
PHYSICAL REVIEW E 89, 022142 (2014)

Extended Parrondo’s game and Brownian ratchets: Strong and weak Parrondo effect
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Inspired by the flashing ratchet, Parrondo’s game presents an apparently paradoxical situation. Parrondo’s game
consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B
has two coins, with an integer parameter M . If the current cumulative capital (in discrete unit) is a multiple of M ,
an unfavorable coin pb is used, otherwise a favorable pg coin is used. Paradoxically, a combination of game A
and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo’s game
to include the possibility of M being either M1 or M2. Also, we distinguish between strong Parrondo effect, i.e.,
two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a
better-performing game. We find that when M2 is not a multiple of M1, the combination of B(M1) and B(M2) has
strong and weak Parrondo effect for some subsets in the parameter space (pb,pg), while there is neither strong
nor weak effect when M2 is a multiple of M1. Furthermore, when M2 is not a multiple of M1, a stochastic mixture
of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature
of Parrondo’s game, we establish a link between our extended Parrondo’s game with the analysis of discrete
Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias
in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended
model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor
for the game performance of the extended model. On the other hand, our extended model suggests a design of a
ratchet in which the potential is a mixture of two periodic potentials.
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I. INTRODUCTION

In 1992, Ajdari and Prost discovered a Brownian ratchet
mechanism [1], which was named by Astumian and Bier [2]
the flashing ratchet. Inspired by the flashing ratchet, Parrondo
[3] invented the games of chance later known as Parrondo’s
games, in which two losing games can be combined following
a random or periodic strategy leading to a winning game.
Later, Allison et al. [4] and Toral et al. [5] demonstrated that
Parrondo’s game can be described by a discrete Fokker-Planck
equation, thus a more rigorous relation between Parrondo’s
game and a Brownian ratchet was established. From the
perspective of the game, the optimal sequence for a given set of
parameters for Parrondo’s games was discovered by Dinis [6].

The games have also received attention in many other fields
[7], ranging from Brownian ratchets [8,9], nonlinear dynamics
[10–13], biology [14,15], chemistry [16], and economics
[17]. Different variants of the original Parrondo’s games
have been developed, including history-dependent Parrondo’s
game [18], Parrondo’s game with self-transition [4], and a
multiplayer version of Parrondo’s game [19–21]. In particular,
a variant called Parrondo’s game with one-dimensional spatial
dependence [22] has been investigated by Mihailovic [23]
and generalized to the synchronous case [24] and the two-
dimensional case [25]. Whether a scale free network allows
Parrondo’s games with spatial dependence was also investi-
gated [26–28]. Quantum versions of Parrondo’s games have
also received attention [29–32]. An optical model of quantum
Parrondo’s game was implemented experimentally [33], based
on the techniques developed in Ref. [34]. In an interesting
paper by Harmer et al. [35], the authors discussed several open
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questions about Parrondo games. One of these open questions
concerned the possibility of different M during play.

Since Parrondo’s game was inspired by the flashing ratchet,
a question was raised whether one can infer characteristics of
certain continuous Brownian ratchets from extended versions
of the original Parrondo’s game. This line of research was
pursued by Harmer et al. [36] with preliminary results. In
addition to the usual game A and game B, the integer parameter
M in the B game can assume different values between 3 and
10 with equal probability at each game. It was demonstrated
by simulations that under this setting other counterintuitive
phenomena would occur. The motivation for randomizing
M was that M controls the period of the ratchet potential
and therefore randomizing M means randomizing the period
of the ratchet potential. The Parrondo’s game extended in
this way corresponds to a type of Brownian ratchets other
than the flashing ratchet. We follow this line of research
and use a different but similar model, in which M can be
either of M1 and M2. Restricting M to be one of only two
values allows systematic investigations while one can still
observe interesting phenomena. Among the various properties
of our extended model, we point out the significance of weak
Parrondo effect, which is the situation when two games, which
need not be both losing, combines to form a better game in
the sense of losing less or even winning more. Weak Parrondo
effect is a natural and meaningful extension to the well-known
Parrondo effect: two losing games combine to become a
winning game. We show that this distinction between the
strong and weak Parrondo effect is significant in our extended
model.

The paper is organized as follows: we begin by introducing
the original Parrondo’s game and its Markov chain formulation
in Sec. II. In Sec. III we present the formulation of our
extended Parrondo’s game. In Sec. IV, we show the conditions
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under which there are strong Parrondo effects for our extended
Parrondo game with B(M1) and B(M2) and the further mixture
with game A. In Sec. V, we discuss features of mixing two
B games (with or without mixing also with game A) that
we call the weak Parrondo effect. In Sec. VI, we apply the
Fokker-Planck dicretization scheme on the extended model,
and show the properties of our extended model from the
perspective of discrete Brownian ratchets. Concluding remarks
can be found in Sec. VII.

II. ORIGINAL PARRONDO’S GAME: (A,B(M))

The original Parrondo’s game consists of two individual
coin tossing games, namely game A and game B. Game A has
only one coin, whose winning probability is pA = 1/2 − ε,
where ε is a small and positive number. Let X(t) be the
cumulative capital of the player at time t , a non-negative
integer. If the player keeps playing game A, the average capital
satisfies

〈X(t + 1)〉 = 〈X(t)〉 + 2pA − 1, (1)

where 〈·〉 is understood as ensemble average. We define the
long-term expected gain as

g ≡ lim
t→∞〈X(t + 1)〉 − 〈X(t)〉, (2)

which in many cases exists. If 〈X(t + 1)〉 − 〈X(t)〉 oscillates
in a limit cycle, then g is understood to be an average over a
limit cycle. Thus with pA = 1/2, g is zero as this is a trivial
unbiased random walk. In the context of Parrondo’s game [37],
a winning game is one that has positive g. A fair game is one
with g = 0 or g with zero average over a limit cycle. For
positive ε, g = −2ε and game A is a losing game.

Game B has two coins, one “good” coin and one “bad” coin.
Game B has an integer parameter M . If X(t) is a multiple of M ,
then X(t + 1) is determined by the “bad” coin with winning
probability pb = 1/10 − ε, otherwise the “good” coin with
winning probability pg = 3/4 − ε is used.

Similar to game A, if the player keeps playing game B only,
the average capital satisfies

〈X(t + 1)〉 = 〈X(t)〉 + 2{π0(t)pb + [1 − π0(t)]pg} − 1,

(3)

which explicitly depends on π0, the probability that X(t) = 0
mod M . Harmer and Abbott [38] showed that game B is a
losing game with pb = 1/10 − ε, pg = 3/4 − ε, and M = 3,
with positive ε.

If we model the Parrondo’s game as a discrete-time
Markov chain as in Ref. [39], we can define the probability
vector (for simplicity we set M = 3 for the purpose of
demonstration) π(t) ≡ (π0(t),π1(t),π2(t))T . Accordingly, the
transition matrix for game A is

�A =

⎛
⎜⎝

0 1 − pA pA

pA 0 1 − pA

1 − pA pA 0

⎞
⎟⎠, (4)

such that the time evolution equation is π(t + 1) = �Aπ (t).
Similarly, the transition matrix for game B is

�B =

⎛
⎜⎝

0 1 − pg pg

pb 0 1 − pg

1 − pb pg 0

⎞
⎟⎠. (5)

The stochastic mixture of game A and B has the following
transition matrix:

� = γ�A + (1 − γ )�B, (6)

where γ is the probability of playing game A in the stochastic
mixing of game A and B. Parrondo’s game can also be played
according to a periodic game sequence such as ABABB, in
which case the probability vector is evolved by multiplying π

with �A or �B according to the sequence.
Parrondo’s game has a seemingly paradoxical property

that while game A and B are losing when they are played
individually, the stochastic mixture of game A and B, or
playing according to a deterministic sequence, may lead to
a winning combined game for small positive value of ε. For
the detailed analysis of the apparent paradox, please refer
to Ref. [39]. In summary, since the two games are coupled
nonlinearly through X(t), the combination of the two losing
games is nonlinear and in general it is not surprising that
a winning game can emerge from their combination. In the
context of Parrondo’s game, the phenomenon that two losing
games can be combined to produce a winning game is called
the Parrondo effect. An interesting and related phenomenon
also deserves investigation, namely that two games, not
necessarily losing, combine to form a game that performs
better, though not necessarily winning, than either of the two
individual games, which will be called weak Parrondo effect.
Obviously, the criteria for Parrondo effect fits the criteria for
weak Parrondo effect, but the reverse is not true.

III. EXTENDED GAME: (B(M1), B(M2))

In the original Parrondo’s game, while M could be any
integer larger than 3, analysis of the game focused on the case
of M = 3. In early literature [40,41], there were discussions on
the effects of randomizing the parameter M . With preliminary
results, Ref. [40] demonstrated by randomizing M , additional
complex and counterintuitive phenomena could be observed.
Inspired by this early effort, we systematically investigate the
case where the value of M of game B can take either M1 or M2

(without loss of generality we always assume M2 > M1). In
our work, we always assume that pb1 = pb2,pg1 = pg2 for the
two individual B games B(M1,pb1,pg1) and B(M2,pb2,pg2).
Since M is no longer a fixed value of the game, a game
B with a particular value of M is designated by B(M).
The full specification of a B game should be written as
B(M,pb,pg), but for simplicity we do not write its dependence
on pb and pg explicitly. Similar to the mixture of game A
and B in the original game, our extended model allows the
stochastic mixture and deterministic switching of B(M1) and
B(M2). Using the notations of discrete time Markov chain,
the stochastic mixture of B(M1) and B(M2) is equivalent to
the linear combination of two transition matrices, �B(M1),
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FIG. 1. (Color online) Expected capital 〈X(t)〉 for game
B(3),B(4),B(3,4,C = 0.2), and switching sequence (34344). A line
is added to 〈X(t)〉 for visualization purpose. For B(4), B(3,4,0.2),
and the game sequence, every data point is a moving average over
two consecutive time steps, in order to smooth out the oscillation.
Parameters used: pb = 0.1, pg = 0.67. Both stochastic mixture and
deterministic switching of game B(3) and B(4) could lead to a
winning combined game, even without game A.

�B(M2), corresponding to B(M1) and B(M2), respectively:

�B(M1,M2,C) = C �B(M1) + (1 − C)�B(M2), (7)

where C is the probability of using B(M1) in the stochastic
mixture of B(M1) and B(M2) denoted by B(M1,M2,C). Notice
that since the dimension of �B(M1,M2,C) is LCM(M1,M2)
(LCM stands for least common multiple), both transition
matrices �B(M1) and �B(M2) have to be expanded to
LCM(M1,M2) × LCM(M1,M2) matrices. Figure 1 shows that
both stochastic mixture and deterministic switching could lead
to a winning game.

We can also include game A into the stochastic mixture by

� = γ�A + (1 − γ )�B(M1,M2,C). (8)

Markov chain analysis shows that given C and γ , a Parrondo’s
game, be it an individual game or a stochastic mixture game, is
wining, losing, or fair depending only on the values of pb and
pg . A plot of “winning-losing region” is particularly useful
in explaining and investigating the seemingly paradoxical
property of Parrondo’s game. For the original Parrondo’s
game, a fair game corresponds to a point (pg,pb) in the
parameter space satisfying the following condition [39,42] (for
the derivation, please refer to the Appendix):

[γpA + (1 − γ )pb][γpA + (1 − γ )pg]2

= {1 − [γpA + (1 − γ )pb]}{1 − [γpA + (1 − γ )pg]}2.

(9)

Equation (9) defines the fair game boundary in the param-
eter space (pg,pb) and partitions the parameter space into a
“winning” region and a “losing” region. See Fig. 2 for the fair
game boundary with several values of γ . The results should
be interpreted in the following fashion: given a fixed value of
pA (which is set to 0.5 to preserve the analogy with diffusion
process) and γ , a particular Parrondo’s game, corresponding
to a point (pg,pb), is winning if the point is above the fair
game boundary (which is determined by the value of γ ), and
losing if below the boundary. When γ increases, the fair game
boundary shifts such that the winning region becomes larger.
Also, when γ increases, the fair game boundary becomes less
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FIG. 2. (Color online) The winning and losing regions in the
parameter space for the original Parrondo’s game. By definition, the
two regions are separated by Eq. (9). The parameter for game A, pA,
is fixed at 0.5 to preserve its analogy with pure diffusion process. As
γ increases, the fair game boundary becomes less and less convex.

convex, which will be an important factor when we consider
the generalization to the extended game.

IV. STRONG PARRONDO EFFECT
IN THE EXTENDED MODEL

In the original Parrondo’s game, the fair game condition
[Eq. (9)] can be rewritten as

p0p1p2 = (1 − p0)(1 − p1)(1 − p2), (10)

where pi is the transition probability from state i to state
i + 1, and implicitly we model the game as a discrete time
Markov chain, in which the transition probability P (i →
j ) = 0 unless j = i ± 1 and P (i → j ) = P (i + 3 → j + 3).
In other words, it is a random walk with spatially periodic
transition probabilities. According to Ref. [42], a winning
Parrondo’s game corresponds to a Markov chain that is
transient towards ∞, a fair game corresponds to a chain
that is recurrent, and a losing game corresponds to a chain
that is transient towards −∞. The fair game condition is
therefore the condition under which the corresponding Markov
chain is recurrent. For a random walk with spatially periodic
transition probabilities (period L), the condition under which it
is recurrent, and therefore the fair game condition for a general
Parrondo’s game with period L, is

L−1∏
i=0

pi =
L−1∏
i=0

(1 − pi), (11)

where pi is the transition probability from state i to state i + 1.
The fair game condition for B(M1,M2) is therefore (please
refer to the Appendix for the derivation)

pbp
Q
g αL/M1−1βL/M2−1

= (1 − pb)(1 − pg)Q(1 − α)L/M1−1(1 − β)L/M2−1, (12)

where α = [C pb + (1 − C)pg], β = [(1 − C)pb + C pg],
Q = L − L/M1 − L/M2 + 1, and L = LCM(M1,M2).

Figure 3 shows the fair game boundaries for B(3), B(4),
and B(3,4,C = 0.25). The shaded area is of great interest:
the area is inside the winning region for B(3,4,C = 0.25) but
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FIG. 3. (Color online) Fair game boundaries for B(3), B(4), and
B(3,4,C = 0.25). The shaded area is inside the winning region
for B(3,4,C = 0.25) but is inside the losing regions for both B(3)
and B(4). This means, given any point (pg,pb) in the shaded area,
stochastic mixture of B(3) and B(4) results in a winning combined
game while the individual games are losing. We call the shaded region
the strong Parrondo region, or more precisely the subset of parameter
space, S(3,4,0.25).

is also inside the losing regions for both B(3) and B(4). This
means, given any point (pg,pb) in the shaded area, a stochastic
mixture of B(3) and B(4) results in a winning combined
game while the individual games are losing. In the extended
model, two losing B games can be stochastically mixed to be
a winning game, demonstrating strong Parrondo effect. We
call the aforementioned area in the parameter space strong
Parrondo region. More precisely, let us first define

S(M1,M2,C) = {(pg,pb)|g(M1,M2,C) > 0 and
(13)

g(M1) < 0 and g(M2) < 0}.

This is the set of points in the parameter space where
the combined game B(M1,M2,C) has a positive long-term
expected gain g, while the two individual games B(M1) and
B(M2) have negative g. The set S(3,4,0.25) is thus the strong
Parrondo region (shaded area in Fig. 3) when C = 0.25. The
statement that there exists a nonempty set S(M1,M2,C) for
some value of C is thus equivalent to the statement that strong
Parrondo effect exists in the parameter space of pg and pb for
this value of C.

However, not every pair of B(M1) and B(M2) is able to
form a winning stochastic mixture game B(M1,M2). One can
show, using elementary geometry, that in the parameter space
only when ∀ k ∈ N, M2 	= k M1 does S(M1,M2,C) exist for
some value of C in the range between 0 and 1.

Here we only give a sketch of the proof. For games B(M1)
and B(M2), the fair game boundaries are

pb pM1−1
g = (1 − pb)(1 − pg)M1−1 (14)

and

pb pM2−1
g = (1 − pb)(1 − pg)M2−1. (15)

First we consider the end point at pg = 0.5,pb = 0.5, since
Eqs. (12), (14), and (15) will all pass this end point. We
differentiate Eqs. (12), (14), and (15) to obtain dpb/dpg|M1,M2 ,

dpb/dpg|M1 , and dpb/dpg|M2 at this point. The derivatives are

dpb

dpg

∣∣∣∣
M

= 1 − M, (16)

so dpb/dpg

∣∣
M1

= 1 − M1 and dpb/dpg

∣∣
M2

= 1 − M2. For the
stochastic mixture,

dpb

dpg

∣∣∣∣
M1,M2

= 1 − M1M2

C M2 + (1 − C)M1
. (17)

Clearly, dpb/dpg|M2 < dpb/dpg|M1,M2 < dpb/dpg|M1 . Next,
we consider the other end point at pg = 1,pb = 0, since
Eqs. (12), (14), and (15) will also all pass through this end
point. Here, the derivatives dpb/dpg are all zero for the
three games, so instead we consider the three derivatives at
pg = 1 − ε, where ε is a small number and has no relation with
the parameters of the original Parrondo’s game. At pg = 1 − ε,

dpb

dpg

∣∣∣∣
M1,M2

∼ εL−L/M1−L/M2 as ε → 0, (18)

and

dpb

dpg

∣∣∣∣
M

∼ εM−2 as ε → 0. (19)

When ∀k ∈ N,M2 	= k M1, L − L/M1 − L/M2 > M2 −
2 > M1 − 2, which means dpb/dpg

∣∣
M1,M2

goes to zero asymp-

totically faster than dpb/dpg

∣∣
M2

as ε → 0. Considering that
the slopes of the three fair game conditions are monotonically
decreasing in pg , there must exist a point of intersection
between Eqs. (12) and (15), and hence S(M1,M2,C) is
nonempty for all C ∈ (0,1).

If ∃k ∈ N such that M2 = k M1, or equivalently, M2 is a
multiple of M1,

dpb

dpg

∣∣∣∣
M1,M2

∼ εM2−k−1 as ε → 0. (20)

Clearly, M1 − 2 < M2 − k − 1 < M2 − 2, which leads to
the absence of intersection point between Eqs. (12) and (15).
For this reason, S(M1,M2,C) is empty for all C ∈ (0,1). In
other words, there is no strong Parrondo region in this case.
For the case when ∀k ∈ N,M2 	= k M1, the position of the
point of intersection (p∗

g,p
∗
b) can be calculated numerically

in great accuracy. Since (p∗
g,p

∗
b) satisfies Eq. (15), p∗

g is
sufficient to characterize the point of intersection. We use
the notation p∗

g(M1,M2,C) [or p∗
b(M1,M2,C), since one is

a function of the other] to designate the point of intersection
as a function of M1, M2, and C. Numerical results show that
in general p∗

g(M1,M2,C) is an increasing function of C, while
p∗

b(M1,M2,C) is a decreasing function of C.
Physically, a stochastic mixture of B(M1,M2,C) with game

A can be regarded as imposing a pure diffusion process
with a particular strength on a random walk process in a
spatially periodically fluctuating environment. To see the
effect of game A on the extended model, we can make a
simple substitution on Eq. (12) using pg → γ pA + (1 − γ )pg

and pb → γ pA + (1 − γ )pb. The matrix notation of this
stochastic mixture is Eq. (8). We use A(γ ) ⊕ B(M1,M2,C)
to designate such stochastic mixture. To preserve the analogy
between game A and pure diffusion process, we set pA = 0.5.
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FIG. 4. (Color online) The effect of B(3,4,0.2) stochastically
mixed with game A with different values of γ : (a) for A(0.15) ⊕ B(3),
A(0.15) ⊕ B(4), and A(0.15) ⊕ B(3,4,0.2); (b) for A(0.35) ⊕ B(3),
A(0.35) ⊕ B(4), and A(0.35) ⊕ B(3,4,0.2). In (a), despite that the
fair game boundaries for the three games become less convex, the
strong Parrondo region still exists, or S(3,4,0.2) is nonempty. In (b),
however, the strong Parrondo region ceases to exist, or equivalently
S(3,4,0.2) = ∅.

We show in Figs. 4(a) and 4(b) for the effects of stochastic
mixture with game A from the perspective of the fair game
boundaries. As γ increases, the fair game boundaries for B
games become less convex in a way similar to the original
Parrondo’s game. Also, the point of intersection p∗

g(M1,M2,C)
moves downward in the parameter space. The upshot is the
strong Parrondo region S(M1,M2,C) shrinks as γ increases,
and beyond a critical value γcs , S(M1,M2,C) becomes empty.
More precisely,

γcs = inf {γ |S(M1,M2,C) = ∅} . (21)

γcs can be calculated numerically in great accuracy. Since
when p∗

b(M1,M2,C) = 0, γ = γcs , we can calculate γcs by
solving p∗

b(M1,M2,C) = 0. See Fig. 5 for γcs as a function of
C for several pairs of M1,M2. In general, γcs is a decreasing
function of C. We can understand this result in the following
way: since p∗

b(M1,M2,C) is a decreasing function of C, as C

increases, a smaller amount of game A is needed to “drag” the
point of intersection down to pb = 0. Numerical calculation
shows that the addition of game A will not introduce strong
Parrondo region to the parameter space when ∃ k ∈ N such
that M2 = k M1.

V. WEAK PARRONDO EFFECT
IN THE EXTENDED MODEL

The investigation of the weak Parrondo effect in the
extended model requires the calculation of the expected gain
[Eq. (2)]. This can be achieved in more than one way. One can

0.2 0.4 0.6 0.8 1.0C
0.1
0.2
0.3
0.4
0.5
Γcs

B 3,4 B 4,5 B 5,6

FIG. 5. (Color online) Critical value of γ for strong Parrondo
effect γcs as a function of C for several pairs of M1,M2. The value of
γcs is a decreasing function of C.

solve Eq. (8) for the stationary probability vector and obtain
g from it. One can also derive a general formula for g like the
one in Refs. [43,44]. We extend the definition of the strong
Parrondo region to accommodate the weak Parrondo region:

S(M1,M2,C,g0) = {(pg,pb)|g(M1,M2,C) > g0 and
(22)

g(M1) < g0 and g(M2) < g0},
which is the set of points in the parameter space where the
long-term expected gain of the combined game B(M1,M2,C)
is more than g0 while the two individual games B(M1) and
B(M2) gain less than g0 per time step. The strong Parrondo
region is thus a special case with g0 = 0, or equivalently
S(M1,M2,C) ≡ S(M1,M2,C,0). The weak Parrondo region,
or

W(M1,M2,C) = {(pg,pb)|g(M1,M2,C) > g(M1) and
(23)

g(M1,M2,C) > g(M2)}
satisfies

W(M1,M2,C) =
⋃

g0∈R
S(M1,M2,C,g0). (24)

Figure 6 shows the weak Parrondo region W(3,4,0.2) and
strong Parrondo region S(3,4,0.2). Clearly, S(3,4,0.2) is a
nontrivial subset of W(3,4,0.2).

We have just shown that the further addition of game
A could shrink the strong Parrondo region to an empty
set. Numerical results show that the weak Parrondo region
W(M1,M2,C) also shrinks as γ increases and the property
S(M1,M2,C) ⊂ W(M1,M2,C) holds. There also exists a
critical value γcw(C) [in general larger than γcs(C)], beyond
which the weak Parrondo region becomes an empty set. See
Fig. 7 for γcw and γcs as a function of C for B(3,4) and
B(3,5). We observe that γcw > γcs for every C. Therefore,
backed up by numerical calculations, weak Parrondo effect is

Weak Parrondo Region

Strong Parrondo Region

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

pg

p b

FIG. 6. Weak Parrondo region W(3,4,0.2) (to the right of the
dotted line) and strong Parrondo region S(3,4,0.2) (shaded region).
The set S(3,4,0.2) is a nontrivial subset of W(3,4,0.2). In fact, under
this setting (M1 = 3,M2 = 4,C = 0.2), W(3,4,0.2) is much larger in
area than S(3,4,0.2).
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B 4,5 Γcw B 4,5 Γcs

FIG. 7. (Color online) The critical value of γ for the weak
Parrondo region, γcw , and the critical value of γ for the strong
Parrondo region, γcs , as a function of C for B(3,4) and B(3,5). For
every C, γcw > γcs .

a generalization of strong Parrondo effect, in the parameter
space, in the sense that S(M1,M2,C) ⊂ W(M1,M2,C). The
weak Parrondo effect is more robust than the strong Parrondo
effect in the face of imposed diffusion process.

VI. EXTENDED PARRONDO’S GAME AS A DISCRETE
BROWNIAN RATCHET

While Parrondo’s games were originally inspired by the
flashing ratchet, no direct relation was established between
them until the work of Allison et al. [4,45] and Toral et al.
[5,43,46] appeared. The establishment of the connection
requires the discretization of the Fokker-Planck equation and
the matching up of the discrete Fokker-Planck equation with
the master equation of Parrondo’s game. In this work, we
adopt the discretization scheme employed by Toral et al. since
it produces intuitive discrete ratchet potential and probability
current. Nevertheless, it can be shown that the potentials
resulting from the two approaches coincide in the limit of an
infinitesimally small space-discretized step [47]. The discrete
ratchet potential corresponding to a Parrondo’s game is

Vi = −1

2
ln

[
i∏

k=1

qk−1

1 − qk

]
, (25)

where qk is the transition probability from state k to k + 1. The
ratchet potential corresponding to a winning game is decreas-
ing in trend. Similarly, the ratchet potential corresponding to
a losing game is increasing in trend and for a fair game the
ratchet potential is constant in trend. To capture the trend of a
ratchet potential, we define a quantity called the macroscopic
bias,

E = −VL

L
= 1

2L
ln

[
L∏

k=1

qk

1 − qk

]
, (26)

which is just the average potential drop over one spatial period.
Because of the minus sign, a winning game has a positive
bias, a losing game has a negative bias, and a fair game has
zero bias, which is consistent with the fair game condition
for the Parrondo’s game. Thus, the quantity

∏L
k=1

qk

1−qk
in

Eq. (26) provides a convenient way for relating the result of the
Parrondo’s game to the potential drop in the Brownian ratchet.

In the discrete ratchet picture, the original Parrondo’s
paradox is equivalent to the situation that two ratchet potentials

B 3

B 4

B 3,4,0.15

0 5 10 15 20 25 30
1.5

1.0

0.5

0.0

0.5

1.0

i

V i

FIG. 8. (Color online) Discrete ratchet potential for B(3), B(4),
and B(3,4,0.15). The parameters are pb = 0.1 and pg = 0.7.

with zero macroscopic bias, or even slightly negative bias,
combining through Eq. (25), form a ratchet potential with
positive macroscopic bias. In the original Parrondo’s game,
starting from a discrete ratchet potential Vi(M) corresponding
to fair game B (zero macroscopic bias), the addition of game
A will introduce a positive bias and modify the intensity of
local fluctuations (measured by Vi − i E). In the extended
Parrondo’s game, however, the combination of two ratchet
potentials Vi(M1) and Vi(M2) leads to a complicated ratchet
potential Vi(M1,M2,C) which in general has different macro-
scopic bias from Vi(M1) and Vi(M2), different intensity of
local fluctuations, and vastly different overall potential profile,
as shown in Fig. 8.

The probability current [48] is

J = 1

2
P st

0
1 − e2VL∑L
j=1

e
2Vj

2−2pj

, (27)

where P st
0 is the stationary probability at state 0 modulo L

given by the implicit relation

P st
i = e−2Vi

⎡
⎣P st

0 − 2J

i∑
j=1

e2Vj

2 − 2pj

⎤
⎦ (28)

and the normalization condition,
∑L−1

i=0 P st
i = 1, gives

a complicated solution of P st
0 . This formulation of

probability current is consistent with the result of
Markov chain analysis since g(pg,pb,M1,M2,C) =
LCM(M1,M2)J (pg,pb,M1,M2,C) analytically.

While the sign of E tells whether a Parrondo’s game is
winning or losing (positive E corresponds to a winning game),
the relative magnitudes of two ratchet potentials E1, E2 do not
tell which one is winning more, i.e., having a larger g, since
there is no one-to-one correspondence between E and g. In
fact, it can be shown that

max
0�pg�1,0�pb�1

g(pg,pb,M1,M2,C) = 2

e−2E0 + 1
− 1

(29)
subject to E(pg,pb) = E0.

The maximum is achieved when pg = pb, which corre-
sponds to the case where Vi = − i

2 ln( pg

1−pg
). The minimum of

g(pg,pb,M1,M2,C) subject to E(pg,pb) = E0 is zero, when
pg → 1, pb → 0 and V1 → ∞, corresponding to the case
when V1 is so large that it blocks the movement of particles
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(a) (b)

FIG. 9. Various partitions in the parameter space: (a) for B(3),B(4), and B(3,4,0.2), typical for small C cases; (b) for B(3),B(4), and
B(3,4,0.7), typical for large C cases. Set 2 ∪ 3 is D(3,4,C). Set 1 ∪ 2 ∪ 3 ∪ 4 is F(3,4,C). In (a), set 3 ∪ 4 ∪ 5 is W(3,4,C). In (b), set
3 ∪ 4 ∪ 5′ is W(3,4,C). Set 1 is where E(3) < E(3,4,C) < E(4) and g(3) < g(3,4,C) < g(4). Set 3 is where E(3) < E(4) < E(3,4,C) and
g(3) < g(4) < g(3,4,C). Set 1 ∪ 3 is where relation among the bias of the three games is consistent with the relation among the game
performance of the three games.

entirely, regardless of whether macroscopic bias is finite and
nonzero.

Let us use the following notation:

D(M1,M2,C) = {(pg,pb)|E(M1,M2,C) > E(M2)}, (30)

F(M1,M2,C) = {(pg,pb)|E(M1,M2,C) > E(M1)}, (31)

and

P = {(pg,pb)|0 � pb � 0.5,0.5 � pg � 1}. (32)

Since the sign of E determines whether a game is winning
or losing, the relative magnitudes of E for different games
could give a naive expectation of whether one game performs
better (measured in the long-term average gain g) than the
other. In the application to the extended game, it provides a
simple guideline in predicting whether the combined game
B(M1,M2,C) performs better than the two individual games.
It is not difficult to show that E(M2) > E(M1) if M2 >

M1 for 0 � pb � 0.5 and 0.5 � pg � 1. Also, E(M1) <

E(M1,M2,C) < E(M2) if M2 is a multiple of M1 for 0 � pb �
0.5 and 0.5 � pg � 1. These two properties coincide with the
real game performances. For other M pairs, the boundary is
described by

pR
g αL/M1−1βL/M2−1

= (1 − pg)R(1 − α)L/M1−1(1 − β)L/M2−1, (33)

where R = L − L/M1 − L/M2 − M2 + 2, α = C pb + (1 −
C)pg , β = [(1 − C)pb + C pg], L = LCM(M1,M2). One can
verify that the point of intersection between Eqs. (12) and
(15) is a solution to Eq. (33), which means the existence of the
point of intersection guarantees the existence of D(M1,M2,C).
Since for M2 	= k M1 ∀k ∈ N, the point of intersection exists
for all C, D(M1,M2,C) exists for all C. The existence of
F(M1,M2,C), however, can only be found out numerically.

We show in Fig. 9 the partitions of parameter space with
regard to relative magnitude of macroscopic bias and long-term
expected gain of the three games. In the region of parameter
space defined by set 1, E(3) < E(3,4,C) < E(4) and g(3) <

g(3,4,C) < g(4) hold simultaneously. In set 3 of the parameter
space, E(3) < E(4) < E(3,4,C) and g(3) < g(4) < g(3,4,C)
hold simultaneously. Therefore, in these two sets, the relation
among the bias of the three games is consistent with the relation
among the game performances of the three games.

To summarize, when M2 is a multiple of M1, the relation
among E(M1), E(M2), and E(M1,M2,C) is consistent
with the relation among g(M1), g(M2), and g(M1,M2,C).
In other words, E(M1) < E(M1,M2,C) < E(M2) and
g(M1) < g(M1,M2,C) < g(M2) hold simultaneously.
When ∀k ∈ N, M2 	= k M1, there exists one subset
F(M1,M2,C)\[W(M1,M2,C) ∪ D(M1,M2,C)] in which
E(3) < E(3,4,C) < E(4) and g(3) < g(3,4,C) < g(4)
hold simultaneously and another subset W(M1,M2,C) ∩
D(M1,M2,C) in which E(3) < E(4) < E(3,4,C) and
g(3) < g(4) < g(3,4,C) hold simultaneously. The exact
counterpart of game performance in the discrete ratchet picture
is the probability current [Eq. (27)], which has a different form
from E, so it is not surprising to see that the two quantities
behave differently on some occasions. The interesting thing is
in some region of the parameter space, namely 1 ∪ 3 in Fig. 9,
the two quantities behave in a similar way.

VII. CONCLUSIONS

We have extended the original Parrondo’s game to allow
M to be either M1 or M2. We have discussed the distinction
between the strong Parrondo effect and the weak Parrondo
effect, which plays an important role in the extended model.
In the extended game, two individual games B(M1) and B(M2)
can stochastically mix to form a better-performing game,
exhibiting both the strong and the weak Parrondo effects, if
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and only if M2 is not a multiple of M1. If M2 is a multiple
of M1, it is impossible to obtain a better-performing game by
combining B(M1) and B(M2), meaning the absence of both
strong and weak Parrondo effect. Further addition of game A,
in analogy to a pure diffusion process imposed on the game,
can destroy the strong and the weak Parrondo effect, but the
weak Parrondo effect is more robust against the imposed pure
diffusion process.

We have shown the physical meaning of our extended model
in terms of discrete ratchet potentials obtained through the
discretization of Fokker-Planck equation. We have identified
an important quantity, the macroscopic bias, or the average
drop in the discrete ratchet potential in one spatial period.
While macroscopic bias is not the same as the performance of
the game, measured by long-term expected gain, the relation
among the bias of the three games [B(M1), B(M2), and
B(M1,M2,C)] in some case is in agreement with the relative
performance of the three games. If M2 is a multiple of
M1, the relation among E(M1), E(M2), and E(M1,M2,C)
is in agreement with the relation among g(M1), g(M2), and
g(M1,M2,C) in the whole parameter space. If M2 is not a
multiple of M1, there exists a proper subset in which the
relations of the two quantities agree with each other.

Our model assumes pb1 = pb2, pg1 = pg2 for
B(M1,pb1,pg1) and B(M2,pb2,pg2) for the benefit of
a systematic investigation, since if we remove these
assumptions, the parameter space will be four dimensional.
More features are expected to emerge if we relax these
constrictions. For future work, we can allow M to be one
of three possible values, such as 3, 4, and 5. A stochastic
mixture of B(3), B(4), and B(5) is expected to produce a
game that performs better than the stochastic mixture of any
pair chosen from B(3), B(4), and B(5) for some point in the
parameter space. Moreover, Toral’s game [49] is one version
of multiplayer Parrondo’s game, and it contains a modified
game A that redistributes the wealth between players,
resembling strong interaction between Brownian particles,
from the perspective of a discrete ratchet. Incorporating
Toral’s modified game A into our extended model, we
could create a new version of Parrondo’s game which is the
counterpart of solitonic flashing ratchet [50].
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APPENDIX: DERIVATION OF FAIR GAME CONDITION

Parrondo’s game, be it original or extended, can be modeled
as a discrete time random walk on the integer setZ [Fig. 10(a)].
For example, game B(M = 3) has a corresponding Markov
chain depicted in Fig. 10(b). The Markov chain for game A is a
special case of game B where pg = pb. The stochastic mixture
of game A and B will not modify the structure of the Markov
chain, but will merely change the transition probabilities at
each site by pg → γpA + (1 − γ )pg and pb → γpA + (1 −

. . . -1 0 1 2 3 . . .

p−2

q−1

p−1

q0

p0

q1

p1

q2

p2

q3

p3

q4

(a)

. . . -1 0 1 2 3 . . .

pg

qg

pg

qb

pb

qg

pg

qg

pg

qb

pb

qg

(b)

FIG. 10. The discrete time Markov chain for (a) general random
walk, (b) for game B(M = 3). In (a) pi = P (i → i + 1) is the
transition probability from state i to i + 1, and qi ≡ 1 − pi . In
(b), p3k = pb, p1+3k = p2+3k = pg, ∀k ∈ Z. qg ≡ 1 − pg and qb ≡
1 − pb.

γ )pb. According to Ref. [37], in the context of Parrondo’s
game, a fair game will have a corresponding recurrent Markov
chain. For a winning game, the chain is transient towards ∞
while for a losing game the chain is transient towards −∞.
For a random walk whose transition probability is periodic,
i.e., pi = pi+kL,∀k ∈ Z, the condition of recurrence is

L−1∏
i=0

pi =
L−1∏
i=0

(1 − pi), (A1)

where L = 3 for B(M = 3). The proof of the condition
for recurrence can be found in many standard textbooks
on Markov chain and will be omitted here. Plug in p0 =
γpA + (1 − γ )pb and p1 = p2 = γpA + (1 − γ )pg and we
will recover Eq. (9).

Because of the periodic nature of the transition probabili-
ties, the Markov chain depicted in Fig. 10(b) can be reduced
to one with only three states, depicted in Fig. 11. Therefore,
the state probability becomes

π̂i(t) =
∞∑

k=−∞
πi+kL, (A2)

where L = 3 for B(M = 3).
For a extended game B(M1,M2,C), say M1 = 3 and M2 =

4, first we have to extend the finite state Markov chains
with three states [for B(3)] and four states [for B(4)] to
two equivalent Markov chains with 12 states [Figs. 12(a)
and 12(b)]. To get the Markov chain corresponding to
B(3,4,C), we need to add the transition probabilities together
by pi = C pi(M = 3) + (1 − C)pi(M = 4). In B(3,4,C), the
transition probability can only be one of the following four
values: pg , pb, C pg + (1 − C)pb, and C pb + (1 − C)pg . Out

0

1

2

pb

pg

pg

qb

qg

qg

FIG. 11. Reduced Markov chain for game B(M = 3).
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FIG. 12. Extended finite state Markov chain for (a) B(3) and
(b) B(4).

of the 12 transition probabilities {pi},
p0 = pb, p3 = p6 = p9 = C pb + (1 − C)pg,

p4 = p8 = C pg + (1 − C)pb, (A3)

p1 = p2 = p5 = p7 = p10 = p11 = pg.

Plug them into the recurrence condition Eq. (A1) and one will
get

pbp
6
gα

3β2 = (1 − pb)(1 − pg)6(1 − α)3(1 − β)2, (A4)

where α = [C pb + (1 − C)pg], β = [(1 − C)pb + C pg].
This is a special case for the fair game condition for the general
pair of M1 and M2, i.e., Eq. (12).
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