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Restrictions on linear heat capacities from Joule-Brayton maximum-work cycle efficiency
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This paper discusses the possibility of using the Joule-Brayton cycle to determine the accessible value range
for the coefficients a and b of the heat capacity at constant pressure Cp , expressed as Cp = a + bT (with T the
absolute temperature) by using the Carnot theorem. This is made for several gases which operate as the working
fluids. Moreover, the landmark role of the Curzon-Ahlborn efficiency for this type of cycle is established.
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I. INTRODUCTION

As is well known, the Carnot theorem establishes a superior
bound for the efficiency of thermal cycles performing between
two thermal baths at absolute temperatures Th and Tc < Th.
This limiting efficiency is the Carnot efficiency, given by [1]

ηC = 1 − τ, (1)

where τ = Tc/Th. Any other thermal cycle with more than
two thermal reservoirs, but with Th and Tc as their extreme
temperatures, has an efficiency lower than ηC (although fully
regenerative cycles such as the Stirling and Ericsson can also
reach ηC). For example, reversible cycles such as the Otto,
Joule-Brayton (JB), Diesel, and Atkinson cycles, which have
an infinite number of auxiliary reservoirs, necessarily have
efficiencies below ηC . Otto and JB cycles operating at a
maximum-work (MW) regime have efficiencies given by the
so-called Curzon-Ahlborn efficiency

ηCA = 1 − √
τ , (2)

when the working substance has a constant heat capacity
[2]. On the other hand, Diesel and Atkinson cycles have
MW efficiencies very close to ηCA [2,3]. Thus, any working
substance operating this type of cycle must have thermal
properties consistent with the Carnot theorem. Within this
context, the consistency of JB cycle efficiencies with the
Carnot theorem can be used as a discriminator of the thermal
property models of working substances. A very important
thermal property involved in thermal cycles is the heat capacity
of working fluids. For example, Gilbert and Lewis have shown
that the theoretical values for heat capacities at constant
pressure Cp [4] for several gases can be represented within
an error of 1% by a series of the form

Cp = a + bT + cT 2 + · · · , (3)

where T is the absolute temperature and the coefficients
a,b,c, . . . are calculated by means of theoretical quantum
methods, although series such as Eq. (3) can be also considered
as empirical relations [4,5]. In general, the coefficient c is four
orders of magnitude smaller than coefficient b, which is three
magnitude orders smaller than coefficient a [4,5]. For this
reason we shall treat a gas with a heat capacity Cp = a + bT .
This gas will perform as a working fluid in a JB cycle.

This article shows that there exists a set of a and b values
which lead to MW-JB efficiencies ηMW with negative values or
above ηC . Evidently these values are forbidden by the Carnot

theorem. Furthermore, there is another set of a and b values
which lead to 0 � ηMW � ηC , as it must be. By means of the
definition of a parameter ε = b/a, a ε-τ plane is constructed
which can be split into well defined regions, some where
0 � ηMW � ηC (permitted regions) and some others where this
is not satisfied (forbidden regions). Interestingly, the permitted
regions correspond to experimentally reported a and b values
[4,5]. The forbidden regions are associated with a and b values
(through ε) that have not been reported, as is expected. Thus,
this simple procedure can be used to test experimental or
theoretical values of the aforementioned coefficients regarding
their consistency with the second law of thermodynamics.
Furthermore, when ε → 0 (Cp → const), the ηMW contained
in the permitted regions tends to ηCA, assigning to ηCA a
landmark role for cycle efficiencies depending on working
substance properties. The present article is organized as
follows: In Sec. II JB cycles are analyzed when the working
fluids have a linear heat capacity; in Sec. III a discussion on
permitted and forbidden regions is presented. Finally, some
concluding remarks are given.

II. JOULE-BRAYTON CYCLE FOR A
LINEAR HEAT CAPACITY

The efficiency of a JB cycle operating at MW will be
calculated by using a gas with heat capacity at a constant
pressure given by

Cp = a + bT , (4)

with a and b being real constants. The JB cycle consists of two
adiabatic processes and two processes at constant pressure (see
Fig. 1). Following the cycle depicted in Fig. 1, the input and
output heats are given by the equations

Qin =
∫ Th

T

CpdT = a

∫ Th

T

(1 + εT )dT

= a

[
(Th − T ) + ε

2

(
T 2

h − T 2
)]

(5)

and

Qout =
∫ Tc

T ′
CpdT = a

∫ Tc

T ′
(1 + εT )dT

= a

[
(Tc − T ′) + ε

2

(
T 2

c − T ′2)]. (6)
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FIG. 1. T -S diagram of a reversible Joule-Brayton cycle, which
is equivalent to an Otto cycle with isochores instead of isobars.

The temperatures T and T ′ are restricted by the conditions that
the total entropy change is zero, and that the work is maximum.
The total entropy change is given by

�S =
∫ Th

T

Cp

T dT +
∫ Tc

T ′

Cp

T dT

= a

[
ln

(
ThTc

T T ′

)
+ ε(Th + Tc − T − T ′)

]
= 0, (7)

which results in the condition,

T = ε−1ProductLog

[
εeε(Th+Tc−T ′) ThTc

T ′

]
, (8)

where the ProductLog[z] is the principal value of the Lam-
bert W -function which is the inverse function of z = wew

(Ref. [6]). This condition [Eq. (8)] gives the MW for a cycle
with given Th, Tc, and T ′. In addition, the maximum of all
these works can be obtained by replacing Eq. (8) in the
work W = |Qin| − |Qout| and maximizing with respect to the
temperature T ′, giving the following condition:

T eεT = T ′eεT ′ =
√

ThTce
ε(Th+Tc)/2. (9)

The equality T = T ′ is maintained as the MW condition,
just as it occurs in the case of constant Cp [2,3] and when
Cp = αT n, α and n being constant real numbers [7]. Note
that Eq. (9) reduces to the known result for constant Cp when
ε = 0. Finally, the efficiency η = 1 − |Qout|/|Qin| at the MW
regime ηMW is given by

ηMW = ηMW(ε,τ,Th)

= 1 − √
τ

⎛
⎝−ε

√
τTh − 1

2ε2(τTh)3/2 + 2g+g2

2
√

τTh

ε
√

Th + 1
2ε2T

3/2
h − 2g+g2

2
√

Th

⎞
⎠ , (10)

where g is defined as the solution of the equation geg =
ε
√

τThe
εTh(1+τ )/2. In Fig. 2 ηMW vs τ is depicted for several

values of ε by using Eq. (10). In order to generate Fig. 2,
numerical values for ε and Th are proposed, and τ is taken from
the interval (0,1). This figure shows that for ε > −0.003 K−1

the depicted MW efficiencies fulfill the Carnot theorem, that is,
0 � ηMW � ηC , and for ε < −0.003 K−1 the MW efficiencies
do not. In ε = −0.003 K−1 the efficiency curve has two
behaviors: one in agreement with the Carnot theorem for
τ ∈ (0,0.15) and also for τ ∈ (0.33,0.35), and the other with
nonphysical values for ηMW in the intervals τ ∈ (0.15,0.33)
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FIG. 2. (Color online) Efficiency at MW ηMW vs τ for several
values of ε at fixed Th = 500 K. A plot exists, such as the one depicted
in this figure, for each value of Th > 0 K.

(forbidden by the first law) and τ ∈ (0.35,1) (forbidden by
the Carnot theorem). The only value that reproduces the CA
efficiency is ε = 0 K−1, that is, the constant heat capacity case
[2,3,7]. For the case discussed here, as can be seen in Fig. 2,
ηCA works as a closer limit than ηC for cycles depending on
the working fluid properties and performing between the same
extreme temperatures.

The efficiencies with nonphysically acceptable values have
to do with the unrealistic solutions for T = T ′, as can be
seen in Fig. 3. The MW condition for a range of values of
ε leads to T ,T ′ values outside the interval (Tc,Th) which are
not permitted for a valid JB cycle between these two extreme
temperatures. By means of Eq. (9) the condition that T = T ′ =
Tc gives the threshold value of ε at which the efficiency starts
to present anomalous behaviors for given Tc and Th,

εcrit = ln (τ )

Th (1 − τ )
. (11)

If in addition we demand that for any 0 < Tc < Th the
efficiency must be always well behaved, then the critical value
of ε is found in the limit τ → 1,

lim
τ→1

εcrit = ε∗
crit = − 1

Th

. (12)

For Th = 500 K, ε∗
crit = −0.002 K−1, that is, for ε <

−0.002 K−1, the efficiency will present an anomalous behav-
ior. The crossing point A between the calculated intermedi-
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FIG. 3. (Color online) Intermediate temperatures T ,T ′ for the
MW-JB cycle operating between the extreme temperatures Th =
700 K and Tc = 300 K. The dashed line represents

√
ThTc, which

is the Cp constant case. The S-shaped curve is the solution of Eq. (9).
The point A corresponds to the crossing point between TMW and√

ThTc at ε = 0 K−1.
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FIG. 4. (Color online) ηMW(ε). The horizontal line corresponds
to ηCA for Th = 700 K and Tc = 300 K. ηCA is the maximum value
of the permitted ηMW for this type of heat capacity, and corresponds
to the case of ε = 0 K−1.

ate temperatures and the intermediate CA-type temperature
(
√

TcTh) [2,3,7] is located only at ε = 0 K−1 (see Fig. 3).
As previously mentioned, in the case under study, ηCA plays

a very important role. As a matter of fact, as can be seen in
Fig. 4, at ε = 0, the values of ηMW within the permitted region
reach their maximum value, which is ηCA. That is, for all the
possible values of the coefficients a and b, those where b = 0
give the maximum efficiency in the MW regime. Then the
CA efficiency takes once more an outstanding role not only in
maximum power engines [8–16], but also in reversible cycles
operating at MW, as can be found in some other articles [2,3,7].
A possible explanation for this fact can be given by analyzing
Fig. 2 from Ref. [7], for the so-called symmetric cases (equal
heat capacity in the input and output heat exchange processes).
In that figure a convex curve of ηMW vs n is depicted for the
case Cp = αT n mentioned before just after Eq. (9). The curve
shows how for Cp = α (ηMW = ηCA) in n = 0, up to n = 1;
that is, when Cp = αT , ηMW is evidently a decreasing function
lower than ηCA. A heat capacity of the form C1 = α always has
a bigger efficiency than another with heat capacity C2 = βT

regardless of the α and β constant values. Their respective
efficiencies are η1 = ηCA and η2 = ηMW(Cp = βT ). With this
in mind, it is possible to construct a third heat capacity C3(t) =
tα + (1 − t)βT in such a way that by varying t from 0 up to 1,
C3(t) goes from C2 to C1. The corresponding efficiency at MW
will be denoted as η3. The net result for this definition of the
heat capacity is that, now in Eq. (10), ε → 1−t

t
ε. In this way a

continuous transformation from η1 to η2 is obtained with the
same considerations on the values of ε. When t goes from 0
to 1, also η3 goes from η2 to η1 > η2, but never exceeding this
value, proving that η3 is bounded by the value of η1 = ηCA.
Three examples of JB cycles are depicted in Fig. 5 for different
values of ε.

III. PERMITTED AND FORBIDDEN REGIONS

In Fig. 6, there are well defined separated regions, where
in some the efficiencies have nonphysically accepted values
(forbidden regions) and in others (in color) the efficiencies
are consistent with the Carnot theorem (permitted regions),
bounded by the curves corresponding to the conditions ηMW =
ηC and ηMW = 0. Since the MW efficiency is a function
depending on ε, τ , and Th, there are an infinite number of
such boundaries in the ε-τ plane (for each value of Th > 0).
Three examples are depicted in Fig. 6 in which the condition
0 � ηMW � ηC is fulfilled for a certain Th. From left to
right the colored areas correspond to the permitted regions

FIG. 5. (Color online) Three JB cycles for different values of
ε in a T -S plane. As ε deviates from 0, the efficiency of the
cycle diminishes. The temperatures considered are Th = 950 K,
Tc = 290 K, and ε = −0.001 K−1 (small cycle), ε = 0 K−1 (medium
cycle), and ε = 0.001 K−1 (large cycle). The small and large cycles
have efficiencies below ηCA.

at Th = {300 K,2000 K,25 000 K}, respectively. Note that,
according to Fig. 2, for each value of Th there exists a value of
ε with two behaviors (one permitted and another forbidden).
This is reflected in Fig. 6 in the case T = 300 K, through
the green “island” at the left side of the figure. When the
temperature Th grows, the corresponding boundaries tend to
vertical lines located at ε = 0 K−1. According to the reported
data in Refs. [4,5], the substance with the lowest value of
ε is the molecule H2, with ε = −2.88 × 10−4 K−1. This
molecule has a binding energy around Tb ∼ 105 K, and up
to this temperature the experimental data reported do not
violate the Carnot theorem. By taking experimental values
for a and b for 14 gases in Ref. [4] and 22 from Ref. [5],
all of them are located in the permitted areas in Fig. 6.
From these 30 substances (excluding repeated cases), only
two (H2 and P4) have an ε < 0 K−1, the H2 with the value
referred to above and the P4 with an ε = −2.05 × 10−4 K−1

and the other 28 substances have ε reported in the interval
(3.082 19 × 10−5 K−1,0.005 336 K−1) [4,5]. The temperature
interval where the data were obtained is typically between
290 and 1800 K [4]. In this way, by taking Th = 2000 K as
in Fig. 6, it is guaranteed that all data are contained in the
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FIG. 6. (Color online) Three cases in which the condition
0 � ηMW � ηC is fulfilled for a certain value of Th. From left to right
the colored regions correspond to Th = {300 K,2000 K,25 000 K},
respectively. The reported ε values for several gases are located at
the right side of the vertical line located at ε = −2.88 × 10−4 K−1

(for H2).
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permitted region, including those with ε < 0 K−1. As stated
before, for growing Th the boundary between the permitted and
forbidden regions tends to the vertical line at ε = 0 K−1. Thus,
all ε > 0 K−1 are allowed. In order to exclude the ε < 0 K−1

cases, T ∼ 106 K is needed. Therefore, in practice, all reported
values belong to the physically accepted region. This simple
thermodynamic procedure allows a first approach to the
thermodynamical constraints of these kinds of experimental
coefficients.

IV. CONCLUDING REMARKS

In summary, throughout the limits imposed by the Carnot
theorem to the thermal efficiencies, in particular to the JB
cycle, a simple procedure to bound the range of physically

accessible values of the coefficients a,b has been proposed.
Furthermore, the outstanding role of ηCA as a superior limit
for MW-JB efficiencies, for the case of thermal efficiencies
which depend on working fluid properties, has been clearly
established. This procedure can be applied step by step to any
cycle presenting a symmetry as the JB engine [7], such as the
case of the Otto cycle using a linear CV instead of Cp. Finally,
it is notable that the MW condition for JB cycles performing
with working fluids with both constant Cp or Cp = αT n, that
is, equal intermediate temperatures, T = T ′, is fulfilled by
fluids with Cp = a + bT .
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