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Shaking-induced crystallization of dense sphere packings
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We use a hybrid Monte Carlo algorithm to simulate the shaking of spheres at different vibrational amplitudes and
find that spontaneous crystallization occurs in specific dynamical regimes. Several crystallizing transitions are typ-
ically observed, leading to end states which can be fully or partially ordered, depending on the shaking amplitude,
which we investigate using metrics of global and local order. At the lowest amplitudes, crystallization is incom-
plete, at least for our times of observation. For amplitude ranges where crystallization is complete, there is typically
a competition between hcp and fcc ordering. It is seen that fcc ordering typically predominates; in fact for an
optimal range of amplitudes, spontaneous crystallization into a pure fcc state is observed. An interesting feature is
the breakdown of global order when there is juxtaposition of fully developed hcp and fcc order locally: we suggest
that this is due to the interfaces between the different domains of order, which play the same role as dislocations.
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I. INTRODUCTION

Hard sphere models are widely used in understanding
the dynamics of thermal systems such as liquid-solid phase
transitions [1], nucleation and growth in colloids [2–4], and
glasses [5]. The study of sphere packings in athermal systems
received a boost when these became the center point of models
of dry granular media [6]. While it is well known that hard
spheres can sustain different degrees of packing, there has
been little characterization of either the associated structure
or, indeed, the dynamical processes necessary to attain them.
In this paper, we attempt to address some of these questions by
examining the onset of spontaneous crystallization in shaken
granular assemblies.

The lowest volume fraction at which an assembly of spheres
is stable is known as the random loose packing limit φrlp,
corresponding to a value of 0.55 [7], while the highest value
at which spheres can be packed in a fully disordered way is
known as the random close packing limit φrcp, corresponding
to a value of 0.64 [8,9]. These numerical values have been
the subject of experimental [10–12] and computational [13,14]
investigation but are still widely regarded [15] as approximate.

At the other end of the spectrum, there is a conjecture by
Kepler that that the maximum density of sphere packings is
that of fcc structures, corresponding to a value of 0.74 [16].
What will concern us here are the spontaneous transitions from
disorder to crystalline order that can occur in sphere packings;
first observed in [17], these also have an analog in the packings
of ellipsoids [18]. Since their theoretical prediction, such
spontaneous transitions to crystallinity have been observed
experimentally for sphere packings submitted to shear [19,20]
or horizontal vibration [21]. The observed crystallinity can
occur via fcc or hcp order or, indeed, a mixture of the two. It has
been suggested in the context of sheared colloidal suspensions
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[2,4,22,23] that the fcc state is more stable than the hcp state
[24]; there is a similar observation also in the context of sheared
granular spheres [20]. One of the aims of this paper is to see
whether this dominance of fcc ordering persists in the case
of spontaneous crystallization of vertically vibrated granular
packings or if, instead, there is a coexistence of hcp and fcc in
the asymptotic limit [25].

Another important question concerns the dynamical route to
ordering, where it is well known that mechanical perturbations
such as shear and vibration can have distinct outcomes on
granular configurations [26]. Accordingly, we investigate the
kinds of ordering obtained as a function of the driving force,
exploring both local and global features at different stages of
cluster development in the packings generated by our computer
simulations.

II. METHODS

We use a three-dimensional Monte Carlo simulation algo-
rithm [27,28] to simulate the shaking of N spheres. We briefly
review the algorithm here before turning to its specific use in
our current investigations. Our simulations use monodisperse,
hard spheres of unit diameter. The simulation cell is an
open-topped box of size 10 × 10 × 10 and contains N = 1273
spheres in all, with periodic boundary conditions applied in
the lateral directions. A unidirectional gravitational field acts
downwards, i.e., along the negative z direction. Initially, the
spheres are placed in the cell using a sequential random close
packing procedure [6]. The packing is then subject to a series
of nonsequential, N -particle reorganizations. Each reorgani-
zation is performed in three distinct parts: first, a vertical
expansion or dilation, second, a Monte Carlo consolidation,
and, finally, a nonsequential close packing procedure. We call
each full reorganization a shake cycle or, simply, a shake. The
duration of our model shaking processes and the lengths of
other time intervals are conveniently measured in units of the
shake cycle.

The first part of the shake cycle is a uniform vertical
expansion of the sphere packing, accompanied by random,
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horizontal shifts of the sphere positions. Spheres are raised
to new heights, and for each sphere, new lateral coordinates
are assigned randomly, providing they do not lead to an
overlapping sphere configuration. The (virtual) expansion
introduces a free volume A between the spheres and facilitates
their cooperative rearrangement during phases 2 and 3 of
the shake cycle; A is thus a measure of the amplitude of
vibration. In the second phase of the cycle the whole system is
compressed by a series of displacements of individual spheres.
Spheres are chosen at random and displaced according to
a hard sphere Monte Carlo algorithm. Finally, the sphere
packing is stabilized using an extension of the random packing
method described above. The spheres are chosen in order of
increasing height and, in turn, are allowed to roll and fall into
stable positions. In this part of the shake cycle spheres may
roll over, and rest on, any other sphere in the assembly. This
includes those spheres which are still to be stabilized and which
may, in turn, undergo further rolls and falls. This is a fully
cooperative process, which is crucial for realistic simulations
of granular media. Further details of the simulation algorithm,
including the use of Gaussian noise to model the random lateral
displacements in the expansion, may be found in [27,28].

In the present investigations, spheres are shaken at nine
amplitudes parametrized in units of sphere diameters: A =
0.05,0.08,0.10,0.15,0.18,0.20,0.25,0.28 and 0.30. For ex-
ample, A = 0.30 means that spheres are able to move
longitudinally by, on average, 0.30 sphere diameter during
a shake cycle. The volume fraction is measured as a function
of shaking amplitudes over 105 cycles. We notice that, within
a range of excitation amplitudes, there is a sharp increase in
the packing fraction well above the random close packing
density φrcp. Further shaking for extended periods is seen to
produce spontaneous jumps to denser, ordered packings which
we have termed “spontaneous crystallization.” Our analysis of
these packings is divided into two main parts. First, we define
global measures in order to characterize spatial structures in the
system. Second, we define a sphere cluster on which local order
metrics are applied to distinguish between different stages of
local cluster development. Our results suggest that the driving
force has a critical role to play in the observed competition
between hcp and fcc order.

III. GLOBAL ORDER ANALYSIS

In this section, we investigate global features of the
packings generated by our simulations as a function of shaking
amplitude. The radial distribution function g(r) is the most
obvious indicator of order; accordingly, we plot it in Fig. 1 as
a function of r for different packing fractions. We note that
more and more peaks appear as the packing fraction increases,
indicating that spatial ordering has set in. The fact that both
fcc and hcp [see, for example, the peak at 1.91 in Fig. 1(c)]
peaks are observed already indicates that, locally, both types
of order are present.

In order to do a more detailed analysis, we use the global
bond orientation order parameters defined in [29],

Ql,global ≡
[

4π

2l + 1

l∑
m=−l

∣∣∣〈Yl
m(�(�r),�(�r))

〉∣∣∣2
]1/2
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FIG. 1. (Color online) Plots of radial distribution functions g(r)
as a function of normalized distance r/d for various packing fractions
φ. The number of peaks shows the development of spatial order from
(a) low to (d) high.

Here, Ym
l (�,�) are spherical harmonics defined with respect

to an arbitrary coordinate system, and l,m are integers.
The average in Eq. (1) is taken over all the bonds in the
system for 100 configurations, and accordingly, Q6,global is
computed for different packing fractions φ and is plotted in
Fig. 2 for the nine amplitudes mentioned above. We mention
here that the variation of Q6,global with shaking amplitude is
implicit in the figures since amplitude governs both the value
of the final density φmax reached in a given time and its rate of
change.

A universal feature is that the overall growth of global
order towards φmax has a kink between the values of φ ∼ 0.62
and φ ∼ 0.64. Recent experiments [20] on sheared granular
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FIG. 2. (Color online) Variation of Q6,global against packing frac-
tion φ. Note the slight jump (kink) at 0.62 and steady rise after 0.64.
The global order shows breakdown at 0.69 [(c), (d), (g), (h), and
(i)]. The vertical line markers at φ = 0.62 (dashed lines) and 0.64
(dot-dashed lines) serve as a guide to the eye.
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spheres suggest that φ ∼ 0.62 is the onset of ordering, while
other simulations [30,31] suggest that φ ∼ 0.64 is a critical
value above which ordered structures are increasingly evident.
Our interpretation of results in the context of these facts
is that in the kink region, it is likely that the correlation
between regions of nucleated ordering increases until any
further increase after φ ∼ 0.64 leads to appreciable regions
of crystallinity; in turn, these become larger as the density is
further increased. This is consistent with the interpretation of
φ ∼ 0.64 as a critical state.

A feature to note is that the three smallest amplitudes (A =
0.05,0.08,0.10) reach lower values of φmax [Figs. 2(a)–2(c)]
than the rest, which all reach a value of φmax ∼ 0.72. This
is most likely due to the fact that at smaller amplitudes,
the dynamics are much slower and that, perhaps, the same
maximal densities would be reached for computer times that
were inaccessible to us.

Another feature to note is that there appears to be a
temporary “breaking” of order around φ ∼ 0.69 in some cases.
This, as well as the kink between φ ∼ 0.62 and φ ∼ 0.64,
motivates a closer examination of local ordering, which will
be discussed in the next section.

IV. LOCAL ORDER ANALYSIS

Since the onset of global ordering must have local pre-
cursors, we investigate the ordering of local clusters in the
rest of this paper. We first define what a cluster means in the
present context since this is the unit on which our local order
parameters will be defined. We define a sphere cluster as an
assembly of 13 spheres, as the basic unit of local order. This
is motivated by the fact that in stable fcc and hcp structures, a
cluster of 12 spheres around a central sphere gives a maximum
packing fraction of φ = 0.74. It is clear from this definition
(previously used in the structural analysis of colloids [2] and
granular sphere packings [20,32]) that while sphere clusters are
useful for distinguishing different types of order, they would
be the wrong choice for distinguishing order from disorder.

Our main objective in this section is, of course, to
distinguish between fcc and hcp structures; while methods
involving Voronoi diagrams exist [33], we prefer to use the
local bond orientation order parameter due to Steinhardt et al.
[29]. They define the local bond orientation order parameter
as

Ql,local(i) ≡

⎡
⎢⎣ 4π

2l + 1

l∑
m=−l

∣∣∣∣∣∣
Ns (i)∑
j=1

Ylm(�ji,�ji)/Ns(i)

∣∣∣∣∣∣
2
⎤
⎥⎦

1/2

,

(2)

where Ylm are spherical harmonics, with l and m being integers.
The angles �ji and �ji are polar angles with respect to an
arbitrary coordinate system, characterizing the bond vector �rij

from sphere j to sphere i. The sum and averages in Eq. (2) are
computed over all neighboring spheres Ns(i) of sphere i. This
definition exploits the difference in the stacking sequences of
hcp and fcc clusters for l = 4,6 [29]. For fcc and hcp sphere
clusters the values of the pair (Q6,local,Q4,local) are known to
be (0.575,0.191) and (0.485,0.097), respectively [34].

In our study, we define a nearest neighbor of a sphere as
that which lies at a distance of 1.2 sphere diameters from it;
this corresponds to the first minimum of the radial distribution
function. With the choice of Ns(i) = 12, we restrict ourselves
to spheres which only have 12 neighbors, corresponding to
a sphere cluster as defined above. With these choices, we
compute the local bond orientation order parameters, Q6,local

and Q4,local, for each sphere with a view to distinguishing
between hcp and fcc order.

We divide our local order analysis into three temporal
stages with respect to values of density for each amplitude
considered. The states corresponding to φ ∼ 0.61 to φ ∼ 0.65
are relatively disordered, and we discuss them first. Next, we
examine the partial ordering that sets in at φ ∼ 0.68 and 0.69.
Finally, we discuss the most ordered states corresponding to the
highest density φmax achieved for each amplitude. Throughout,
we use scatterplots of Q6,local and Q4,local and nonparametric
kernel density plots of Q6,local to display our results.

A. Disordered sphere clusters at low densities

The free volume available to a sphere to realign itself with
respect to its neighbors is proportional to the shaking amplitude
A [6]. Since such collective rearrangement is the catalyst which
drives the nucleation of order in a packing, we would expect
more rapid nucleation to occur for larger free volumes, i.e.,
the larger amplitudes in our set of nine. (We note that none
of these is, of course, large enough to cause the assembly to
be so fluidized that order never sets in; for a more detailed
discussion of this optimal range of amplitudes, see [17]).

We observe that the number of nucleating sites increases
as the density is increased from φ ∼ 0.61 to 0.63. Both the
scatterplots of Q6,local vs Q4,local (Fig. 3) and the probability
density plots of Q6,local (Fig. 4) confirm that sphere packings
in this range of densities are largely disordered at a local
level. Note that for φ ∼ 0.62 and 0.63, Fig. 4 shows the
onset of double peaked distributions. Both peaks are, however,
relatively broad, indicating that complete crystallization has
not occurred in a cluster. This is consistent with our remarks
above that φ ∼ 0.62 could possibly be thought of as the onset
of crystallization.

FIG. 3. (Color online) Plots of Q6,local vs Q4,local. The scattered
values show disordered states of φ = 0.61 (stars), φ = 0.62 (open
circles), and φ = 0.63 (open triangles). The horizontal line markers
at 0.485 (blue solid line for hcp) and 0.575 (magenta dashed line for
fcc) serve as a guide for the eye.
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FIG. 4. (Color online) Probability density plots of Q6,local for
φ ∼ 0.61 (black solid line), 0.62 (red dash-dotted line), and 0.63
(green dashed line). The peaks are broad and robust. The vertical line
markers at 0.485 (blue solid line for hcp) and 0.575 (magenta dashed
line for fcc) serve as a guide for the eye.

Partially ordered sphere clusters begin to make their
presence felt at φ ∼ 0.64 and 0.65. These are less disordered
(Fig. 5) than those at lower densities. We notice that there is less
scatter at the four highest densities than in the rest, indicating,
as mentioned above, that ordering has been facilitated by
access to greater free volume. An examination of Fig. 6 shows
sharper peaks overall compared to Fig. 4, indicating a greater
proportion of ordered sphere clusters. The second peak of
Q6,local densities is more consistently observed than the first
peak in Fig. 6, indicating a preponderance of fcc ordering.

B. Nearly ordered packings at higher densities: the competition
between FCC and HCP

At higher densities corresponding to φ ∼ 0.68 and 0.69
(Fig. 7), order sets in increasingly. This is accomplished
both by an increase in the number of sphere clusters and
by the degree of ordering within each one. Consequently,
the important issue is the competition between hcp and fcc
ordering (rather than the competition between order and
disorder). We notice accordingly that there is now a tendency
for the sphere clusters to cluster around the fcc and hcp values,

FIG. 5. (Color online) Plots of Q6,local vs Q4,local for the densities
φ ∼ 0.64 (stars) and 0.65 (open circles). Both states are disordered.
The φ ∼ 0.65 state has less scatter than the 0.64 state. The horizontal
line markers at 0.485 (green solid line for hcp) and 0.575 (red dashed
line for fcc) serve as a guide for the eye.

FIG. 6. (Color online) Probability density plots of a Q6,local for
φ ∼ 0.64 (magenta solid line) and 0.65 (blue dashed line). The
distributions have sharper peaks than before with some predominance
of the second peak. The vertical line markers at 0.485 (green solid
line for hcp) and 0.575 (red dashed line for fcc) serve as a guide for
the eye.

a process which is much sharper for the higher of the two
densities. In this case, for φ ∼ 0.69, there is an interesting
phenomenon at A = 0.10 and A = 0.15, when it seems that the
sphere clusters are entirely characterized by fcc ordering, while
both fcc and hcp ordering are back in play at higher amplitudes.
The probability density plots in Fig. 8 reinforce these claims,
as expected: also, as expected, the peak probability densities
for φ ∼ 0.69 are sharper than those for 0.68.

We speculate that the dearth of free volume at A = 0.10
and A = 0.15 could have led to the interruption of the
evolution into hcp ordering since this seems to set in for
higher amplitudes. Although more needs to be done to verify
this, it is tempting to think that there might well be an
optimal range of amplitudes (not so low that the ordering
process is incomplete, not so high as to allow the free
evolution into competing structures) at these high densities
where spontaneous crystallization into a pure fcc state might
occur.

FIG. 7. (Color online) Q6,local vs Q4,local for densities φ ∼ 0.68
(open circles) and 0.69 (stars). The state of φ ∼ 0.68 has more scatter
than 0.69. Notice the sharp division into two distinct groups for
φ ∼ 0.69. The special noticeable situations are for A = 0.10 [(b)]
and 0.15 [(c)]. The horizontal line markers at 0.485 (blue solid line
for hcp) and 0.575 (magenta dashed line for fcc) serve as a guide for
the eye.
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FIG. 8. (Color online) Probability density plots of Q6,local for
φ ∼ 0.68 (cyan solid line) and 0.69 (orange dashed line). The peaks
of φ ∼ 0.69 are sharper than those of 0.68. For φ ∼ 0.69 at A = 0.10
and 0.15 only one sharp peak at Q6,local ∼ 0.575 is visible [(b) and
(c)]. The vertical line markers at 0.485 (green solid line for hcp) and
0.575 (black dashed line for fcc) serve as a guide for the eye.

Finally, if we recall that a breakdown of global ordering
was observed at φ ∼ 0.69, our local ordering analysis suggests
that the interfaces between crystallites of fcc and hcp might be
responsible for this.

C. Ordering at asymptotic densities

In this section, we see a clearer illustration of some of
the ideas proposed in the previous section, as we examine the
ordering that sets in at the highest densities (φmax) achieved for
each of the amplitudes considered. For the lowest amplitudes,
the ordering process is clearly incomplete, and for the highest
amplitudes, hcp and fcc ordering coexist. An intermediate,
“optimal” range of amplitudes where single crystals of fcc
emerge, is also observed.

For the three lowest amplitudes A = 0.05, 0.08, and
0.10, we observe clearly that for the computer times at our
disposal, full crystallization did not occur. Figure 9 shows the
scatterplots and the probability density plots for each case. In
every case, Q6,local the scatterplots are weighted around the fcc
value of 0.575. That fcc ordering is predominant is more clearly
reflected in the sharp second peak of Q6,local [Figs. 9(b), 9(d),
and 9(f)]. Of course, we cannot rule out a further evolution
when the system is shaken for longer times, and in fact we
would expect more complete ordering to emerge in that limit,
even for the lowest shaking amplitudes.

For intermediate amplitudes (A = 0.15, 0.18, 0.20,0.25), a
single fcc phase appears at the asymptotic density φmax ∼ 0.72
(Fig. 10). This seems very robust, lending weight to our
arguments that an optimal range of amplitudes exists for
spontaneous crystallization into a single fcc state. It would be
interesting if this phenomenon could be probed experimentally
as well as by independent simulations, from the point of view
of both theory and application.

For higher amplitudes still, we see a clear separation of the
two kinds of ordering, centered on the lines corresponding to
the fcc and hcp values (Fig. 11). This coexistence reinforces the
conclusions of previous simulations [25,32,35]. However, fcc
ordering still predominates: the relative fraction of fcc sphere

FIG. 9. (Color online) Plots of the maximum densities for A =
0.05, 0.08, and 0.10. Scatterplots of Q6,local vs Q4,local are broadly
distributed into two groups. The probability density plots [(b), (d),
and (f)] indicate a second peak which is sharper than the first. The
horizontal and vertical lines at 0.485 (for hcp) and 0.575 (for fcc)
serve as a guide for the eye.

clusters, given by Nf cc/(Nf cc + Nhcp), is 0.78 for A = 0.28
and 0.77 for 0.30, where Nf cc and Nhcp are the numbers of fcc
and hcp sphere clusters, respectively.

Our main conclusion is therefore that there is full ordering
at the final densities corresponding to the highest amplitudes
in our list but that in all probability there are the analog of
dislocations which separate regions of hcc and fcc ordering.
These dislocations would represent the deviation from the
perfect global ordering that is obtained for the intermediate
amplitudes.

We emphasize, of course, that these results are valid for
the time of shaking we have considered, and so we cannot
rule out further crossovers at larger times. Although studies
have investigated the coexistence of these two cluster types in
colloids [2,3] and granular materials [20,25,32] as a function
of the shear rate, we believe that this is the first attempt to
analyze crystalline clusters systematically by varying shaking
amplitudes.

FIG. 10. (Color online) Scatterplots of Q6,local vs Q4,local show a
single fcc cluster for a maximum density of φ ∼ 0.72 for A = 0.15
0.18, 0.20, and 0.25.
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FIG. 11. (Color online) Graphs of Q6,local vs Q4,local show the
coexistence of two fcc and hcp sphere clusters. The data of fcc and
hcp clusters are again plotted in (c) and (d) and (e) and (f) for the
respective amplitudes. The horizontal line markers at 0.485 (green
dashed line for hcp) and 0.575 (red solid line for fcc) in (a) and (b)
serve as a guide for the eye.

V. CONCLUSIONS

We have carried out computer simulations of shaken
granular packings over a range of amplitudes. The highest

amplitudes we chose were still well within the range where
collective motion predominates [27], i.e., those where there
is insufficient free volume for most spheres to move inde-
pendently of each other. We have observed that spontaneous
crystallization occurs in our chosen dynamical regime in the
limit of long vibration times. Our observations of global
order show that there is a region of increasing nucleation
between the onset of order and the random close packed
limit, which deserves further investigation. Also, we noted an
apparent breakdown of global order at higher densities, which
our local order parameters suggest may be due to interfaces
between crystallites of fcc and hcp. Our observations of local
order also suggest that at the highest packing densities, there
may be an optimal range of amplitudes where crystallization
into a single fcc state occurs. Amplitudes even higher than
this lead to a coexistence of hcp and fcc order, with the
latter predominating; we suggest that dislocations between
the two sorts of ordering should be observed and hope
that further work to investigate this important issue will be
undertaken.
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