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Adiabatic elimination for systems with inertia driven by compound Poisson colored noise
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We consider the dynamics of systems driven by compound Poisson colored noise in the presence of inertia.
We study the limit when the frictional relaxation time and the noise autocorrelation time both tend to zero.
We show that the Itô and Marcus stochastic calculuses naturally arise depending on these two time scales,
and an extra intermediate type occurs when the two time scales are comparable. This leads to three different
limiting regimes which are supported by numerical simulations. Furthermore, we establish that when the resulting
compound Poisson process tends to the Wiener process in the frequent jump limit the Itô and Marcus calculuses,
respectively, tend to the classical Itô and Stratonovich calculuses for Gaussian white noise, and the crossover
type calculus tends to a crossover between the Itô and Stratonovich calculuses. Our results would be very helpful
for understanding relevant experiments when jump type noise is involved.
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I. INTRODUCTION

The mathematical description of many physical problems
contains variables obeying dynamics characterized by widely
different time scales. One often pays more attention to the slow
variables and thus the fast ones are eliminated in practice. This
procedure is usually called adiabatic elimination and much
work has been done in this field [1–4]. A typical example is
the derivation of the Gaussian white noise limit for systems
with inertia and multiplicative colored noise [3].

In various branches in natural and social sciences, stochastic
processes driven by multiplicative non-Gaussian noise are
common. This includes many examples such as the analysis
of the shot noise in electrical circuits [5], the stock price
modeling in option pricing [6], the stochastic modeling of
soil salinity [7], and the small thermodynamic systems [8].
Dynamics subject to multiplicative noise have been studied
over the last few decades [9,10]. The adiabatic elimination has
been well developed for the case of Gaussian noise, but so far
there are very few investigations for the non-Gaussian noise in
a similar situation, to the best of the author’s knowledge.

The instantaneous impulse in a driving process is often
modeled as a white shot noise, and correspondingly an
instantaneous change will be induced for the considered
system. However, from the practical point of view, we want to
emphasize that the impulse actually occurs in a very short but
not an infinitely small time scale and the induced instantaneous
change is indeed continuous instead of a pure jump. Though
small, the time scale of the driving noise is finite and can
be characterized through its autocorrelation time. Thus in the
instantaneous impulse model we are simply dealing with an
idealized limit in the mathematical modeling. This idea, which
is common in physics and mathematics, has already been
embodied in the famous Wong-Zakai smoothing limit for the
Gaussian colored noise [11].

The presence of inertia introduces another characteristic
time scale in the system, that is, the frictional relaxation time.
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In nondimensionalized form, the dynamics we will study in
this paper reads

εaẍ = −ẋ + b(x)ξν(t), (1)

where ξν(t) is assumed as the colored version of a white
shot noise ξ (t) with time scale ν ∼ O(ε). Here a white
shot noise is defined as the time derivative of a compound
Poisson process L(t) [12]. We will investigate the limiting
equation describing the dynamics in coordinate space when
both frictional relaxation time and noise autocorrelation time
tend to zero.

The main results in this paper can be briefly stated
as follows: depending on the magnitudes of the frictional
relaxation time and the noise autocorrelation time, three
different regimes will arise in the limiting dynamics.

A. Case 1

When the frictional relaxation time is smaller than the
noise autocorrelation time (a > 1), the multiplicative noise
in the limiting stochastic differential equation (SDE) should
be interpreted in the sense of Marcus stochastic calculus:

dX(t) = b(X) � dL(t). (2)

B. Case 2

When the frictional relaxation time is larger than the noise
autocorrelation time (a < 1), the limiting SDE should be
interpreted in the sense of Itô stochastic calculus:

dX(t) = b(X) · dL(t). (3)

C. Case 3

When the frictional relaxation time and the noise autocorre-
lation time are comparable (a = 1), we obtain an intermediate
type stochastic calculus denoted by �:

dX(t) = b(X) � dL(t). (4)

The detailed definition for the above three kinds of SDEs will
be stated in the next section.
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The important message here is that the limiting system will
have different physical behaviors such as invariant distribution,
stability thresholds, and so on depending on the two time
scales. We should remark that the first two regimes have been
found in [4] under special circumstances, but the intermediate
regime (case 3) has never been demonstrated before. We also
emphasize that the method we adopted here is quite different
from [4] and is universal to some extent. We further consider
the case when the resulting compound Poisson process tends
to the Wiener process in the frequent jump limit. The three
different obtained regimes then tend to the similar three limits
in the Gaussian noise case derived in [3], which in turn
confirms the validity of our result.

The rest of this paper is organized as follows. In Sec. II
we present the model and make the adiabatic elimination in
different parameter regimes. We also show some numerical
examples to validate our analysis. In Sec. III we derive the
limiting equations in the Gaussian white noise limit. Finally
we make the conclusion.

II. POISSON COLORED NOISE LIMIT

A. Model setup

Consider the following Langevin equation with multiplica-
tive white shot noise:

τ ẍ = −ẋ + b(x)ξ (t). (5)

The parameter τ is the nondimensional relaxation time of the
particle velocity. b(x) is a sufficiently smooth function which
is bounded together with its first two derivatives. ξ (t) is a white
shot noise with realizations:

ξ (t) =
N(t)∑
i=1

Riδ(t − σi). (6)

Here σi is the random jump time with rate λ, Ri is the random
jump size with distribution p(r), N (t) is the count of jumps
until time t , and δ(t) is the Dirac δ function. We denote
L(t) the underlying compound Poisson process corresponding
to ξ (t), i.e., L(t) = ∑N(t)

i=1 RiH (t − σi), where H (t) is the
standard Heaviside function. We assume the random jump
size R has distribution p(r) and satisfies 〈R〉 = 0 where
the bracket denotes the ensemble average. The key point in
understanding Eq. (5) is the definition of the stochastic integral∫

b(x)ξ (t)dt . In the case of ξ (t) being a Gaussian white noise,
the well-known Itô and Stratonovich integrals are widely used
in different disciplines. The Stratonovich integral is preferred
by physicists due to the facts that it can be understood as the
Wong-Zakai type smoothing limit [11] and that it obeys the
Newton-Leibniz chain rule. This leads naturally to the idea that
the instantaneous jumps are idealizations to smooth excitations
during a very short time. This inspires us to consider a colored
version of the white shot noise and consider the limit as the
smoothing parameter goes to zero.

At first we define the smoothed Heaviside function θ (t) as

θ (t) =
⎧⎨
⎩

0, t < 0
t, t ∈ [0,1]
1, t > 1

. (7)

Take ξν(t) = ∑N(t)
i=1 Riθ̇ ((t − σi)/ν) as the colored version of

ξ (t) with parameter ν. Here the dot over θ means the derivative
with respect to t . It is not difficult to see ξν(t) → ξ (t) in the
pathwise sense as ν → 0, and the autocorrelation function of
ξν(t) is

〈ξν(t)ξν(s)〉 = λ〈R2〉 max

{
1

ν2
(ν − |t − s|),0

}
. (8)

The derivations may be referenced in the Appendix. The
autocorrelation function is nonzero only when |t − s| < ν, and
thus the parameter ν represents the characteristic autocorrela-
tion time of the smoothed white shot noise. In the following
contexts we assume the autocorrelation time is much smaller
than the time between two jumps. We are interested in studying
the limit of Eq. (5) when τ as well as ν tend to zero. To this
end, we introduce the parameter ε as τ = τ0ε

a and ν = ν0ε
c,

where a,c > 0, τ0, and ν0 are of order 1, and ε � 1.

B. Single jump case

Since we assume that the autocorrelation time of the colored
noise is much smaller than the time between two jumps, we can
focus on each single jump separately. We consider a special
realization of the Poisson colored noise with only one jump at
time t = 0 and assume the jump size is R. We have

ξν(t) =
{
R/ν, 0 � t � ν

0, t > ν
. (9)

Without loss of generality we take τ0 = 1 and c = 1 in
the analysis. The other cases just correspond to a rescaling of
parameters and it will not affect the results. Then the equation
becomes

εaẍ = −ẋ + b(x)ξν(t). (10)

Define y(t) = ẋ(t), x0 = x(0), and y0 = y(0). By taking
advantage of the variation of constant, we get

ẋ(t)=y0 exp

(
− t

εa

)
+ 1

εa

∫ t

0
b[x(s)]ξν(s) exp

(
− t − s

εa

)
ds.

(11)

After integration by parts, we obtain the equation for the
coordinates:

x(t) = x0 + y0ε
a

[
1 − exp

(
− t

εa

)]

+
∫ t

0
b[x(s)]ξν(s)

[
1 − exp

(
− t − s

εa

)]
ds

= x0 + y0ε
a

[
1 − exp

(
− t

εa

)]

+
∫ t∧ν0ε

0
b[x(s)]

R

ν0ε

[
1 − exp

(
− t − s

εa

)]
ds, (12)

where we get the second equality by substituting Eq. (9)
into the equation and t ∧ s = min{t,s}. Clearly we have
y0ε

a[1 − exp(−t/εa)] = O(εa) → 0 as ε → 0. Since we as-
sume the autocorrelation time of the colored noise is much
smaller than the time between two jumps, we mainly focus on
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the coordinate x(t) on a larger time scale [0,T ] and at the same
time T itself is small enough, which means

T 
 max{εa,ε} and T → 0

as ε → 0+. Now let us introduce the function zε(t) which
satisfies

zε(t) = x0 + R

∫ t

0
b[zε(s)]

[
1 − exp

(
−ν0(t − s)

εa−1

)]
ds

(13)

when 0 � t � 1. It is not difficult to find that zε(t) = x(ν0εt) +
o(1) for t ∈ [0,1] since they only differ from an O(εa) term in
Eq. (12). The assumption on T leads to

x(T ) = x0 + R

∫ 1

0
b[zε(s)]ds + o(1). (14)

We obtain the following three types of limits by analyzing
the behavior of zε(t).

1. Case 1: Marcus type limiting equation

If a > 1, exp(−1/εa−1) tends to zero exponentially as
ε → 0 and thus zε(t) = z(t) + o(1), where z(t) satisfies

z(t) = x0 + R

∫ t

0
b[z(s)]ds. (15)

Correspondingly from Eq. (14) we obtain

x(T ) = z(1) + o(1) (16)

as ε → 0. With another notation, we have the following
ordinary differential equation (ODE) for z:

ż(t) = Rb[z(t)], 0 � t � 1

z(0) = x0.
(17)

We denote the final reduced limiting equation for x as

dX(t) = b(X) � dL(t), X(0) = x0. (18)

The limiting variable X will experience an instantaneous jump
at the jump time of ξ (t). From Eq. (14), the jump size of X is
given by

�X = R

∫ 1

0
b[z(t)]dt, (19)

where z(t) satisfies Eq. (17).
The ODE Eq. (17) is called Marcus mapping and the

corresponding stochastic calculus Eq. (18) is called Marcus
canonical calculus (see [13] for more details), which was
pioneered by Marcus [14,15]. Recently, it has been discussed
in the field of small thermodynamic system in [8,16], and
further developments on its connection with the Wong-Zakai
smoothing limit and the numerical simulations are studied
in [17]. The Marcus canonical integral can be understood
as an extension of the Stratonovich integral to non-Gaussian
processes.

In this parameter regime, the frictional relaxation time is
small compared to the noise autocorrelation time, so the noise
can be indeed viewed as a smoothed process and it naturally
results in the Marcus integral which is the Wong-Zakai type
smoothing limit for non-Gaussian processes.

2. Case 2: Itô type limiting equation

If a < 1, ε1−a tends to zero as ε → 0 and thus Eq. (13)
leads to

zε(t) = z(t) + O(ε1−a) (20)

and z(t) ≡ x0. Correspondingly we obtain

x(T ) = x0 + b(x0)R + O(εmin (a,1−a)). (21)

Similar to the previous case, we can define

ż(t) = 0, 0 � t � 1

z(0) = x0
. (22)

The final reduced limiting equation for x is denoted as

dX(t) = b(X) · dL(t), X(0) = x0, (23)

where X will experience an instantaneous jump at the jump
time of ξ (t), and the jump size is simply

�X = R

∫ 1

0
b[z(t)]dt = b(x0)R. (24)

The definition Eq. (23) is exactly the classical Itô type
calculus for white shot noise. This can be intuitively explained,
as when the frictional relaxation time is much larger than the
noise autocorrelation time the smoothing through relaxation
has no chance to take effect on the overall dynamics. Thus we
get the Itô type limit.

3. Case 3: Crossover type limiting equation

If a = 1, Eq. (13) becomes ε independent and thus

z(t) = x0 + R

∫ t

0
b[z(s)]{1 − exp[−ν0(t − s)]}ds. (25)

Correspondingly we can define the following crossover type
ODE mapping:

z̈(t) = −ν0ż(t) + Rν0b[z(t)], 0 � t � 1
(26)

z(0) = x0, ż(0) = 0.

We denote the final reduced limiting equation for x as

dX(t) = b(X) � dL(t), X(0) = x0, (27)

where X will experience an instantaneous jump at the jump
time of ξ (t). The jump size is also

�X = R

∫ 1

0
b[z(t)]dt, (28)

where z(t) satisfies Eq. (26).
In summary, when the frictional relaxation time is com-

parable to the noise autocorrelation time, a new mechanism
arises. The reduced dynamics cannot be understood as either
Itô calculus or Marcus calculus. The crossover type dynamics
depends on the constant ν0, which is quite similar to the case
in [3].

We also remark here that we can formally derive the limiting
equations Eqs. (17) and (22) from Eq. (26) by varying ν0.
We utilize the singular perturbation analysis [18,19] to do the
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job. Taking the limit ν0 → 0 which corresponds to the regime
a < 1, we expand the solution in a power series:

z(t) = z0(t) + ν0z1(t) + ν2
0z2(t) + · · · . (29)

Substituting this expansion into Eq. (26) we obtain the leading
order term z̈0(t) = 0. Together with its initial condition ż0(0) =
0, z0(0) = x0, we have z0(t) = x0. This exactly gives Eq. (22).
Taking the limit ν0 → ∞ which corresponds to the regime
a > 1, we similarly expand

z(t) = z0(t) + 1

ν0
z1(t) + 1

ν2
0

z2(t) + · · · (30)

and substitute this into Eq. (26). The leading order equation is
ż0(t) = Rb[z0(t)], which is exactly the ODE mapping Eq. (17).

Our analysis is supported by numerical simulations. For
simplicity, we fix the jump time at t = 1 and 2, and the
jump sizes are both 2. Some other parameters are ν0 = 1,

ε = 0.02,b(x) = x, and x(0) = 1. The second order Runge-
Kutta method is adopted in simulating both the jump ODEs
and the Langevin equation with smoothed noise. We choose a
different parameter a to test our analytical result. Figures 1(a)–
1(c) correspond to the limiting dynamics interpreted with Itô
type, crossover type, and Marcus type calculuses, respectively.
All the numerical results clearly confirm the validity of our
theoretical analysis.

C. Generalization

The systematic adiabatic elimination procedure described
in the previous section can be extended in a straightforward
way to cover the multidimensional case in Rd with inertia
and colored noise. Consider the following high dimensional
Langevin equation:

εa ẍ = −ẋ + b(x)ξ (t), (31)

where x ∈ Rd ,b(x) ∈ Rd×n, and ξ (t) = ∑N(t)
i=1 Riδ(t − σi)

with Ri ∈ Rn and we again write L(t) for the underlying
compound Poisson process of ξ (t). Similarly we consider
the colored noise ξ ν(t) = ∑N(t)

i=1 Ri θ̇ [(t − σi)/ν]. Using a
similar approach as in the previous section, one can prove
the following results with a unified form.

1. Case 1: Marcus type limiting equation

When a > 1, the solution of the limiting equation is

X(t) = X(0) +
N(t)∑
i=1

[�M (X(σi−),Ri) − X(σi−)], (32)

where �M (X0,R) : z(0) → z(1) is the Marcus mapping
defined as

ż(t) = b[z(t)]R, 0 � t � 1
(33)

z(0) = X0.

We take the notation � for the above Marcus calculus as

d X(t) = b[X(t)] � dL(t). (34)
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FIG. 1. (Color online) Numerical comparison between the re-
duced dynamics and the Langevin dynamics. The jump time is fixed to
be t = 1 and 2, and both jump sizes equal 2. We choose ε = 0.02 and
initial position x(0) = 1. Different choices of a are taken to confirm
our analysis. The second order Runge-Kutta method is adopted for the
numerical simulations. The solid red line and dashed blue line with
circles correspond to the numerical solution for the reduced dynamics
and Langevin equation with colored noise, respectively.
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2. Case 2: Itô type limiting equation

When a < 1, the solution of the limiting equation is

X(t) = X(0) +
N(t)∑
i=1

[�I (X(σi−),Ri) − X(σi−)], (35)

where �I (X0,R) : z(0) → z(1) is the Itô mapping defined as

ż(t) = b(X0)R, 0 � t � 1
(36)

z(0) = X0.

We take the notation · for the Itô calculus as

d X(t) = b[X(t)] · dL(t). (37)

3. Case 3: Crossover type limiting equation

When a = 1, the solution of the limiting equation is

X(t) = X(0) +
N(t)∑
i=1

[�C(X(σi−),Ri) − X(σi−)], (38)

where the mapping �C(X0,R) : z(0) → z(1) is defined as the
solution mapping of

ż(t) = b[ y(t)], 0 � t � 1

ÿ(t) = −ν0 ẏ(t) + ν0b[ y(t)]R, 0 � t � 1

z(0) = X0 (39)

y(0) = X0

ẏ(0) = 0.

We take the notation � for the crossover type calculus as

d X(t) = b[X(t)] � dL(t). (40)

III. FROM WHITE SHOT NOISE TO GAUSSIAN
WHITE NOISE

The compound Poisson process will converge to the Wiener
process if the jump rate λ tends to infinity while keeping
〈R〉 = 0,λ〈R2〉 = 1. We introduce a small parameter κ → 0
and let λ = κ−2,R = κR̂ where R̂ is a random variable
that satisfies 〈R̂〉 = 0,〈R̂2〉 = 1. Now we investigate how the
behavior of our results in Sec. II will change in this frequent
jump limit. It is known that the limiting equation for Gaussian
white noise has been fully discussed in [3]. We will show
there is a correspondence for the three regimes between the
white shot noise case and the Gaussian white noise case in this
section. For simplicity we will only derive our results for the
one dimensional case here but all of the results can be easily
generalized to the high dimensional case.

Consider a general jump mapping �(·,R) : R → R and the
stochastic calculus for Ẋ(t) = b(X(t))ξ (t) defined as

X(t) = X(0) +
N(t)∑
i=1

[�(X(σi−),Ri) − X(σi−)]. (41)

We can get the infinitesimal generator for X as

Lf (x) = lim
t→0

〈f (X(t))〉x − f (x)

t

= lim
t→0

〈
[(f (�(x,R)) − f (x))λt + O(t2)] exp(−λt)

t

〉
= λ〈f (�(x,R)) − f (x)〉, (42)

where the notation 〈·〉x is the ensemble average with respect to
initial state x and the expectation 〈·〉 in the last two equalities
is with respect to the jump variable R.

A. Marcus type

We use the singular perturbation analysis to get the frequent
jump limit [18,19]. For the Marcus integral, the solution to
Eq. (33) can be expanded as z = z0 + κR̂z1 + κ2R̂2z2 + · · ·
when κ is small. Substituting this into the equation gives a
hierarchy of equations:

ż0 = 0, z0(0) = x,

ż1 = b(z0), z1(0) = 0,

ż2 = ḃ(z0)z1, z2(0) = 0,

· · · · · · .

(43)

This gives

�M (x,R) = x + κR̂b(x) + κ2R̂2

2
b(x)ḃ(x) + · · · . (44)

Substituting this into Eq. (42) we obtain

LMf (x) = λ

〈
ḟ (x)

(
b(x)κR̂ + κ2R̂2

2
b(x)ḃ(x) + · · ·

)

+ 1

2
f̈ (x)

(
b(x)κR̂ + · · ·

)2

+ · · ·
〉

→ 1

2

(
b(x)

∂

∂x

)2

f (x) as κ → 0. (45)

Thus we have the Fokker-Planck equation:

∂P M (x,t)

∂t
= (LM )∗P M (x,t) = 1

2

(
∂

∂x
b(x)

)2

P M (x,t),

(46)

where (LM )∗ stands for the adjoint operator of LM . This
Fokker-Planck equation corresponds to the SDE:

dX(t) = b(X(t)) ◦ dW (t), (47)

where W (t) is a Wiener process and the notation ◦ represents
the Stratonovich integral. This corresponds to the Stratonovich
regime in [3].

B. Itô type

For the Itô type integral, the solution to Eq. (36) can be
expanded as z = z0 + κR̂z1 + κ2R̂2z2 + · · · . Substituting this
into the equation gives a hierarchy of equations:

ż0 = 0, z0(0) = x,

ż1 = b(z0), z1(0) = 0,

żi = 0, zi(0) = 0, i � 2.

(48)
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This gives �I (x,R) = x + κR̂b(x). Substituting this into
Eq. (42) we obtain

LI f (x) = λ

〈
ḟ (x)b(x)κR̂ + κ2R̂2

2
f̈ (x)b2(x) + O(κ3)

〉

→ 1

2
f̈ (x)b2(x) as κ → 0. (49)

Thus we have the Fokker-Planck equation:

∂P I (x,t)

∂t
= (LI )∗P I (x,t) = 1

2

∂2

∂x2
(b2(x)P I (x,t)), (50)

and the corresponding SDE is

dX(t) = b[X(t)] · dW (t), (51)

where W (t) is a Wiener process and the notation · represents
the Itô integral. This corresponds to the Itô regime in [3].

C. Crossover type

For the intermediate type calculus, we similarly expand
the solution to Eq. (39) as z = z0 + κR̂z1 + κ2R̂2z2 + · · · .
Substituting this into the equation gives a hierarchy of
equations:

z̈0 = −ν0ż0, z0(0) = x, ż0(0) = 0,

z̈1 = −ν0ż1 + ν0b(z0), z1(0) = 0, ż1(0) = 0,

· · · · · · .

(52)

This gives

z0(t) = x, z1(t) = e−ν0t − 1 + ν0t

ν0
b(x). (53)

We have

�C(x,R) = x + κR̂

∫ 1

0
b(z)ds

= x + κR̂

∫ 1

0
[b(x) + ḃ(x)(κR̂z1 + · · ·) + · · ·]ds

= x + κR̂b(x) + κ2R̂2ḃ(x)
∫ 1

0
z1(t)dt

= x + κR̂b(x) + ακ2R̂2b(x)ḃ(x) + · · · , (54)

where

α = 1 − e−ν0 − ν0 + ν2
0

/
2

ν2
0

∈
(

0,
1

2

)
. (55)

Substituting this into Eq. (42) we obtain the infinitesimal
generator for our crossover � calculus:

LCf (x)

= λ

〈
ḟ (x)(b(x)κR̂ + ακ2R̂2b(x)ḃ(x) + · · ·)

+ 1

2
f̈ (x)(b(x)κR̂ + ακ2R̂2b(x)ḃ(x) + · · · )2 + · · ·

〉

→ 1

2
f̈ (x)b2(x) + αḟ (x)b(x)ḃ(x)

= (1 − 2α)LI f (x) + 2αLMf (x) as κ → 0. (56)

Thus we have the Fokker-Planck equation:

∂P C(x,t)

∂t
= (LC)∗P C(x,t)

= (1 − 2α)(LI )∗P C(x,t) + 2α(LM )∗P C(x,t),

(57)

which corresponds to the SDE:

dX(t) = (1 − 2α)b[X(t)] · dW (t) + 2αb[X(t)] ◦ dW (t),

(58)

where W (t) is a Wiener process and the notations · and ◦
represent the Itô and Stratonovich integrals, respectively. This
result corresponds to the crossover regime in [3]. The final
limiting equation is a combination of Itô and Stratonovich
integrals, and their weight depends on the parameter α which
is related to ν0 (the ratio between the relaxation time and noise
autocorrelation time).

Additionally, as we have done in Sec. II B, we can formally
derive the Itô type Eq. (47) and Marcus type Eq. (51) from
the crossover type Eq. (58) by varying parameter ν0. Taking
ν0 → ∞, which corresponds to the regime a > 1, we have
α → 1/2 and the crossover type calculus Eq. (58) reduces
to the Stratonovich calculus Eq. (47). Taking ν0 → 0, which
corresponds to the regime a < 1, we have α → 0 and the
crossover type calculus Eq. (58) reduces to the Itô calculus
Eq. (51).

IV. CONCLUSION

We have shown the results of adiabatic elimination for the
Langevin equation with inertia driven by multiplicative white
shot noise. The final limiting equation depends on the mag-
nitude of frictional relaxation time and noise autocorrelation
time. The multiplicative noise in the limiting equation can be
described by either Itô or Marcus type calculus depending on
whether the relaxation time is larger or smaller than the noise
autocorrelation time. Furthermore, a new type of stochastic
integral is found when the two time scales are comparable.
Our results are consistent with the earlier work when we take
the Gaussian white noise limit for the white shot noise [3].
Furthermore our approach is based on singular perturbation
analysis which is general.

What we want to emphasize here is that either the Itô
or Marcus integral could be the right integral in realistic
problems. The Itô integral is nonanticipating and thus pre-
serves causality [12], while the Marcus integral obeys the
Newton-Leibniz chain rule (like the Stratonovich integral)
and could be understood as the result of the Wong-Zakai
type smoothing limit [17]. Whether the Itô integral or Marcus
integral should be preferred depends on the realistic problems
to be treated. This is quite similar to the choice between
the Itô and the Stratonovich integral in other contexts.
Nonanticipation is also an important property in financial
mathematics [6], while the Newton-Leibniz chain rule is
important in constructing thermodynamics laws in stochastic
energetics [8,17]. Researchers should choose the right integral
based on the realistic problems and their concrete setup. Our
paper offers a view that the parameter regime could affect
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the limiting stochastic integral, which is a common hidden
mechanism for many physical problems.

It will be instructive to shortly discuss the Marcus integral
and the other definitions of the Stratonovich integral for the
jump type noise here. To our knowledge, the Stratonovich
integral is first defined for Gaussian white noise [20]. It obeys
the Newton-Leibniz chain rule and can be viewed as the
Wong-Zakai smoothing limit which brings natural physical
interpretation to it. These good properties inspire scholars to
extend the Stratonovich integral to more general processes and
much work has been done [6,12,13]. Interestingly, there is no
unified definition for the Stratonovich integral extended to the
more general noise. It has been observed in [13] (line 3, p.
238) that the straightforward extension by taking the weight
1/2 for both the left-most and right-most endpoints in the
discretized integral does not lead to the Newton-Leibniz chain
rule for the Lévy type noise. Another choice, taking the
midpoint for the integrand, does not give the Newton-Leibniz
rule either [8], while the Marcus integral considered here
is a good candidate to achieve this goal. This property has
been utilized in [8,17] to understand the stochastic energetics
for small systems. Furthermore, the current paper gives the
rationale of under what circumstances which kind of stochastic
integral is preferred from the adiabatic elimination point
of view. This is different from the usual Wong-Zakai type
smoothing limit argument [17]. Interested readers are referred
to [8,13,17,21,22] for more details.

Finally we want to remark that the three different limiting
equations discussed have different properties depending on
the interpretation of the multiplicative noise. This informs us
that great care should be taken in the adiabatic elimination
procedure when there are more than one fast time scale
variables, as indicated in [3]. Detailed inspection is necessary
to ensure our correctly capturing the real physical processes
through reduced models.
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APPENDIX: AUTOCORRELATION FUNCTION

Here we prove the autocorrelation function of ξν(t) is

〈ξν(t)ξν(s)〉 = max

{
λ〈R2〉

ν2
(ν − |t − s|),0

}
. (A1)

At first we assume s < t . Using the definition of θ (t), we
have

θ̇ (t) =
N(t)∑
i=1

Ri

ν
1[σi ,σi+ν](t). (A2)

Here 1A(x) is the characteristic function defined as 1A(x) =
1 if x ∈ A and 1A(x) = 0 if x /∈ A. Substituting the above
equation into 〈ξν(t)ξν(s)〉, we have

〈ξν(t)ξν(s)〉 =
〈

N(t)∑
i=1

N(s)∑
j=1

RiRj

ν2
1[σi ,σi+ν](t)1[σj ,σj +ν](s)

〉
.

(A3)

Recall that the random jump size R satisfies 〈R〉 = 0, and
Ri is independent of Rj . This leads to 〈RiRj 〉 = 〈R2〉δij , where
δij = 0 when i �= j and δij = 1 when i = j . Together with
the fact that the random jump time σ is independent of the
random jump size R, we have

〈ξν(t)ξν(s)〉 = 〈R2〉
ν2

〈
N(t)∑
i=1

1[σi ,σi+ν](t)1[σj ,σj +ν](s)

〉

=
{

〈R2〉
ν2

〈 ∑N(t)
i=1 1[t−ν,s](σi)

〉
, |t − s| � ν

0, |t − s| > ν
.

(A4)

To calculate the average in the above equation, we need
Theorem 5.2 from [23]. It is stated as below:

Lemma 1. Given that N (t) = n, the n arrival times
σ1, . . . ,σn have the same distribution as the order statistics
corresponding to n independent random variables uniformly
distributed on the interval (0,t).

Thus conditioned on given N (t) = n, we have

〈
N(t)∑
i=1

1[t−ν,s](σi)|N (t) = n

〉

=
∫

· · ·
∫

0�x1�···�xn�t

n∑
i=1

1[t−ν,s](xi)
n!

tn
dx1 · · · dxn

= 1

n!

∫
· · ·

∫
0�xi�t,i=1,...,n

n∑
i=1

1[t−ν,s](xi)
n!

tn
dx1 · · · dxn

= 1

tn

n∑
i=1

∫
· · ·

∫
0�xi�t,i=1,...,n

1[t−ν,s](xi)
n!

tn
dx1 · · · dxn

= 1

tn
ntn−1(s − t + ν)

= n

t
(s − t + ν). (A5)

Here the second equation is obtained by observing that xi and
xj are exchangeable. Taking an expectation with respect to
N (t), we have

〈
N(t)∑
i=1

1[t−ν,s](σi)

〉
= λt

t
(s − t + ν) = λ(s − t + ν). (A6)

Substituting this into Eq. (A4) we get Eq. (A1).

022144-7



TIEJUN LI, BIN MIN, AND ZHIMING WANG PHYSICAL REVIEW E 89, 022144 (2014)

[1] J. M. Sancho, M. SanMiguel, and D. Durr, J. Stat. Phys. 28, 291
(1982).

[2] J. M. Sancho, Phys. Rev. E 84, 062102 (2011).
[3] R. Kupferman, G. A. Pavliotis, and A. M. Stuart, Phys. Rev. E

70, 036120 (2004).
[4] S. Suweis, A. Porporato, A. Rinaldo, and A. Maritan, Phys. Rev.

E 83, 061119 (2011).
[5] Y. M. Blanter and M. Buttiker, Phys. Rep. 336, 1 (2000).
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