.
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I. INTRODUCTION

Certain anisotropic molecules such as KCN, N2, and ortho-
H form a cubic crystal without orientational order [1–3]. Solids
in such a rotator phase are often called plastic solids [4]. As the
temperature T is further lowered, they undergo orientational
phase transitions, where the crystal structure changes from a
cubic to noncubic one [1,5]. In mixtures of anisotropic particles
such as KCN diluted with KBr, N2 diluted with Ar, and ortho-H
diluted with para-H, the so-called orientational glass is realized
with increasing the impurity concentration c [1–3], where the
quadrupolar, orientational degrees of freedom are randomly
frozen [6]. In such mixtures, a specific-heat peak [1,7] and a
decrease in one of the shear moduli [1,8] have been observed
above the transition for not large c. The latter indicates a strong
orientation-strain coupling [9–12]. To explain these behaviors,
molecular dynamics (MD) simulation was also performed on
mixed cyanides [13]. It is also remarkable that one-component
systems of globular molecules such as ethanol, cyclohexanol,
and C60 have rotator phases and are orientationally arrested at
lower T with weak specific-heat singularities [14–16].

However, not enough attention has yet been paid to the
physics of orientational glass. In contrast, numerous investi-
gations have been made of translational glass, where positional
disorder is frozen [3]. In previous MD simulations on diatomic
systems [17] and more complex molecular systems [18], the
correlations between the translational and rotational degrees of
freedom have been examined in glassy states. Glassy dynamics
was also found in monodisperse hard ellipsoids with slight
anisotropy [19]. Moreover, in double glass [20], these two
kinds of degrees of freedom have been predicted to freeze at
the same temperature.

Recently we performed MD simulation on mixtures of
spheroidal particles and spherical impurities in three dimen-
sions to examine the formation of orientational glass [21]. In
this paper, we aim to investigate its complex dynamics in more
detail in mixtures of elliptic particle and circular impurities in
crystal in two dimensions. We assume a mild aspect ratio
(=1.23) of the ellipses to avoid liquid crystal mesophases and
a mild size ratio (=1.2) between the two species to suppress

positional disorder. We vary T and c to examine the changeover
between multivariant domain states for small c and highly
frustrated states of orientational glass for not small c. We
shall find that mesoscopic orientational order and strains exist
in glassy states. Previously, for binary mixtures of circular
particles, the changeover between polycrystal and translational
glass was studied with varying c [22]. In translational glass,
mesoscopic crystalline order still remains and was visualized
[22,23]. In double glass, the simultaneous appearance of these
two mesoscopic heterogeneities has been detected [24].

If the molecules forming a crystal are anisotropic, there
arises a direct coupling between the orientations and the
lattice deformations [9–12]. In fact, an effective interaction
mediated by acoustic phonons was derived among anisotropic
particles in crystal such as (CN)− in KCN [9–11], leading to
acoustic softening in the rotator phase [1,8]. The orientational
phase transitions for small c thus belong to type I instabilities
in Cowley’s classification of elastic instabilities [25,26],
where acoustic modes become soft in particular wave vector
directions. In this paper we predict a shape memory effect
and a superelasticity effect in orientational glass at low T ,
where favored oriented domains increase and disfavored ones
decrease upon stretching. These effects are well known for
shape memory alloys such as TiNi [27–29]. Molecular dynam-
ics simulation was also performed to reproduce superelasticity
for a model alloy [30]. It is worth noting that mesoscopic
strain heterogeneities were observed in TiNi glass, which
were on a scale of 20 nm at a slightly off-stoichiometric
composition [29].

As another ingredient, we shall find a tendency of impurity
clustering depending on the molecular interactions [21]. In
our simulation, it took place during quenching from a high-
temperature liquid to low-temperature solid. The impurity
clustering gives rise to significant heterogeneities in orien-
tational order and rotational dynamics. For example, a small
fraction of the elliptic particles remain not strongly anchored to
the impurities such that they undergo flip rotations even at very
low T . Though such effects have rarely been discussed in the
literature, they should be relevant in many real experiments.
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We point out that our system is similar to liquid crystal
gels (gels containing rodlike molecules) [31,32]. In such
soft matter, there arises a strong orientation-strain coupling,
which makes the isotropic-nematic transition analogous to
the orientation transition in solids. Irregularities in the cross-
linkage play the role of random quenched disorder, leading to
mesoscopic nematic polydomains [33]. Application of stress
or electric field induces polydomain-monodomain transitions
[34]. We also note that dilute magnetic alloys, called spin glass,
have glassy phases characterized by frozen-in local magnetic
moments which point in random directions [2,3,6]. However,
in research, the spin-lattice coupling and the impurity cluster-
ing (resulting in correlated quenched disorder) have not yet
been well examined.

The problem of orientational glass is thus closely related
to many important problems in solids and soft matter. On
the basis of a simple microscopic model, we organize this
paper as follows. In Sec. II we will present the background
of our simulation. In Sec. III we will display orientational
configurations for various c at low T . In Sec. IV we will
examine the rotational dynamics. In Sec. V we will treat
rheology of orientational glass.

II. SIMULATION BACKGROUND

We use an angle-dependent potential [21], which is similar
to but much simpler than the Gay-Berne potential [35] for
rodlike molecules forming mesophases.

A. Model of anisotropic particles

We consider a binary mixture in two dimensions, where the
first species consists of anisotropic particles with number N1

and the second species consists of circular ones with number
N2. The total number is N = N1 + N2. The concentration of
the second species is

c = N2/N. (2.1)

For small c, the circular particles are impurities. The particle
positions are written as r i , where i = 1, . . . ,N1 for the
anisotropic particles (i ∈ 1) and i = N1 + 1, . . . ,N for the
isotropic particles (i ∈ 2). The orientations of the anisotropic
particles are expressed by

ni = (cos θi, sin θi), (2.2)

where θi are their angles with respect to the x axis. The particle
sizes are characterized by two lengths, σ1 and σ2. The pair
potential Uij between particles i ∈ α and j ∈ β (α,β = 1,2)
depends on the distance rij = |r i − rj | and the angles θi (i ∈
1) and θj (j ∈ 1). For rij < rc, it is a modified Lennard-Jones
potential,

Uij = 4ε

[
(1 + Aij )

σ 12
αβ

r12
ij

− σ 6
αβ

r6
ij

]
− Cij . (2.3)

For rij > rc = 3σ1, it is zero. Here ε is the characteristic
interaction energy and

σαβ = (σα + σβ)/2. (2.4)

The Cij ensures the continuity of Uij at rij = rc, so it is equal to
the first term at r = rc in the right-hand side of Eq. (2.3). The

angle factor Aij depends on the angles between the relative
direction r̂ ij = r−1

ij (r i − rj ) and the particle orientations. We
assume the following form:

Aij = χδα1(ni · r̂ ij )2 + χδβ1(nj · r̂ ij )2, (2.5)

where δαβ is the Kronecker delta and χ represents the strength
of anisotropic repulsion for χ > 0. Our potential is invariant
with respect to turnovers θi → θi ± π or inversions ni →
−ni . It leads to quadrupolar orientational glass with impurities
[2,3,6,21]. On the other hand, if Uij contained a term like
(ni · nj )v(rij ), it would not be invariant with respect to these
transformations, resulting in spin glass with impurities [2,3].

The total kinetic energy of our system is given by

K = 1

2

∑
1�i�N

mα|ṙ i |2 + 1

2

∑
1�i�N1

I1|θ̇i |2, (2.6)

where ṙ i = d r i/dt , θ̇i = dθi/dt , m1 and m2 are the masses,
and I1 is the moment of inertia of the anisotropic particles. The
total potential energy is U = 
i<jUij , and the total energy is
H = K + U . The Newton equations for r i(t) and θi(t) are
written as

mα r̈ i = d

dt

∂

∂ ṙ i

K = − ∂

∂ r i

U, (2.7)

I1θ̈i = d

dt

∂

∂θ̇i

K = − ∂

∂θi

U, (2.8)

where r̈ i = d2r i/dt2 (i ∈ 1 and 2) and θ̈i = d2θi/dt2 (i ∈
1). In our time integration, θi are unbounded, changing
continuously in the range [−∞,∞].

We regard the anisotropic particles as ellipses with short and
long diameters as and a�. To determine them, we minimize
Uij in Eq. (2.3) with respect to rij to obtain rij = 21/6(1 +
Aij )1/6σ1. For χ > 0, this distance is minimum at Aij = 0 for
the perpendicular orientations (ni ,nj ⊥ r̂ ij ) and is maximum
at Aij = 2χ for the parallel orientations (ni ,nj ‖ r̂ ij ). Thus,
we set

as = 21/6σ1, a� = (1 + 2χ )1/6as. (2.9)

If these elliptic diameters are assumed, we obtain

I1 = (
a2

s + a2
�

)
m1/4. (2.10)

B. Simulation method

We integrated Eqs. (2.7) and (2.8) using the leap-frog method
under the periodic boundary condition for N = N1 + N2 =
4096. We set

χ = 1.2, σ2/σ1 = 1.2. (2.11)

The aspect ratio is a�/as = 1.23 from Eq. (2.9). We measure
space in units of σ1 and time in units of

τ0 = σ1

√
m1/ε. (2.12)

We also set m1 = m2. The temperature T is measured in units
of ε/kB with kB being the Boltzmann constant.

To prepare the initial states in each simulation run, we
started with a liquid state at T = 2, lowered T to 0.5 below the
melting temperature (∼1), waited for a time interval of 105,
and changed T to the final temperature, where we attached
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a Nosé-Hoover thermostat [36] to all the particles. After
this preparation, we used three simulation methods. First,
retaining the thermostat, we took data in the NVT ensemble
(Sec. III). Second, we switched off the thermostat, waited for
another time interval of 105, and calculated the time correlation
functions in the NVE ensemble (Sec. IV). In these simulations
at fixed V , the cell volume V was given by

π

4
asa�(1 − c) + π

4
a2

s (σ2/σ1)2c = 0.95
V

N
. (2.13)

Then the cell length was L = V 1/2 ∼ 70 for small c. Third, to
apply uniaxial stress, we varied the cell lengths in the x and y

axes assuming a rectangular cell, where we used the method
of Parrinello and Rahman [37] (Sec. V).

III. NVT SIMULATION OF ORIENTATIONAL GLASS
ON A HEXAGONAL LATTICE

In Figs. 1–4 we give results in the NVT ensemble. Under
Eqs. (2.11) and (2.13), the melting temperature Tm was about
1.0, above which liquid was realized. Below Tm, a hexagonal
crystal without orientational order appeared. For T � 0.4, an
orientational phase transition took place for small c � 0.1,
while orientational glass emerged for not small c � 0.2.
Previously, many authors [38] examined the phase transition
between orientationally disordered and ordered crystal phases
for monodisperse hard rods with mild aspect ratios.

A. Order parameter amplitude and specific heat

In Fig. 1 we plot the average orientation amplitude 〈S〉
defined in Appendix A and the constant-volume specific heat
CV = (∂〈H 〉/∂T )NV vs T for four concentrations. The former
represents the overall strength of the orientational order, while
the latter is the fluctuation amplitude of the energy H in the
NVT ensemble,

CV = 〈(H − 〈H 〉)2〉/kBT 2. (3.1)

Hereafter, 〈· · ·〉 denotes the average over time and over
several runs. For c = 0, 〈S〉 grows nearly discontinuously
at T = 0.18 in a narrow temperature window with a width
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FIG. 1. (Color online) Average orientation amplitude 〈S〉 in Eq.
(A4) (left) and specific heat CV in Eq. (3.1) divided by kBN (right)
vs T for c = 0.0, 0.05, 0.1, and 0.2, which are calculated in the NVT
ensemble. The peak of CV decreases with increasing c.

b

aa

b=1.11
a=1.27

θ c=0, T=0.050 π

FIG. 2. (Color online) Left: Domain pattern composed of three
martensitic variants for c = 0 at T = 0.05. Right: Elliptic particles
around a junction of four domains in the box region in the left. The
angles among the four lines are nearly equal to π/2 (for yellow
square), π/6, π/2, and 5π/6, being multiples of π/6. Each variant
is composed of isosceles triangles with long side length a = 1.27σ1

and short one b = 1.11σ1 (inset). Colors represent [θi]π according to
the color bar.

about 0.02, where the disordered and ordered phases coexist.
However, its T dependence becomes gradual for c > 0. The
CV exhibits a peak at the orientational transition, and its peak
height decreases with increasing c. This peak stems from the
enhanced orientation fluctuations near the transition.

In the same situation with the same N , we also performed
simulation in the NpT ensemble with an isotropic applied stress
in two dimensions (not shown in this paper), where we allowed
the cell to take a rectangular shape. There, the transition was
first-order with discontinuous changes in volume and entropy
[39] as in three-dimensional KCN [3,5,7,9,11]. We also found
a sharp peak in the isobaric specific heat Cp at the transition.
For c � 0.1, the impurities pin the domain growth and the
NVT and NpT simulations provide essentially the same low-T
behavior.

In previous experiments on (KCN)1−c(KBr)c, Cp exhibited
peaks as a function of T at structural phase transitions for small
c, but it varied continuously without peaks for large c [1,7].
In addition, the peak height for small c was of order 5kB per
molecule. These features are common to those of our specific
heat results.

B. Structural phase transition for c = 0 and fragmentation of
domains for c > 0

In the one-component case c = 0, the ellipses undergo
a first-order structural (martensitic) phase transition from a
hexagonal lattice to a deformed hexagonal lattice formed by
isosceles triangles. The transition temperature is about 0.18
under Eq. (3.1) as indicated by Fig. 1. In Fig. 2 we show
a typical orientational pattern of oriented domains for c = 0
below the transition at fixed V . Depicted are the angles,

[θi]π = θi − kπ, (3.2)

in the range [0,π ] with k being an integer, where θi and
θi ± π are not differentiated. There appear three kinds of
domains, which are called martensitic variants, with the same
volume fraction 1/3. Here ni are aligned along one of the
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θT=0.05

c=0.20

c=0.05 c=0.10

c=0.15

c=0.30 c=0.50

0 π

FIG. 3. (Color online) Frozen patterns of the angles θi of the el-
lipses at T = 0.05 for c = 0.05, 0.1, 0.15, 0.2, 0.3, and 0.5. Colors of
the ellipses represent [θi]π according to the color bar, and black points
(•) represent impurities. With increasing impurity concentration c, the
domains become smaller, resulting in orientational glass.

underlying crystal axes, so each variant is composed of
isosceles triangles elongated along its orientated direction. The
domains are separated by sharp interfaces, where the surface
tension is about 0.2ε/σ 2

1 . As a unique feature, the junctions,
at which domain boundaries intersect, have angles πn/6 (n =
1, 2, . . .) approximately. Similar unique domain patterns were
experimentally observed on hexagonal planes after structural
phase transitions [40]. They were also reproduced in 2D
phase-field simulations [26,41].

Next, we examine how the domain structure is influenced
by impurities. In Fig. 3 we present snapshots of [θi]π at T =
0.05 for c = 0.05, 0.1, 0.15, 0.2, 0.3, and 0.5. At this low
T , the thermal fluctuations are very small and the patterns of
[θi]π are nearly frozen in time even on a time scale of 105,
though flip rotations are still activated (see the bottom panels
of Fig. 5). We note that the distribution of [θi]π is peaked
at the three angles along the crystal directions (even for c =
0.5; see Fig. 15). Remarkably, the domains gradually become

c=0.2c=0.1

T= 0.05 θ
FIG. 4. (Color online) Top: Impurity distribution with significant

clustering for c = 0.1 (left) and 0.2 (right) at T = 0.05. The data of
these snapshots are common to those of c = 0.1 and 0.2 in Fig. 3.
Middle: Delaunay diagrams in the box regions in the top panels
(common to those in Fig. 3), mostly composed of isosceles triangles.
Impurities are also shown (•). Bottom: Expanded snapshots of ellipses
around impurities in the same regions, exhibiting planar anchoring
with [θi]π according to the color bar.

finely divided with increasing c. For c � 0.2, the orientational
disorder is much enhanced, resulting in orientational glass.

To estimate the the typical domain size, we calculated the
structure factor of cos(2θj ),

S2(q) = 1

N1

〈∣∣∣∣
∑
j∈1

cos(2θj ) exp[iq · rj ]

∣∣∣∣
2〉

. (3.3)

Here we may fit S2(q) to the Ornstein-Zernike form const(q2 +
κ2)−1 to obtain κ−1 = 5.2, 1.6, 0.9, 0.7, and 0.4 for c =
0.15, 0.2, 0.3, 0.4, and 0.5, respectively. The typical domain
size is given by 2π/κ . Though our cell length L is not very
large, the finite-size effect is negligible for not very small c. For
c = 0, the domain size becomes of order L at fixed V , and hys-
teresis behavior at the transition at fixed p [39] depends on L.
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FIG. 5. (Color online) Orientational relaxations for c = 0.2 at
various T . (a) G1(t) and (b) G2(t) at low T = 0.05, 0.08, 0.10, 0.12,
0.15, and 0.20. (c) G2(t) at relatively high T = 0.3, 0.4, 0.6, 0.8, 1.0,
and 1.1. (d) Relaxation times τ1 from G1(t) at low T in Eq. (4.3), τ2

from G2(t) at high T in Eq. (4.4), and the inverse rotational diffusion
constant D−1

R in Eq. (4.12).

C. Impurity clustering and planar anchoring

The top panels of Fig. 4 display the overall impurity
distributions for c = 0.1 and 0.2 at T = 0.05. We can see
significant impurity clustering, which took place mostly during
liquid states in the quenching process. In the present model,
association of the impurities lowers the total potential energy
by −0.4ε at T = 0.4 and −0.8ε at T = 0.05 per impurity [21].

In the middle plates of Fig. 4, the Delaunay triangulation
is given for the particle configurations in the box regions in
the upper panels, which are the dual graphs of the Voronoi
diagrams. They are mostly composed of isosceles triangles
in the inset of Fig. 2. With impurities of size ratio 1.2, the
hexagonal lattice is locally elongated, where the number of
triangles surrounding each particle (the coordination number)
k is mostly 6. However, in Figs. 3 and 4, particles appear with
k = 5 and some with k = 7. They are both two ellipses for
c = 0.1, while they are both seven (including two impurities
with k = 7) for c = 0.2. See Fig. 11(b) for such defects.

In the bottom panels of Fig. 4, we present expanded
snapshots of anisotropic particles around impurities. The
alignments are mostly perpendicular to the surface normals of
the impurities, analogously to the planar anchoring of liquid
crystal molecules near colloid surfaces [42]. We can also see
interfaces between different domains.

To examine the degree of clustering of the impurities, let
us group them into clusters. We assume that two impurities i

and j belong to the same cluster if their distance is shorter

FIG. 6. (Color online) Top: Time-dependent angle distribution
G(t,θ ) in Eq. (4.5) for c = 0.2 at t = 10, 103, and 105. Here T = 0.1
and τ1 = 220 (left), and T = 0.2 and τ1 = 220 (right). Bottom:
Parameters A, B, and w in the approximate expression (4.8) for
T = 0.1 and 0.2 as functions of t .

than 1.6. Then we calculate the numbers NI(�) of the �

clusters consisting of � impurities, where 
��1�NI(�) = N2.
The average cluster size is given by

�I =
∑

�

�2NI(�)/N2. (3.4)

In Fig. 3, we have �I = 1.37, 2.04, 3.02, 4.79, 10.7, and 984 for
c = 0.05, 0.1, 0.15, 0.2, 0.3, and 0.5, respectively. For c = 0.5,
a cluster of the system size ∼1400 appears.

IV. NVE SIMULATION OF ROTATIONAL DYNAMICS

In Figs. 5–11, we give simulation results in the NVE
ensemble, where the average translational and rotational
kinetic energies were kept at kBT and kBT /2, respectively,
per particle. Varying T , we examine the rotational dynamics
at c = 0.2. For 0.3 � T � 0.7, we realize the rotator phase,
where nonflip rotations (with angle changes not close to
±π ) are gradually arrested with lowering T . For T � 0.3,
quadrupolar glass is realized, where only flip rotations can be
activated heterogeneously.

A. Rotational time-correlation functions

The rotational dynamics has been extensively investigated
for anisotropic particles in glassy states [17–21]. We consider
the rotational time-correlation functions G1(t) and G2(t) for
the ellipses defined by

G�(t) = 1

N1

∑
j∈1

〈cos[��θj (t0,t0 + t)]〉, (4.1)
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where � = 1, 2. We write the angle change of ellipse i as

�θi(t0,t1) = θi(t1) − θi(t0). (4.2)

In Fig. 5 we show G1(t) and G2(t) for c = 0.2 at various
temperatures. For low T � 0.2, the relaxation of G1(t) is
slowed with lowering T in (a), while G2(t) tends to a plateau
f2(T ) for t � 102 after considerable initial relaxations in
(b). For higher T � 0.4, G2(t) decays at long times in (c).
Relaxation times vs 1/T are plotted in (d), where τ1 of G1(t)
is determined by

G1(τ1) = e−1. (4.3)

At long times, G2(t) relaxes only for T � 0.4, and its
relaxation time τ2 is determined by its fitting to the stretched
exponential form:

G2(t) ∼= f2 exp[−(t/τ2)β]. (4.4)

In our case, we find β ∼= 1. In the Arrhenius form, we obtain
ln(τ1) = 0.68/T − 1.2 for T � 0.2 and ln(τ2) = 4.2/T + 2.5
for T � 0.4. Note that these two temperature ranges are
separated.

The difference between G1(t) and G2(t) can be understood
if we consider the distribution of the angle changes,

G(t,θ ) = 1

N1

∑
i∈1

〈δ([�θi(t0,t + t0)]2π − θ )〉, (4.5)

where −π � θ < π . For any �θi , we set

[�θi]2π = �θi − 2kπ, (4.6)

in the range [−π,π ] with an integer k. This G(t,θ ) tends to
δ(θ ) as t → 0 and broadens gradually for t > 0. The G�(t) in
Eq. (4.1) can be written as

G�(t) =
∫ π

−π

dθG(t,θ ) cos(�θ ). (4.7)

In the top panels of Fig. 6, we plot time evolution of G(t,θ )
for c = 0.2 at T = 0.1 and 0.2. Salient features are as follows.
(1) The width of the peak at θ = 0, written as

√
w, soon tends

to be independent of t . For t � 1, w represents the vibrational
amplitude of the ellipses [see Eq. (4.10)]. We obtain w = 0.09,
0.17, and 0.22 at T = 0.1, 0.15, and 0.2, respectively. (2) For
t � τ1, G(t,θ ) exhibits secondary peaks at θ = ±π due to the
flip motions θi → θi ± π . Their peak widths are nearly equal
to that of the main peak at θ = 0. (3) The midpoint values
G(t, ± π/2) become appreciable at long times.

We may thus approximate G(t,θ ) as a superposition of a
constant and Gaussian functions as

G(t,θ ) ∼= B

2π
+ 1 − A − B√

2πw
e−θ2/2w

+ A√
2πw

[e−(θ−π)2/2w + e−(θ+π)2/2w], (4.8)

where A is the turnover probability of an ellipse and B/2π

is the homogeneous part. We fit the calculated G(t,θ ) to the
above form to obtain w(t), A(t), and B(t) vs t for T = 0.1 and
0.2 in the bottom panels of Fig. 6. Here w(t) and B(t) are nearly
constant for t � 1, while A(t) tends to saturate for t � 105 at
T = 0.1 and for t � 103 at T = 0.2. Also w remains so small
such that the Gaussian functions in Eq. (4.8) are negligible at

the midpoints θ = ±π/2 compared to B/2π . The plateau f2

of G2(t) in Fig. 5(b) is expressed as

f2
∼= (1 − B) exp(−2w). (4.9)

Substitution of the calculated values of B and w into the
above expression yields f2 = 0.54, 0.37, and 0.26 for T = 0.1,
0.15, and 0.2, respectively, in excellent agreement with f2 in
Fig. 5(b). On the other hand, at higher T � 0.4, the system is
in the plastic solid phase and G(t,θ ) tends to be homogeneous
(=1/2π ) very slowly for t � τ2, leading to the long-time
decay of G2(t) in Fig. 5(c).

We comment on the meaning of w in Eq. (4.8). Let θ̄i be
the time average of θi over many vibrations, where we neglect
flip rotations. Then we have �θi(t0,t1) = δθi(t1) − δθi(t0) in
Eq. (4.2), where δθi = θi − θ̄i is the deviation from the equilib-
rium angle θ̄i . With increasing t = t1 − t0, δθi(t1) and δθi(t0)
should become uncorrelated to give 
iδθi(t1)δθi(t0)/N1 = 0
so that

w = 2〈δθ2〉 = 2
∑
i∈1

|δθi |2/N1, (4.10)

where 〈δθ2〉 is the variance of δθi over all the ellipses.

B. Angular mean-square displacement

In the literature [17,18], the rotational diffusion has been
discussed in terms of the angular mean-square displacement.
In our case, it is defined for the ellipses as

Mθ (t) = 〈(�θ )2〉 = 1

N1

∑
i∈1

〈[�θi(t0,t0 + t)]2〉, (4.11)

which exhibits the ballistic behavior (∝t2) for t � 1 and the
diffusion behavior for t � 1 as

Mθ (t) ∼= 2DRt. (4.12)

See Fig. 5(d), where ln(D−1
R ) = 0.33/T − 0.68 in the Ar-

rhenius form. These behaviors are analogous to those of the

FIG. 7. (Color online) Mθ (t) in Eq. (4.11), M(t) in Eq. (4.13),
and Ms

θ (t) in Eq. (4.14) for c = 0.2 at T = 0.02 (left) and T =
0.05 (right). These are the averages of (�θi)2, |�r i |2, and sin2(�θi),
respectively. At these low T , M(t) and Ms

θ (t) tend to plateaus, but
Mθ (t) exhibits linear growth at long times due to flip rotations. Then
DR is 0.75 × 10−4 at T = 0.02 and 3.5 × 10−3 at T = 0.05. Transient
plateau behavior can also be seen in Mθ (t) at T = 0.02.
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positional mean-square displacement,

M(t) = 〈|�r|2〉 = 1

N1

∑
i∈1

〈|�r i(t0,t0 + t)|2〉, (4.13)

where �r i(t0,t0 + t) = r i(t0 + t) − r i(t0) is the displacement
vector of ellipse i in time interval [t0,t0 + t]. In Fig. 7 we plot
Mθ (t) and M(t) vs t at low T = 0.02 and 0.05 for c = 0.2. Here
M(t) saturates at a plateau, but Mθ (t) still exhibits the diffusion
behavior. As Fig. 6 suggests, this difference originates from
flip rotations without positional changes. To confirm this, we
also plot the mean-square displacement of sin(�θi) written as

Ms
θ (t) = 1

N1

∑
i∈1

| sin[�θi(t0,t0 + t)]|2/N1, (4.14)

which is insensitive to flip rotations. As ought to be the case,
Ms

θ (t) coincides with Mθ (t) at short times but tends to a plateau
at long times. We also notice that Mθ (t) exhibits a plateau in
the range 1 � t � 100 at T = 0.02.

C. Flip rotations in orientational glass

The rotational activity of the anisotropic particles sen-
sitively depends on the surrounding particle configurations.
In Fig. 8 we show typical time evolution of the angle
changes. Rotationally inactive ellipses are those anchored to
impurities and those within orientationally ordered domains,
while rotationally active ones are those in disordered regions

FIG. 8. (Color online) Time evolution of angle changes
�θi(t0,t0 + t) in Eq. (4.2) (left) for c = 0.2 and T = 0.1, where
τ1 = 220. Selected ellipses are numbered 1, . . . ,6 and impurities are
written as large circles (•) (right). (a) Rotationally active ellipses not
anchored by impurities. Ellipse 2 is active though it is rather close
to impurities. (c) Inactive ones in an orientationally ordered domain
(3–6) and relatively active ones in an interfacial region (1 and 2). On
the curve of ellipse 1, the flip times are marked (◦) (see Appendix B).

not anchored to impurities and those in interfacial regions
between different domains.

As will be shown in Appendix B, we may numerically
determine flip events. That is, within any time interval
[t0,t0 + tf ], each ellipse i flips at successive times t0 + ti1,t0 +
ti2, . . . ,t0 + tini

with ti1 > 0 and tini
< tf , where ni is the flip

number of ellipse i. The fraction of the ellipses with n flips is
expressed as

φf
n =

〈∑
i∈1

δnni

〉/
N1, (4.15)

where 
nφ
f
n = 1. We do not write the tf dependence of ni

and φ
f
n explicitly. We divide the ellipses into groups F0, F1,

. . . ,Fnmax , where those inFn have undergone n flips in the time
interval [t0,t0 + tf ]. We introduce the maximum flip number
nmax among all the ellipses. For large n and tf , we should have
the scaling relation,

φf
n = �f (n/tf )/tf , (4.16)

where �f (x) is a scaling function. In particular, nmax is
proportional to tf as

nmax = Amaxtf . (4.17)

The coefficient Amax is about 0.11 at T = 0.1 and 0.022 at
T = 0.05.

We then introduce the angular mean-square displacement
within the group Fn as

〈�θ2〉n(t) = 1

N1φ
f
n

〈∑
i∈Fn

[�θi(t0,t0 + t)]2

〉
, (4.18)

which is a function of t for each given tf . The total angular
mean-square displacement is expressed as

Mθ (t) =
∑

1�n�nmax

φf
n 〈|�θ |2〉n(t). (4.19)

For sufficiently large t and n, the ellipses in the group Fn

should have undergone nt/tf flips on the average. Then, in the
diffusion regime, we should have

〈�θ2〉n ∼= π2nt/tf . (4.20)

Here the angle changes �θi(t0,t0 + t) at jumps are π or −π ,
and their distribution should be nearly Gaussian.

In Fig. 9 we show numerical results which are the averages
over six runs. We plot tf φ

f
n = �f (x) in (a) and nφ

f
n = x�f (x)

in (b) as functions of x = n/tf (n � 1) for c = 0.2 and
T = 0.1 by setting tf /τ1 = 1,5,10, and 20 (where τ1 = 220).
These curves are nearly independent of tf , which confirms
the scaling form (4.16). However, the ellipses without flips
still remain, whose fraction is φ

f

0 = 0.17 even for tf = 20τ1.
From Fig. 9(b), for large n, φ

f
n may be fitted to

φf
n

∼= Af

(
1

n
− 1

nmax

)
, (4.21)

where Af
∼= 0.20 and nmax

∼= 500 at T = 0.1. The Af is
independent of tf . In panel (c) we also confirm Eq. (4.20).
From Eqs. (4.12), (4.17), and (4.19)–(4.21), we obtain

DR
∼= 1

4π2Af Amax, (4.22)
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FIG. 9. (Color online) (a) tf φf
n and (b) nφf

n vs n/tf for tf /τ1 =
1,5,10, and 20 with τ1 = 220. (c) 〈�θ2〉n(t)/π 2 vs n at t/τ1 = 1,5,10,
and 20. Here c = 0.2 and T = 0.1. See Eqs. (4.15) and (4.18) for φf

n

and 〈�θ2〉n(t). (d) G1(t) in Eq. (4.1), Gn
1(t) (n = 0,1) with tf = τ1

in Eq. (4.23), and φ0(t) in Eq. (4.24).

which yields DR ∼ 0.056 ∼ 13/τ1 at T = 0.1 in good agree-
ment with the result from the slope of Mθ (t). At T = 0.05,
we again find Eq. (4.21) with Af

∼= 0.048, nmax
∼= 2800,

and φ
f

0
∼= 0.58 for tf = 105. From Eq. (4.22) these lead to

DR = 0.0033 ∼ 1500/τ1, while the right panel of Fig. 7 yields
DR = 0.0035. The rotational diffusion constant DR is thus
determined by the rotationally active ellipses with ni ∼ nmax.

In contrast, the main contribution to G1(t) in Eq. (4.1) is
from the ellipses which have undergone no flip in time interval
[t0,t0 + t]. This is the reason why τ1 behaves very differently
from D−1

R in Fig. 5(d). To show this, we set tf = τ1. We then
consider the following partial sums,

Gn
1(t) = 1

N1

〈 ∑
i∈1,ni=n

cos[�θi(t0,t0 + t)]

〉
. (4.23)

In Fig. 9(d) we compare G0
1(t) (no-flip contribution) and G1

1(t)
(single-flip contribution) with G1(t). Here G0

1(τ1) = 0.41 =
1.11/e and G1

1(τ1) = −0.05, so G1(τ1) = 1/e mostly consists
of the no-flip contribution. We also display the fraction of the
ellipses with no flip in time interval [t0,t0 + t], denoted by
φ0(t). Treating φ

f

0 in Eq. (4.15) as a function of tf , we have

φ0(t) = [
φ

f

0

]
tf =t

. (4.24)

In Fig. 9(d) we find φ0(τ1) = 0.60. If φ0(t) is shifted by 0.1
downward, it nearly coincides with G1(t).

c=0.2, T=0.1, tf=4400

n<5 0 5 n>50 50 100

c=0.2, T=0.05, tf=105

n<5 0 5 n>50 50 100

(a)

(d)(c)

(b)

FIG. 10. (Color online) Top: Snapshots of ellipses at T = 0.1
with ni � 5 (a) and ni � 50 (b). Bottom: Snapshots of ellipses at
T = 0.05 with ni � 5 (c) and with ni � 50 (d). Depicted ellipse
fractions are (a) 0.36, (b) 0.27, (c) 0.72, and (d) 0.15. These
rotationally inactive and active ellipses exhibit heterogeneities closely
correlated with the impurity clustering (see the top right panel in
Fig. 4).

In Fig. 10 we show snapshots of the ellipses with n � 5
(left) and n � 50 (right) for T = 0.1 and tf = 4400 (top)
and for 0.05 and tf = 105 (bottom). The distributions of
these rotationally inactive and active ellipses are highly
heterogeneous. This marked feature is due to the significant
impurity clustering in the top right panel in Fig. 4. With
lowering T , the flip rotations become increasingly infrequent.
In fact, the fraction of the ellipses with n � 50 are 0.36, 0.15,
and 0.005 for (T ,tf ) = (0.1,4400), (0.05,105), and (0.02,105),
respectively.

D. Nonflip rotations in plastic solids at relatively high
temperature

So far we have studied the rotational dynamics in orienta-
tional glass. We should also examine the crossover from plastic
solid to orientational glass at higher T . In this high T regime,
the long-time decay of G2(t) first saturates at the plateau in
Eq. (4.9) and slowly decays to zero on the time scale of τ2 as
in Fig. 5(c). Some ellipses are attached to impurities on very
long time scales, and the homogenization of G(t,θ ) takes a
very long time.

In Fig. 11 we hence display large nonflip rotations and long-
distance displacements between two times t0 and t0 + t with
t = 105 for c = 0.2 and T = 0.4. Here the particle positions
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FIG. 11. (Color online) Nonflip rotations and displacements be-
tween two times t0 and t0 + t with t = 105 for c = 0.2 and T =
0.4, where orientational glass is approached from plastic solid.
(a) Particles with c2i = cos[2�θi] < 0.2 forming clusters and (b)
those with large displacements �ri > 0.4 caused by defect motions.
Depicted particle numbers are 0.50N1 (a) and 0.35N (b). Colors
represent c2i and �ri according to the color bars. Expanded snapshot
of defects is also given (inset). (c) Expanded snapshot of the ellipses in
the box region in (a), where each ellipse i is written as a circular sector
with two arcs parallel to ni(t0) and ni(t0 + t). They are shown in blue
for clockwise rotation (�θi < 0) and in red for counterclockwise
rotation (�θi > 0). Impurities are also depicted (•). (d) Expanded
snapshot of the particles with large displacements in the box region
in (b), where red (green) arrows represent displacements by two (one)
lattice constants.

depicted are those r i(t0) at the initial time t0. The flip numbers
of the ellipses in this time interval are huge, ranging from 103

to 104. In panel (a) we pick up the ellipses with c2i(t) < 0.2,
where we define

c2i(t) = cos[2�θi(t0,t0 + t)]. (4.25)

Because c2i is invariant with respect to turnovers θi → θi ± π ,
it deviates from unity significantly due to nonflip rotations. The
condition c2i(t) < 0.2 means 0.22π < [�θi(t0,t0 + t)]π <

0.78π in terms of [�θi]π in Eq. (3.2). In panel (b), we
mark the particles with �ri(t) = |r i(t0 + t) − r i(t0)| > 0.4.
These displacements are induced by intermittent motions of a
few pointlike defects. As in the inset of Fig. 11(b), they are
composed of two particles with their coordination numbers
equal to five and seven (see the explanation of the middle
panels in Fig. 4 also). These defects have been observed in
a number of simulations and experiments in two dimensions
[43]. The lengths of the large displacements are then mostly a

or 2a with a being the lattice constant, so they do not affect the
hexagonal crystal structure. In panel (c), an expanded snapshot
of the box region in panel (a) is presented, where each ellipse
i is written as an circular sector with two arcs parallel to ni(t0)
and ni(t0 + t). In panel (d), an expanded snapshot of the box
region in panel (b) is presented with displacement vectors in
arrows.

In Fig. 11(a) we can see marked clustering of many ellipses
with significant nonflip rotations, which is strongly correlated
with the heterogeneous impurity distribution. In Fig. 11(c), we
further notice the presence of considerable thermal motions
superimposed. Also in regions without defects [in the upper
middle part from Fig. 11(b)], we may also write expanded
figures, but they are similar to Fig. 11(c). Let Ncl(�) be the
numbers of the � clusters consisting of � ellipses with c2i <

0.2, where two ellipses i and j belong to the same cluster
for rij < 1.6. As in Eq. (3.4), the average cluster size may be
defined as

�cl =
∑

�

�2Nim(�)/N1. (4.26)

Then we find �cl = 48 for the snapshot in Fig. 11(a).

V. RHEOLOGY IN ORIENTATIONAL GLASS

In Figs. 12–15, we imposed a Parrinello-Rahman barostat
[37] together with a Nosé-Hoover thermostat [36] under the
periodic boundary condition. In our system, small crystalline
domains are elongated along the orientations of the ellipses
and their orientation changes can induce a macroscopic strain.
We predict a shape memory effect and a superelasticity effect
in orientational glass, where soft elasticity appears without
dislocations.

A. Shape memory effect

We stretched the system along the y axis keeping the cell
shape rectangular under the isothermal condition at T = 0.05.
We mention similar simulations of stretching in Refs. [30,44].
In the following figures, the x and y axes are in the horizontal
and vertical directions, respectively. One crystal axis of the
crystal was made parallel to the x axis. Then one variant is
elongated along the y axis, and the other two are elongated in
the directions making an angle of 2π/3 with respect to the y

axis.
We controlled the space average of the yy component of

the stress. Its value is written as

σ = 〈σyy〉s, (5.1)

where 〈· · ·〉s denotes the space average. The system was
assumed to be stress-free along the x axis. Thus,

〈σxx〉s = 0, (5.2)

which is possible owing to the attractive part of the potential
[44]. From the symmetry of the geometry, we also have
〈σxy〉s = 0. In our simulation, we started with a stress-free
state with σ = 0 in a square cell with length L0. With applied
stress, the cell lengths along the x and y axes were changed to
Lx and Ly . The average strain along the y axis is given by

ε = Ly/L0 − 1. (5.3)
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FIG. 12. (Color online) Shape memory effect for c = 0.2 and
T = 0.05. (a) Strain ε vs applied stress σ . Between points A
(σ = 0.092) and B (σ = 0.10), the domains elongated along the y

axis increase yielding soft elasticity. The favored domains remain
dominant on the return path. After this cycle, the residual strain
vanishes upon heating to T = 0.1. (b) Fractions of the three kinds of
domains (variants) during the cycle, which are elongated along the
three crystal axes. (c) and (d) [θi]π are written at points A and B in
(a). (e) and (f) Delaunay diagrams of the box regions in (c) and (d)
are given.

The effective Young modulus is defined by

Ee = (dε/dσ )−1
T . (5.4)

Here Ee nonlinearly depends on σ , but we may define the
effective shear modulus μe using the linear elasticity relation
Ee = 4Kμe/(K + μe), where K is the bulk modulus related to
the volume V = LxLy by 2σ/K = V/L2

0 − 1. In our system,
K � Ee/4 holds so that

μe = Ee/(4 − Ee/K) ∼= Ee/4. (5.5)

Hereafter we measure σ and Ee in units of ε/σ 2
1 .

In Fig. 12(a) we increased σ slowly as dσ/dt = 4 × 10−6

from 0 up to 0.2 and then decreased σ back to 0 as dσ/dt =
−4 × 10−6. The stretching pass is divided into four parts:

(1) 0 < σ < 0.04, (2) 0,04 < σ < 0.09, (3) 0.09 < σ < 0.12,
and (4) 0.12 < σ < 0.20, while the return path is divided into
two parts: (5) 0.20 > σ > 0.05 and (6) 0.05 > σ > 0. The
effective Young modulus Ee is very small in the range (3). In
fact, we have Ee

∼= 0.25 between two points A (σ = 0.092)
and B (σ = 0.10) in Fig. 12(a), while Ee

∼= 4 in the range (1)
and Ee

∼= 8 in the ranges (4) and (5). In addition, there appears
a remnant strain (∼0.03) at the final point σ = 0. Furthermore,
if T was raised above 0.1 in this final state, an orientationally
disordered state was realized and a square shape of the cell
was restored. In this sense, we realize a shape-memory effect
in our system.

In Fig. 12(b) we show the volume fractions of the three
kinds of domains (variants). See the discussion below Eq. (5.9)
as to how they can be determined. We can see that the favored
domains elongated along the y axis increase and the disfavored
ones decrease upon stretching. However, the favored domains
do not much decrease in the return path, giving rise to the
remnant strain. We also show the snapshot of the orientations
at point A in (c) and that at point B in (d), between which the
fractions of the favored variant are considerably different. In
this stress cycle, a history-dependent loop is realized, where
the impurities pin the orientation domains in quasistationary
states under very slow variations of σ . In (e) and (f), we give
Delaunay diagrams of the box regions in (c) and (d), where
local strain variations can be seen without defects.

In Fig. 13 we show the orientational and positional changes
between two points A and B in Fig. 12, which exhibit
conspicuous large-scale heterogeneities. Displayed are (a)
ellipses with large nonflip rotations with

c2i(A,B) = cos[2θi(A) − 2θi(B)] < 0.2 (5.6)

and (b) particles with large nonaffine displacement

|�̃r i(A,B)| > 0.4. (5.7)

Here we write the angles and positions at A as θi(A) and
r i(A) = (xi(A),yi(A)) and those at B as θi(B) and r i(B) =
(xi(B),yi(B)). The x and y components of �̃r i(A,B) in
Eq. (5.7) are defined by

�̃xi(A,B) = xi(B) − xi(A)Lx(B)/Lx(A),
(5.8)

�̃yi(A,B) = yi(B) − yi(A)Ly(B)/Ly(A),

where Lμ(A) and Lμ(B) are the cell lengths at A and B (μ =
x,y). For affine deformations, �̃r i(A,B) vanishes.

As in Fig. 11(c), Fig. 13(c) displays the ellipses in the box
region in panel (a) written as circular sectors, whose arcs are
parallel to ni(A) and ni(B) [in blue for θi(A) < θi(B) and
in red for θi(A) > θi(B)]. The rotations are more collective
with weaker thermal fluctuations than in Fig. 11(c). In panel
(d), the particles with large nonaffine displacement (5.8) are
written as arrows, which also indicates collective motions
upon stretching. In both panels (c) and (d), the heterogeneities
are strongly correlated with the inhomogeneous impurity
distribution. The simulation time between A and B is 2000, so
the flip numbers ni(A,B) between A and B are small. In fact,
the ellipse number without flips ni(A,B) = 0 is 0.75N1, while
that with ni(A,B) � 5 is 0.04N1 with nmax(A,B) = 10.

022308-10



ORIENTATIONAL GLASS IN MIXTURES OF ELLIPTIC . . . PHYSICAL REVIEW E 89, 022308 (2014)

FIG. 13. (Color online) (a) Ellipses with large nonflip rotation
c2i < 0.2 and (b) particles with large nonaffine displacement |�̃r i | >

0.4 between two points A and B in Fig. 12, where soft elasticity is
realized. Colors are given according to the color bars. (c) Expanded
snapshot of the ellipses in the box region in (a), where each ellipse
i is written as an circular sector with two arcs parallel to ni(t0)
and ni(t0 + t) written in blue for clockwise rotation and in red for
counterclockwise rotation. (d) Expanded snapshot of the particles
with large nonaffine displacement in the box region in (b).

B. Superelasticity and angle distribution

We also find that the shape memory effect becomes weaker
with increasing c, where the domain size is decreased. In
Fig. 14 the hysteresis loop diminishes for c = 0.3 and vanishes

ε

T=0.05

σ
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.1  0.2
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.1  0.2  0.3

c = 0.3 c = 0.5

σ

ε

FIG. 14. (Color online) Stress-strain curve for c = 0.3 (left) and
0.5 (right). For c = 0.3 the loop is closed at positive σ and there
remains no remnant strain (superelasticity). For c = 0.5 there is no
hysteresis, and the curve is linear in the range 0 � σ � 0.3.

FIG. 15. (Color online) Orientational distribution Pori(θ ) in
Eq. (5.9) for c = 0.2 (left) and 0.5 (right) for the initial point σ = 0
and the point with maximum σ (0.2 or 0.3) in the stress cycle. It has
three peaks with equal heights for σ = 0 and the peak at θ ∼= π/2 is
increased at the maximum σ .

for c = 0.5. We recognize that mesoscopic orientational order
is responsible for the singular mechanical response. However,
a unique feature arises for c = 0.3, though the loop is smaller;
that is, the loop is closed at σ ∼ 0.03 on the return path and the
initial and final points coincide, resulting in no remnant strain
at σ = 0. It is worth noting that this stress-strain behavior,
called superelasticity, has been observed in metallic alloys as
a stress-induced martensitic phase transition [27–29]. In TiNi,
this superelasticity effect appears at higher temperatures than
the shape memory effect. For a model alloy system, Ding et al.
[30] numerically studied the superelasticity effect.

Furthermore, in Fig. 15 we plot the angle distribution,

Pori(θ ) =
∑
i∈1

δ([θi]π − θ )/N1, (5.9)

at T = 0.05. Each curve was the results of a single run. This
distribution has three peaks for both c = 0.2 and 0.5 in the
directions of the three crystal axes and the peak at θ ∼= π/2
increases after stretching. This behavior is consistent with
Fig. 12(b). Here we divide the ellipses into the three groups
with n/3 � [θi]π/π < (n + 1)/3 (n = 0,1,2) and calculate
their volume fractions during stretching.

C. Orientational strain

On the stress-strain curve, we consider two points between
which the curve is nearly linear. From Eq. (5.4) the stress
change �σ and the strain change �ε are related in terms of
the effective Young modulus Ee by

�ε = E−1
e �σ. (5.10)

Generally, in the presence of a (proper) coupling between strain
and orientation, �ε consists of three parts as

�ε = �εel + �εpl + �εori. (5.11)

First, the elastic part �εel is approximately related to �σ by
the linear elasticity relation,

�εel = E−1
0 �σ. (5.12)

where E0 is the (bare) Young modulus in a single variant state
being of order 20 in our case. Second, the plastic part �εpl
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TABLE I. Stress change �σ , strain change �ε, Young modulus
Ee, change of fraction of the favored variant �φva, fraction of
orientational strain change γori, and ratio Ee/γel for c = 0.2 and T =
0.05, which are calculated between two points on the stress-strain
curves. The last quantity should be equal to E0 from Eq. (5.12).

c σ �σ �ε Ee �φva γori Ee/γel

0.2 0 → 0.04 0.04 0.010 4 0.05 0.75 16
0.2 0.092 → 0.1 0.008 0.032 0.25 0.21 0.98 15
0.2 0.12 → 0.2 0.08 0.011 8 0.04 0.55 18
0.3 0 → 0.1 0.1 0.014 7 0.06 0.64 18
0.3 0.11 → 0.12 0.11 0.010 1 0.06 0.94 18
0.3 0.12 → 0.2 0.08 0.018 4 0.09 0.72 16
0.5 0 → 0.15 0.15 0.014 11 0.04 0.43 19
0.5 0.15 → 0.3 0.15 0.018 8 0.07 0.56 18

is due to plastic deformations. In the present example, there
is no defect generation up to a large applied stress σy, where
σy ∼ 0.5 for c = 0.2. Thus,

�εpl = 0 (5.13)

in the absence of positional defects. Third, the orientational
part �εori is related to the change of the volume fraction of the
favored variant �φva as

�εori = A0�φva, (5.14)

where we may calculate �φva from the angle distribution
Pori(θ ) in Eq. (5.9). We may also determine the coefficient
A0 if we apply the relation (5.14) between the initial point
(σ,ε) = (0,0) and the final point (σ,ε) = (0,0.03) on the
stress-strain loop in Fig. 12(a); that is, using �φva = 0.2
between these two points, we find A0 = 0.15 for c = 0.2.

It is convenient to define the ratios,

γel = �εel/�ε, γori = �εori/�ε. (5.15)

In this paper we have γel + γori = 1 from �εpl = 0. From
Eq. (5.10) we obtain

Ee = E0(1 − γori) = E0γel. (5.16)

In Table I we give examples of the quantities, �σ , �ε, Ee,
�φva, γori, and Ee/γel for c = 0.2, 0.3, and 0.5 at T = 0.05.
We set A0 = 0.15 for these three concentrations, though it has
been obtained for c = 0.2. From Eq. (5.14) the last quantity
Ee/γel should be equal to E0 and is indeed calculated to be
around 18.

VI. SUMMARY AND REMARKS

We have presented an angle-dependent Lennard-Jones
potential for binary mixtures and performed MD simulation
in two dimensions varying the concentration c and the
temperature T . The aspect ratio is 1.23, and the size ratio is 1.2.
Then, the crystal order is realized in all the examples treated.
We have visualized heterogeneous and collective rotational
dynamics and have predicted nonlinear strain effects. Our main
results are as follows.

(1) In Sec. III, we have presented results of NVT simulation.
First, the orientation amplitude 〈S〉 and the constant-volume
specific heat CV have been presented as functions of T

around the orientational transition in Fig. 1. Second, frozen
orientational configurations at T = 0.05 have been displayed
for c = 0 in Fig. 2 and for six concentrations in Fig. 3, where
the domains are fragmented with increasing c. In our system,
the circular impurities exhibit significant clustering and disturb
the the orientations of the ellipses, as in Fig. 4.

(2) In Sec. IV, the rotational dynamics has been found to
be very complex. In Fig. 5 G1(t) decays due to the thermally
activated flip rotations even at low T , while G2(t) tends to a
plateau at low T and decays to zero only in plastic solids due
to the nonflip ones. At low T , the distribution of angle changes
G(t,θ ) evolves as in Fig. 6 and may be approximated as a sum
of a constant and Gaussian functions.

(3) The distribution of the flip numbers ni in appropriate
time intervals has been found to be extremely broad as in Fig. 9.
The rotational diffusion constant DR from the angular mean-
square displacement is determined by rapidly flipping ellipses,
while G1(t) is determined by those without flips as in Fig. 9(d),
leading to DRτ1 � 1. The flip activity is closely correlated
with the impurity distribution and is very heterogeneous as in
Fig. 10.

(4) In Sec. V we have examined rheology of orientational
glass at T = 0.05. For c = 0.2, we have found a shape memory
effect due to the orientation-strain coupling in Fig. 12, where
the stress-strain loop ends at zero stress with a remnant
strain. When soft elasticity appears, the angle changes and
the nonaffine displacements are highly heterogeneous and
collective as in Fig. 13. For c = 0.3, we have found a
superelasticity effect in Fig. 14, where the loop is closed at
a nonvanishing stress. The angle distribution Pori(θ ) has three
peaks and is changed by applied stress as in Fig. 15, from which
we may calculate the orientational strain from Eq. (5.14).

We further make critical remarks, as follows.
(1) In this paper, the aspect ratio is rather close to unity.

We should examine the glass transitions for various aspect
ratios and molecular shapes. For large anisotropy, liquid crystal
phases should appear [38], where the impurity effect has
not yet been well understood. Mixtures of two species of
anisotropic particles should also be studied.

(2) In analyzing the rheology, we have varied the applied
stress at a fixed temperature. On the other hand, a nonlinear
shear effect was observed in experiments of zero-field cooling
and field cooling at static strain in (KBr)47(KCN)53 [45] and
in Ti48.5Ni51.5 [46]. We will soon report on this thermal effect
using our model.

(3) The impurity clustering leads to the broad flip-number
distribution φ

f
n ∝ n−1 − n−1

max in Fig. 9. This suggests that it
strongly influences the underlying phase transition dynamics
in various glassy systems. In particular, it has been neglected
in spin glass theories [2,3]. It should also be relevant in the
formation of nanopolar domains in ferroelectric glass [47].

(4) In real systems, the quadrupolar behavior can be
expected only when the constituent molecules carry small
dipole moments and exhibit no head-to-tail order at low T [1].
Experimentally, the dipolar freezing in mixtures of KCN-KBr
(slowing of reorientational motions of CN−) was found to
occur at low T in a quadrupolar glass state [48]. On the other
hand, for molecules with large dipole moments, an applied
electric field can be important [49] and a ferroelectric transition
can even occur.
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(5) As mentioned in Sec. I, one-component systems
of globular molecules become orientational glass [14–16].
However, to understand this phenomenon, we cannot use the
physical picture for mixtures in this paper.

(6) In our recent paper [24], we have examined the effect
of small impurities, to which host anisotropic particles are
homeotropically anchored [42]. We stress that there can be a
variety of angle-dependent molecular interactions, giving rise
to a wide range of rotational and translational glass transitions.
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APPENDIX A: ORIENTATIONAL ORDER PARAMETER

Here we introduce an orientation tensor
↔
Qi = {Qiμν}

(μ,ν = x,y) for each anisotropic particle i ∈ 1 by

↔
Qi=

1

1 + ni
b

(
nini +

∑
j∈bonded

nj nj

)
− 1

2

↔
I , (A1)

where
↔
I = {δμν} is the unit tensor. In the summation over j ,

we pick up the ellipses in the region |r ij | < 1.6 (i,j ∈ 1). The
ni

b is the number of these bonded ellipses. Thus, this tensor
is a coarse-grained orientational order parameter as in liquid
crystal systems. If a hexagonal lattice is formed, the nearest
neighbor particles are included in this definition, so ni

b ∼ 6.
This 2 × 2 tensor is traceless and symmetric, so it may be
expressed as

Qiμν =
√

Si(diμdiν − δμν/2) (A2)

in terms of an amplitude Si and a unit vector (director) di =
(dix,diy). For each i, Si may be expressed as

Si = 2
∑
μ,ν

Q2
iμν, (A3)

which increases up to unity in ordered regions at low T and is
about 0.1 in disordered crystals due to the thermal fluctuations.
The degree of overall orientational order is represented by the
average,

〈S〉 = 1

N1

∑
i∈1

Si = 2

N1

∑
i∈1

∑
μ,ν

Q2
iμν. (A4)

See Fig. 1 for a plot of 〈S〉 vs T .

APPENDIX B: FLIP TIMES AND NUMBERS

Here we determine a series of flip times, t0 + ti1 < t0 +
ti2 < t0 + ti3 < · · · , for each ellipse i in time interval [t0,t0 +
tf ]. (1) The first flip time t0 + ti1 is determined in terms of
�θi(t) = �θi(t0,t + t0) by

|�θi(ti1)| = 2π/3. (B1)

For t > ti1 we introduce a shifted angle change,

�θi1(t) = �θi(t) ± π, (B2)

where +π or −π is chosen such that |�θi1(ti1 + 0)| < π/2.
(2) The second flip time t0 + ti2 is determined by

|�θi1(ti2)| = 2π/3. (B3)

For t > ti2, we again shift the angle change as

�θi2(t) = �θi1(t) ± π, (B4)

where |�θi2(ti2 + 0)| < π/2. (3) Repeating these procedures
yields the successive flip times; see Fig. 8 . Within any time
interval [t0,t0 + tf ], each ellipse flips at times t0 + ti1,t0 +
ti2, . . . ,t0 + tini

(ti1 > 0 and tini
< tf ), with ni being the flip

number of ellipse i.
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[36] S. Nosé, Mol. Phys. 52, 255 (1984).
[37] M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
[38] D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985);

P. Bolhuis and D. Frenkel, J. Chem. Phys. 106, 666 (1997);
C. Vega and P. A. Monson, ibid. 107, 2696 (1997); C. De
Michele, R. Schilling, and F. Sciortino, Phys. Rev. Lett. 98,
265702 (2007); M. Radu, P. Pfleiderer, and T. Schilling, J. Chem.
Phys. 131, 164513 (2009); M. Murat and Y. Kantor, Phys. Rev.
E 74, 031124 (2006).

[39] In NpT simulation, we took data for c = 0 at T = Tt + 10−3n

(n = 0, ± 1, . . . ) around the transition temperature Tt waiting
for a time interval of 105 at each T . We found a unique
discontinuous change without appreciable hysteresis, where the
entropy change was about kBN . Hysteresis appeared for shorter
waiting times.

[40] R. Sinclair and J. Dutkiewicz, Acta Metell. 25, 235 (1977);
C. Manolikas and S. Amelinckx, Phys. Stat. Sol. (a) 60, 607
(1980); ,61, 179 (1980); Y. Kitano, K. Kifune, and Y. Komura,
J. Phys. (Paris) 49, C5-201 (1988); K. Muraleedharan,
D. Banerjee, S. Banerjee, and S. Lele, Phil. Mag. A 71, 1011
(1995).

[41] Y. H. Wen, Y. Wang, and L. Q. Chen, Phil. Mag. A. 80, 1967
(2000); Y. H. Wen, Y. Wang, L. A. Bendersky, and L. Q. Chen,
Acta Mater. 48, 4125 (2000).

[42] H. Stark, Phys. Rep. 351, 387 (2001).
[43] A. H. Marcus and S. A. Rice, Phys. Rev. E 55, 637 (1997);

D. A. Vega, C. K. Harrison, D. E. Angelescu, M. L. Trawick,
D. A. Huse, P. M. Chaikin, and R. A. Register, ibid. 71, 061803
(2005); B.-J. Lin and L.-J. Chen, J. Chem. Phys. 126, 034706
(2007); Y. Han, N. Y. Ha, and A. M. Alsayed, and A. G. Yodh,
Phys. Rev. E 77, 041406 (2008). In these papers, the defect
density was found to be very small in the solid phase but increase
in the hexatic and liquid phases at higher T .

[44] N. P. Bailey, J. Schiøtz, and K. W. Jacobsen, Phys. Rev. B 73,
064108 (2006); Y. Shi and M. L. Falk, ibid. 73, 214201 (2006).

[45] J. Hessinger and K. Knorr, Phys. Rev. Lett. 65, 2674 (1990).
[46] Y. Wang, X. Ren, K. Otsuka, and A. Saxena, Phys. Rev. B 76,

132201 (2007).
[47] B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. 62, 993

(1990).
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