
PHYSICAL REVIEW E 89, 022136 (2014)

Nonequilibrium steady state of the kinetic Glauber-Ising model under an alternating magnetic field
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When periodically driven by an external magnetic field, a spin system can enter a phase of steady
entrained oscillations with nonequilibrium probability distribution function. We consider an arbitrary magnetic
field switching its direction with frequency comparable with the spin-flip rate and show that the resulting
nonequilibrium probability distribution can be related to the system equilibrium distribution in the presence of
a constant magnetic field of the same magnitude. We derive convenient approximate expressions for this exact
relation and discuss their implications.
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I. INTRODUCTION

The equilibrium properties of a statistical-physical system
are often characterized by a few macroscopic degrees of
freedom. As the system gets out of equilibrium, however, a
huge, mostly unmanageable number of degrees of freedom
come into play. For this reason, most conventional approaches
to nonequilibrium physics have recourse to the linear-response
approximation, where the response of the system to a small
perturbation is expressed in terms of equilibrium properties.
The possibility of an exact formalism incorporating nonequi-
librium processes has recently emerged with the discovery
of the so-called fluctuation theorems [1] and the formulation
of steady-state thermodynamics [2]. Popular study cases of
collective nonequilibrium dynamics are provided by classical
spin models, such as the kinetic Glauber-Ising model [3].
In addition to the earlier literature, where the dynamical
phase transitions in such low dimensional stylized systems
have been investigated at depth [4–7], we focus here on a
different aspect of the problem, namely on the search for an
algebraic framework to characterize a nonequilibrium steady
state (NESS). This class of systems can be maintained out of
equilibrium by a variety of external agents, like multiple heat
reservoirs [8] or external time-dependent magnetic fields [9].
For instance, when a weak, slowly oscillating magnetic field
is applied to the Glauber-Ising model, the system eventually
enters a steady collective oscillation phase via entrainment.
The linear-response theory accurately describes the onset of
entrainment by adopting the average magnetization as an
order parameter [10]. However, we show below that such a
perturbation approach fails to determine the probability density
function (PDF) itself or other observables that are nonlinear
functions of the PDF, like the entropy.

The approach pursued in this work is opposite to the linear-
response theory: Instead of restricting ourselves to the low-
frequency regime, where the magnetic field oscillates with
a period much longer than the spin-flip time scale, here we
assume from the beginning a high-frequency regime, where
the driving frequency and the spin-flip rate are comparable. We
show that, even if this situation occurs far from equilibrium,
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there exists a rather simple relationship between the NESS for
the driven spin system, and the known Boltzmann equilibrium
PDF for the system subject to a constant magnetic field. This
result can be then extended to analyze more realistic situations
for lower driving frequency. In this first report, we focus on
globally coupled spin systems, whose critical behavior belongs
to the mean-field (MF) universality class. In view of practical
applications, we remind that this is the universality class of
three-dimensional quantum Ising ferromagnets and uniaxial
dipolar Ising ferromagnets [11].

This work is organized as follows: In Sec. II, we attempt
a perturbative approach to obtain the NESS under sinusoidal
modulation, and compare it with numerical results. In Sec. III,
we present an alternative algebraic formulation for square-
wave modulation at high frequency, yielding the NESS as
an eigenvector. We derive an approximate expression at
lower frequencies as well. After comparing our formula with
numerical results, we summarize this work in Sec. IV.

II. PERTURBATIVE APPROACH

Let us consider n Ising spins governed by the Glauber
dynamics. The number of possible configurations is N ≡
2n. For each spin configuration i = (σ1, . . . ,σn), the energy
function is

Ei = −J
∑
〈μν〉

σμσν − h
∑

μ

σμ, (1)

where the first summation runs over the nearest neighbors and
h is an external magnetic field. In the globally coupled case
discussed here, every spin is coupled to all the other spins so
that the first summation should be understood as running over
all the spin pairs. At the same time, the coupling strength J

is replaced by J0(n − 1)−1, with J0 a constant, to ensure that
the energy is an extensive quantity. According to the Glauber
dynamics, the transition rate from the spin configurations i =
(σ1, . . . ,σα, . . . σn) to j = (σ1, . . . ,−σα, . . . σn) is

wji = 1

2n

[
1 − σα tanh

(
βJ

∑
k �=α

σk + βh

)]
, (2)

with β ≡ (kBT )−1 and T denoting the temperature of the heat
bath in contact with this system. To simplify notation, in the
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following we set J0 = 1 and kB = 1. The prefactor n−1 in
Eq. (2) indicates that only one spin was flipped. In terms of
these transition rates, one can write the master equation

�pi(t) = �t

N∑
j �=i

[wij (h)pj (t) − wji(h)pi(t)], (3)

where pi is the probability to observe the configuration i and
�t is the average spin-flip time. The system PDF, denoted by
the vector p, with transpose pT = (p1, . . . ,pN ), is normalized
to 1, i.e.,

∑N
j=1 pj = 1. This is one of the simplest systems

exhibiting nontrivial collective behavior such as dynamic
phase transitions and hysteresis [12]. If the external field is
absent, the phase transition occurs at T = 1 in units of J0/kB

in the thermodynamic limit.
We show first that standard linear perturbation analysis

fails to reproduce the h dependence of p, even for very small
system sizes. For a system of two spins, n = 2, there exist
N = 4 possible states, namely, + + , + −, − +, and −−.
Equivalently, we label these states 3, 2, 1, and 0, by digitizing
the spin directions + and −, respectively, as 1 and 0. At low
fields, βh � 1, the transition rates wji can be expanded in
powers of βh, so that pi(t) deviates from its equilibrium value,
p∗

i at h = 0, by a small amount ηi ,

pi(t) = p∗
i + ηi(t), (4)

with p∗
3 = p∗

0 = [2(1 + e−2β )]−1, p∗
1 = p∗

2 = [2(1 + e2β )]−1,
and

∑
i ηi(t) = 0. By retaining all terms up to the first order in

ηi and βh, the time evolution of η, with ηT ≡ (η3,η2,η1,η0),
is governed by the linear equation dη/dt = W̃ ∗ · η +
( 1

4βhsech2β)φ, obtained by taking the limit �t → 0 in Eq. (3).
Here, we have introduced the transition matrix at h = 0, W̃ ∗,
and a coupling vector φ, with φT = (1,0,0,−1). The matrix
W̃ ∗ has eigenvalues ζ3 = −1, ζ2 = 0, ζ1 = 1

2 (−1 − tanh β),
and ζ0 = 1

2 (−1 + tanh β), and the corresponding eigenvectors
are the columns of the diagonalization matrix Ỹ . After
diagonalizing W ∗ with Ỹ , the equation for ηi(t) reads

d

dt
η′

i = ζiη
′
i − δi0

βh

4
sech2β, (5)

where the prime sign labels the transformed coordinates and
δi0 is the Kronecker δ function. As h(t) is assumed next to
vary slowly in time, in leading order, terms proportional to
dh/dt can be safely discarded. In the case of sinusoidally
oscillating fields, h(t) = h0 sin ωt , we can easily solve the
set of linear differential equations in Eq. (5) for large t

and transform the solutions back to the original coordi-
nates, namely, η1 = η2 = 0 and η0 = 1

4βh0sech2β(ω cos ωt +
ζ0 sin ωt)/(ζ 2

0 + ω2) = −η3. Note that h(t) is only coupled to
the eigenmode associated with the second largest eigenvalue ζ0

[see Fig. 1(a)]. At larger n, the relaxation time toward p∗
i is still

determined by the second largest eigenvalue ζ0 (i.e., the slowest
decaying mode) [Fig. 1(b)]. As n grows, the critical point will
roughly correspond to the resonance condition |ζ0| ≈ ω → 0,
where the time scale diverges, so that the ground state
associated with ζ2 = 0 becomes doubly degenerate.

We quantify now the system response to the external
drive h(t) by calculating its entropy change as a function
of time [14]. In this case, the nonequilibrium entropy can

-1

 0
(a)

ζ

-1

 0

-5 β 5

(b)

FIG. 1. (Color online) Eigenvalue spectrum of the transition ma-
trix at h = 0, W̃ ∗, for (a) n = 2 and (b) n = 4. The solid lines represent
the eigenvalues coupled to h, according to the linear-response theory
(see text). The negative-β side represents the antiferromagnetic Ising
model [13].

be expressed as 〈S〉 = −∑
i pi ln pi and approximated to

−∑
i p

∗
i ln p∗

i − η2
3/p

∗
3 . By inserting our estimate for η3, we

obtain the rate of entropy change per spin,

1

n

d〈S〉
dt

≈ A cos 2ωt + B sin 2ωt, (6)

where in the linear-response theory Alin ≡ −2β2e2βζ0h
2
0ω

2/C

and B lin ≡ β2e2βh2
0ω(−ζ 2

0 + ω2)/C with C ≡
(1 + e2β )3(ζ 2

0 + ω2)2. Since the system entropy is a periodic
function of time, differently from the entropy production
of the total process [14], the rate in Eq. (6) has no definite
sign. Note that, for a given β, Alin attains a maximum at
ω = |ζ0|, as anticipated above. However, when compared
with the numerical data displayed in Fig. 2, Eq. (6) clearly
fails for βh � O(10−2). The discrepancy gets even worse as
the system size increases. The failure of the linear-response
theory is consistent with the observation that at low T , in
the large-n limit, the system PDF may experience singular
changes for infinitesimal field modulations [15], which
invalidates the assumption of Eq. (4) for βh � 1.

III. ALGEBRAIC FORMULATION

A. High-frequency modulation

We introduce now an alternative approach aimed at over-
coming the limitations of the linear-response theory. The main

0
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FIG. 2. (Color online) Amplitudes of entropy change for n = 2,
ω = 2π × 10−2, and h0 = 10−2. The line points show A and B of
d〈S〉/dt [see Eq. (6)] obtained by numerically integrating Eq. (3)
with �t = 10−2, while the dotted lines represent the corresponding
analytic results in the linear-response theory.
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idea is that the up-down symmetry will be generally broken
in the presence of the external field, even though the field is
oscillating, so that it is better to choose a symmetry-broken
equilibrium state as our starting point to study the NESS
[16]. This can be best explained in terms of linear algebra
in the following way: Let U (h) denote the transition matrix
for a spin system of energy function as in Eq. (1), subject
to an external magnetic field h. Under a static field +h, the
corresponding system dynamics is formulated as an N × N

matrix equation, p(t + �t) = U (+h) · p(t), with a steady-
state solution coinciding with the eigenvector associated with
the largest eigenvalue, λ1 = 1, that is q1 = U (+h) · q1. After
normalization, this determines the system equilibrium PDF at
constant h. The existence and uniqueness of the eigenvector q1

for any finite n is ensured by the Perron-Frobenius theorem
[17]. We hereafter assume finite n and full knowledge of the
U (+h) spectrum, i.e., of all eigenmodes qi as solutions of the
matrix equation U (+h) · qi = λiqi , with qT

i · qi = 1 and λi

denoting the ith largest eigenvalue. If the field changes its sign
at every time step, �t , with constant magnitude, then the time
evolution of the PDF obeys the equation

p(t + 2�t) = U (−h) · U (+h) · p(t). (7)

Equation (7) describes the fastest oscillating field that a
discrete-time formulation with time step �t can accommodate
(see, e.g., Ref. [18]). To make notation more compact, we
define U± ≡ U (±h). These two matrices are related by a
similarity transformation U− = P · U+ · P , where P is a
permutation matrix exchanging the h direction from + to
− and vice versa. Note that P 2 = I , I being the identity
matrix. Accordingly, Eq. (7) can be rewritten as p(t + 2�t) =
P · U+ · P · U+ · p(t) = [P · U+]2 · p(t). Under steady-state
conditions, the system PDF is given by the solution p̃ of the
following equation:

p̃ = P · U+ · p̃, (8)

with the system alternating between p̃ and P · p̃ at every time
step. When replacing [P · U+]2 by [P · U+] in the right-hand
side (rhs) of Eq. (8), one might argue that p(t + �t) =
±P · U+ · p(t); However as all elements in P , U+, and p̃
are non-negative, the + sign is the correct choice. Since
P is a known matrix and U+ was assumed to be known,
one expects that the NESS, p̃, and the equilibrium PDF
associated with U+, q1, are algebraically related. The desired
relationship can be established by multiplying Eq. (8) times
P and subtracting p̃ from both sides to get (U+ − I ) · p̃ =
(P − I ) · p̃. Unfortunately, (U+ − I ) is noninvertible because
the largest eigenvalue λ1 = 1 requires det(U+ − λ1I ) = 0.
One circumvents this difficulty by analyzing the subspace
orthogonal to q1, i.e., rewriting p̃ as

p̃ = Xε · p̃ + cq1, (9)

where the sparse matrix ε in the projection operator Xε ≡
(U+ − I + ε)−1 · (P − I ) is required to make the inversion
possible (see Drazin inverse in Ref. [17]). The reason for
the unknown c in Eq. (9) is that this subspace retains no
information about the direction of q1. A convenient choice for ε

is as follows. Let us define a block matrix Q ≡ (q1,q2, . . . ,qN )
so that in the transformed coordinates, Q−1 · (U+ − I ) · Q is
a diagonal matrix with the first diagonal element λ1 − 1 =

0. The other diagonal elements are nonzero as long as
λk < λ1 = 1 for k > 1. To make the first diagonal element
nonzero, we then consider a matrix with a single nonzero
element ε′

ij = −δi1δj1, which corresponds to ε = Q · ε′ · Q−1

in the original coordinates. Now, Q−1 · (U+ − I + ε) · Q is
clearly invertible, whereas Q−1 · (U+ − I ) · Q was not, so we
have explicitly constructed Xε . It is important that λ1 is no
eigenvalue of Xε , so that the solution of Eq. (9),

p̃ = c(I − Xε)−1 · q1, (10)

relating p̃ to q1 is well defined. Finally, the constant c is
determined by normalizing p̃; most remarkably one can show
that peq ≡ cq1 is also a normalized PDF. This shows how p̃ in
nonequilibrium is related to the equilibrium PDF.

Note that the vector p̃ can be expressed as a polynomial
by multiplying it times the lowest common denominator of
all the N elements and imposing the normalization condition
only at the final step; hence, p̃ = p̃(1) + p̃(2) + · · · + p̃(n), with
p̃(k) ∝ (�t)k . The idea is to construct the NESS as a series
solution with a small expansion parameter �t . Such summands
are related to one another,

0 = (P − I ) · p̃(1), (11)

(U+ − I ) · p̃(1) = (P − I ) · p̃(2),

...

(U+ − I ) · p̃(n−1) = (P − I ) · p̃(n),

(U+ − I ) · p̃(n) = 0. (12)

This set of equations can also be written as

(U+ − I ) · p̃(k−1) = (P − I ) · p̃(k), (13)

with p̃(k) ≡ 0 if k � 0 or k > n. It is clearly seen that
one obtains the original equation to solve [Eq. (8)] when
summing up both sides. Since Eq. (12) should have a solution
proportional to q1, which is known to us by assumption, one
may attempt to proceed recursively from Eq. (12) all the way up
to Eq. (11). Still, the singular matrix (U+ − I ) does not allow
the direct inversion but leaves an undetermined component
proportional to q1 every time. Adding up these recursive
solutions with the undetermined parts, we end up with our
key result, Eq. (9). To avoid lengthy algebraic manipulations,
we limit ourselves to a hand-waving argument for the recursive
Eq. (13). As the matrix U+ is of the form U+ = I + �tW ,
with W ≡ {wij }, multiplying p̃(k−1) ∝ (�t)k−1 by (U+ − I )
raises the exponent of �t by 1, thus relating p̃(k−1) ∝ (�t)k−1

to p̃k ∝ (�t)k . In addition, the matrix (P − I ) on the rhs
guarantees that one recovers Eq. (8) when resumming both
sides of Eq. (13). The truncation of the recursive Eqs. (13)
at k = n + 1 is a consequence of the MF character of the
model. Indeed, for models with lower symmetry the number of
recursive equations would be larger than n + 1. In particular,
the last equation implies that p̃(n) is proportional to peq. In
fact, only p̃(k) with k � n can be made proportional to peq in
a MF model with n + 1 different energy levels: For Glauber’s
transition rates with wij ∝ exp[β(Ej − Ei)], it takes products
involving n such factors to obtain a PDF proportional to
exp(−βEi).
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B. Lower-frequency modulation

We extend now our analysis to lower driving frequencies
by considering the case when h switches its sign every γ time
steps, so that the NESS equation to solve is now (U+)γ · p̃ =
P · p̃. In the steady state, the system goes through the transition
sequences

p̃ → U+ · p̃ → · · · → (U+)γ−1 · p̃ → P · p̃ →
(14)

U− · P · p̃ → · · · → (U−)γ−1 · P · p̃ → p̃ → · · · .

As above, the steady-state solution is derived as p̃ = [I −
Xε(γ )]−1 · peq, with Xε(γ ) ≡ [(U+)γ − I + ε]−1 · (P − I ).
Due to our choice for ε and using the Neumann series
(A + B)−1 ≈ A−1 − A−1 · B · A−1 [17], we can approximate
Xε(γ ) to Xε(γ ) ≈ [I + (U+)γ + ε] · (I − P ) and obtain

I − Xε(γ ) ≈ P + [(U+)γ + ε] · (P − I ), (15)

as long as βh � 1 or γ � 1. In particular, on increasing γ , the
second term on the rhs of Eq. (15) can be made much smaller
than the first one. When applied to peq, the inverse of the lhs
of Eq. (15) is then approximated, again through the Neumann
series, to

p̃ ≈ P · peq + P · [(U+)γ + ε] · (P − I ) · peq. (16)

Therefore, the leading order of [I − Xε(γ )]−1 is P , and not I ,
even in the limit h → 0, because Xε(γ ) is not small compared
to I [17]. The PDF p̃ should indeed be close to P · peq because
U− has evolved the system for γ time steps, so that it is the
second term on the rhs of Eq. (16) that describes the PDF
change right after field reversal. Since [(U+)γ + ε] · peq = 0,
the dominant change is proportional to P · q2, whose elements
add up to zero. This is consistent with the predictions (Fig. 1)
of the linear-response theory, which is unable to distinguish
between q2 and P · q2. We note that for β � 1 the matrix U+
is almost symmetric, which implies qT

2 · peq � 1. Under these
conditions a simple two-eigenmode approximation allows us
to go beyond the linear-response approximation, by writing

p̃ ≈ papprox ≡ P · peq + λ
γ

2

[
qT

2 · (P − I ) · peq
]
(P · q2). (17)

We checked the validity of this scheme by com-
puting the Kullback-Leibler divergence DKL(p̃||papprox) ≡∑N

i=1 p̃i ln(p̃i/p
approx
i ). As displayed in Fig. 3, with increasing

γ , DKL decreases over the whole parameter region. This
confirms that in most cases the perturbative description of
Eq. (17) based on the first two eigenmodes provides a
reasonable approximation for p̃.
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FIG. 3. (Color online) Kullback-Leibler divergence of papprox

from the exact PDF, p̃ for n = 6 spins; (a) γ = 101 and
(b) γ = 102 with �t ≡ 1. The black region in panel (a) denotes the
parameter domain where Eq. (17) breaks down (i.e., yields negative
probabilities).
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FIG. 4. (Color online) Nonequilibrium entropy as a function of
the number, k, of time steps with �t ≡ 1, for n = 6 and h = 1
at temperature T = 1. The solid curves represent the exact results
for different γ ; the crosses are approximate results obtained by
combining Eqs. (18) and (19) (see text), and the colors indicate
the corresponding values of γ . Missing crosses at large k indicate
a breakdown of the approximation (negative predicted probability).

Furthermore, when applied to peq, the commutator [U+,P ]
can be estimated in terms of the first two PDF’s, p̃ and U+p̃,
in the transition sequence of Eq. (14), i.e.,

[U+,P ] · peq ≈ (U+ − I ) · p̃. (18)

The time evolution of peq is then formally expressed as

(U+)k · P · peq =
⎧⎨
⎩P +

⎡
⎣k−1∑

j=0

(U+)j

⎤
⎦ · [U+,P ]

⎫⎬
⎭ · peq,

(19)

where we recall that for γ � 1 the lhs may be approximated
to (U+)k · p̃. By using Eqs. (18) and (19), we numerically
computed the time dependence of 〈S〉 as plotted in Fig. 4,
where this approximation closely reproduces the numerical
data at large γ .

The �t power counting rule in Eq. (13) can also be
generalized by considering p̃ = p̃(1) + p̃(2) + · · · + p̃(nγ ). The
matching condition for the orders of �t suggests that Eq. (13)
be generalized to

γ∑
k=0

(
γ

k

)
(U+ − I )k · p̃(i−k) = P · p̃(i),

where the binomial coefficients originate from combinatorial
possibilities in matching the orders. The constraint is now
given as p̃(i) = 0 for i � 0 or i > nγ in the MF case. We
note that the last γ terms in the expansion are involved only
with (U+ − I ) so that they are always proportional to the
equilibrium solution. We checked that the symmetric part
of p̃(1) is independent of γ for small n, and this could be
generic because the p̃(1) symmetry under P [see Eq. (13)
for k = 1] implies its insensitivity to the field direction.
Therefore, the shapes of both the lowest-order, p̃(1) ∝ �t , and
the highest-order contributions are independent of the external
time scale γ . If γ is kept fixed, p̃ becomes more symmetric
with lowering �t ; accordingly, the corresponding PDF turns
out to be insensitive to γ for γ�t � 1.
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IV. SUMMARY

In summary, we have established an algebraic relationship
between the NESS under square-wave modulation and the
equilibrium PDF under a constant magnetic field of the
same magnitude. Understanding a NESS is one of the most
important questions in nonequilibrium statistical physics, just
as the Boltzmann distribution forms the fundamental basis
of the equilibrium statistical mechanics. It is particularly
important in the specific context of the Glauber-Ising model
as well, because all the phenomena involved with the spon-
taneous symmetry breaking in the dynamic phase transition
at high frequency should be traced to properties of the
NESS.

We emphasize that the approach proposed here is not
restricted solely to the Glauber dynamics, but applicable to
a general Markovian system whose stationary state in the
presence of a constant external parameter is known; as the

external parameter is periodically modulated in time (with
reflection symmetry), our technique indicates how to express
the NESS in terms of the biased stationary state. An intriguing
question is how to extend our formalism to the case of
a continuously varying field, which requires approximating
h(t) to a piecewise constant function and decoupling the
eigenmodes at different times.
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