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Tracer dynamics in a single-file system with absorbing boundary
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V Holešovičkách 2, 18000 Praha 8, Czech Republic

(Received 25 March 2013; revised manuscript received 16 January 2014; published 24 February 2014)

The paper addresses the single-file diffusion in the presence of an absorbing boundary. The emphasis is on
an interplay between the hard-core interparticle interaction and the absorption process. The resulting dynamics
exhibits several qualitatively new features. First, starting with the exact probability density function for a given
particle (a tracer), we study the long-time asymptotics of its moments. Both the mean position and the mean-square
displacement are controlled by dynamical exponents which depend on the initial order of the particle in the file.
Second, conditioning on nonabsorption, we study the distribution of long-living particles. In the conditioned
framework, the dynamical exponents are the same for all particles, however, a given particle possesses an
effective diffusion coefficient which depends on its initial order. After performing the thermodynamic limit, the
conditioned dynamics of the tracer is subdiffusive, the generalized diffusion coefficient D1/2 being different from
that reported for the system without absorbing boundary.
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I. INTRODUCTION

Consider a single particle diffusing in the semi-infinite one-
dimensional channel. The particle escapes from the channel
only if it hits the channel boundary situated at the origin.
Assuming normal diffusion without any external drift, the
mean particle position remains constant in time, its mean
escape time is infinite, nevertheless, the particle eventually
escapes with the probability one. At a given time t , starting with
an ensemble of all possible particle trajectories, it is interesting
to restrict the attention on the subensemble of those paths
which have not hit the boundary up to time t . The subensemble
is described by the conditional probability density functions
(PDFs), the condition being the nonabsorption up to time t . The
conditioned dynamics exhibits qualitatively different features
compared with the unconditioned one. For instance, the
conditioned mean particle position is no longer constant, it
grows as t1/2. The longer one waits further from the origin
as the typical surviving trajectory. One can say that the
conditioning implies an effective force which drags the particle
away from the absorbing boundary.

In the present paper, we will investigate the system of N

hard-core interacting particles diffusing in the semi-infinite
one-dimensional channel with the absorbing boundary at
the origin. We have three main objectives. First, the hard-
core interaction implies an entropic interparticle repulsion,
and we analyze its effect on the dynamics of the individual
particle (a tracer). Second, we are interested in the dynamics
of the long-living particles, that is, in the tracer dynamics
conditioned on nonabsorption. Third, we will compare the
dynamics of the system of N particles with that of the
corresponding system in the thermodynamic limit.

Single-particle stochastic dynamics conditioned on nonab-
sorption has been explored extensively in probability theory.
A regularly updated bibliography is available in Ref. [1].
Usually, the conditioning suggests itself in the frame of a
biological [2], demographic [3], or epidemiological [4] context
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where the absorbed diffusion process models the populations
undergoing extinction. By the conditioning on nonabsorption,
the focus is shifted on the behavior of the long-surviving paths
of the process. It may happen that the thus conditioned process
converges towards a time-invariant distribution, the so called
quasistationary distribution. The study of quasistationary
distributions began with the seminal work of Yaglom on
subcritical Galton-Watson processes [5]. For various stochastic
processes, the results on existence, uniqueness, and other
properties of quasistationary distributions are reviewed in
Ref. [6]. Examples of solvable quasistationary distributions
are the Brownian motion with constant drift absorbed at the
origin [7,8], the absorbed logistic Feller diffusion [9], and the
Wright-Fisher diffusion [10]. In the demographic context, one
specific consequence of the conditioning on nonextinction is
the deceleration of the instantaneous mortality rates (mortality
rate plateaus) [3].

Many-particle diffusion in one-dimensional channels
where the particles are not able to pass each other [the
single-file diffusion (SFD)] occurs in many systems, such as
narrow biological pores [11], the channel systems of zeolites
[12,13], or during the sliding of proteins along the DNA
[14–16]. In these systems, the diffusion of the tracer is slowed
down due to the interparticle interactions. The mean-square
displacement of the tracer increases with time as t1/2 in
contrast to its linear increase for the free particle. This was first
proved by Harris [17]. Since then, the single-file diffusion was
analytically investigated in many different settings, including
systems in thermodynamic limit [18–20], infinite line with a
finite number of particles [21–23], finite interval [24–26], and
particles under the action of an external force field [27,28].
The first-passage problem for a tracer in an infinite system was
studied in Ref. [29]. The present paper addresses a different
setting: In Ref. [29], only the tracer feels the absorbing
boundary, whereas, in the present paper, each particle can be
absorbed. Numerically, the first-passage problem in a driven
SFD system was studied in Ref. [30].

The present paper continues the study of the model
introduced in Ref. [31] where we have investigated the
single-file diffusion model, including an absorbing boundary.
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FIG. 1. (Color online) Schematic of the possible initial positions
of N = 4 particles and their labeling.

In that paper, we were interested in the time of absorption
of the individual particles. In the present paper, the central
issue is the tracer dynamics. The two prerequisites, i.e., the
hard-core interaction and the absorption, are essential for
a proper understanding of the kinetics of diffusion-limited
chemical reactions in crowded environments [32–35].

The paper is organized as follows. Section II contains the
definition of the model. In Sec. III, in order to keep the paper
self-contained, we present the complete solution for the
underlying single-particle case. Sections IV and V comprise
our main results. We first study the unconditioned dynamics
of the tracer (Secs. IV A and V A), and then we condition this
dynamics on nonabsorption (Secs. IV B and V B).

II. DEFINITION OF THE MODEL

Consider the diffusion of hard-core interacting Brownian
particles in a semi-infinite one-dimensional interval with
the absorbing boundary at the origin. Initially, N particles
are distributed along the half-line (0,+∞). During the time
evolution, each particle diffuses with the same diffusion
constant D. The particles cannot enter the interval from the
outside, and they are allowed to leave it only through the
boundary at the origin. The boundary is perfectly absorbing,
i.e., if any particle hits the origin, it is absorbed with the
probability one. At the initial time t = 0, let us label the
particles according to the ordering of their positions from
the left to the right (cf. Fig. 1). We have

0 < X1(0) < X2(0) < · · · < XN (0) < +∞, (1)

where the random variable Xn(0) denotes the position of the
nth particle at t = 0. The hard-core interaction guarantees that
the initial ordering of particles is conserved over time. Notice
that particle No. 1 is the first one that might be absorbed. It is
only after this event that particle No. 2 can approach the origin
and can be absorbed. Let us denote the (random) time of the
absorption of the nth particle as Tn. Then we have

0 < T1 < T2 < · · · < TN < +∞. (2)

The last inequality TN < +∞ means that the rightmost
particle (and, hence, any particle) is eventually absorbed with
the probability one [31]. At the same time, the mean value
〈TN 〉 is infinite [31].

III. SINGLE DIFFUSING PARTICLE

A. Brownian motion absorbed at the origin

Let us take N = 1. Suppose that, at the initial time t = 0,
the particle is located at the position y, y > 0. The PDF of the
particle’s position at time t , conditioned on its initial position,

is determined by solving the diffusion equation,

∂

∂t
f (x; t |y; 0) = D

∂2

∂x2
f (x; t |y; 0) (3)

subject to the absorbing boundary condition at the origin,

f (0; t |y; 0) = 0, (4)

and to the initial condition,

f (x; 0|y; 0) = δ(x − y). (5)

This problem is readily solved by the method of images [36].
The result reads

f (x; t |y; 0) = 1√
4πDt

[e−(x−y)2/4Dt − e−(x+y)2/4Dt ]. (6)

Having this Green’s function, the time evolution of an arbitrary
initial PDF, say f (x; 0), is given by

f (x; t) = 〈f (x; t |X(0); 0)〉 =
∫ +∞

0
dy f (x; t |y; 0)f (y; 0).

(7)

As for the initial PDF f (x; 0), we only assume that all
its moments exist. For the sake of illustration, we take the
particular initial condition,

f (x; 0) = e−x/L

L
, L > 0. (8)

The spatial integral of PDF (7) over the interval (0,+∞)
equals the survival probability, that is, the probability that the
particle has not been absorbed by time t . If we denote the time
of the absorption by T, we can write

S(t) = Prob{T > t} =
∫ +∞

0
dx f (x; t) =

〈
erf

(
X(0)√

4Dt

)〉
,

(9)

where the last expression stands for the average of the error
function [37] with respect to the initial PDF f (x; 0). At
time t = 0, the survival probability equals 1. The long-time
behavior of S(t) may be derived by inserting the power series
representation of the error function into Eq. (9). The expansion
is given in Eq. (A6), and its first term yields the power-law
decay,

S(t) ∼ 〈X(0)〉√
πD

t−1/2, t → ∞. (10)

The prefactor depends on the diffusion constant and on the
average initial position of the particle. The sign “∼” means “is
asymptotically equal.”

B. Brownian motion conditioned on nonabsorption

According to Eq. (10), the particle will ultimately hit the
absorbing boundary at the origin with the probability one. Let
us now focus on the dynamics of the particle conditioned on
nonabsorption. By definition,

f (x; Dt |T > t) = f (x; t)

S(t)
(11)

is the PDF for the particle’s position at time t under the
condition that the particle has not been absorbed by time t .
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The power series representation of the PDF f (x; Dt |T > t) is
given in Eq. (A9). It follows that

f (x; Dt |T > t) = x

2Dt
e−x2/4Dt (1 + O(t−1)), (12)

where “O(t−1)” stands for all terms of the series (A9) that
tend to zero at least as t−1 when t → ∞. Therefore, in the
long-time limit, the PDF (11) can be represented by

f (as)(x; Dt |T > t) = x

2Dt
e−x2/4Dt . (13)

Notice that this asymptotic representation is non-negative
and it is normalized to one on x ∈ (0,+∞). The distribution
with PDF (13) is known as the Rayleigh distribution [38].
Furthermore, the asymptotic PDF (13) is independent of the
initial condition f (x; 0) and there remains just one length scale
associated with the dynamics, the diffusion length

√
2Dt . All

other length scales, which have been introduced by the initial
condition, are already forgotten.

The first and the second moments of the asymptotic PDF
(13) read

〈X(t)〉(as)
T>t =

√
πDt, (14)

〈X2(t)〉(as)
T>t = 4Dt. (15)

The mean position of the surviving trajectories should be
compared with the corresponding result for the unconditioned
dynamics, that is, with 〈X(t)〉 = 〈X(0)〉. Provided a trajectory
has avoided absorption by time t , it is typically found far from
the origin, and its typical position grows as t1/2. The first-order
correction to asymptotic result (14) vanishes as t−1/2, and
it depends on the initial condition. Again, using Eq. (A9),
we get

〈X(t)〉T>t =
√

πDt

(
1 + 1

12

〈X3(0)〉
〈X(0)〉

1

Dt
+ O(t−2)

)
. (16)

IV. N INTERACTING PARTICLES

A. Tracer dynamics with absorption

Considering a general number of particles N , the model
setting must be completed by the specification of an initial
state. We assume the initial joint probability density function
for the positions of the particles vanishes outside the domain
0 < x1 < · · · < xN < +∞, and, inside this domain, it is
given by

p(x1,x2, . . . ,xN ; 0) = N !
N∏

n=1

f (xn; 0). (17)

Throughout the paper, all PDFs that have originated in the
single-particle problem are denoted by the letter “f .” On
the other hand, the PDFs in the present N -particle problem
will be designated by “p.” It is a simple consequence of the
assumed hard-core interaction that all N -particle quantities
can be expressed solely through the single-particle PDFs.

The exact PDF for the position of the nth particle,
n = 1, . . . ,N , reads [39]

pn(x; t) = N !

(n − 1)!(N − n)!
f (x; t)

×
(

1 − S(t) +
∫ x

0
dx ′f (x ′; t)

)n−1

×
( ∫ +∞

x

dx ′f (x ′; t)
)N−n

. (18)

Apart from the particle labeling, space-time trajectories of
hard-core interacting particles are the same as trajectories of
noninteracting particles. Hence, the probabilistic interpretation
behind Eq. (18) can be based on the noninteracting picture. In
this picture, the right-hand side (multiplied by dx) gives the
probability of finding a particle in the interval (x,x + dx) and,
simultaneously, having (N − n) particles to the right of x and
(n − 1) particles to the left (including those already absorbed
by the boundary). The combinatorial factor accounts for all
possible labelings of noninteracting particles.

Notice that
N∑

n=1

pn(x; t) = Nf (x; t), (19)

which can be proved by the direct summation of the expression
(18). In consequence, this equation tells us that the density of
particles for the system of N interacting particles is the same
as that for the system of N noninteracting particles. This holds
true for all collective properties. However, the dynamics of
the individual particles in the two problems is substantially
different.

Let us now derive the long-time asymptotics of the PDFs
(18). The rightmost particle is special. In the long-time limit, it
behaves in a similar way as the single-diffusing particle [31].
In particular, for n = N , the binomial theorem yields

pN (x; t)

= Nf (x; t)

[
1 + (N − 1)S(t)

( ∫ x

0
dx ′ f (x ′; t)

S(t)
− 1

)

+O(t−1)

]
, (20)

where the remaining (N − 2) terms of the binomial expansion
vanish at least as (S(t))2. The integral in (20) has been
estimated in Eq. (A10). On the whole, we obtain

pN (x; t)

= Nf (x; t) − N (N − 1)
〈X(0)〉2

2π (Dt)2
xe−x2/2Dt + O(t−5/2).

(21)

The expression has been written in a way which shows the
main asymptotics,

pN (x; t) ∼ Nf (x; t), (22)

and the first correction, the second term in (21). The correction
describes the relaxation towards the main asymptotics, and it
is negative.
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We proceed to the long-time behavior of the nth particle
with n = 1, . . . ,(N − 1). We start again with Eq. (18) and
rewrite it in the form

pn(x; t)

= n

(
N

n

)
(S(t))N−nf (x; t)

(
1 − S(t) +

∫ x

0
dx ′f (x ′; t)

)n−1

×
(

1 −
∫ x

0
dx ′ f (x ′; t)

S(t)

)N−n

. (23)

The first bracket is, again, expanded according to the binomial
theorem, and the second bracket is treated using Eq. (A10).
Furthermore, using Eq. (12), the main asymptotics assume the
form

pn(x; t) ∼
(

N

n

)
(S(t))N−n+1 nx

2Dt
e−(N−n+1)x2/4Dt . (24)

If we introduce the renormalized diffusion coefficient,

Dn = D/(N − n + 1), (25)

an important conclusion emerges. On the right-hand side of
Eq. (24), one recognizes the asymptotic single-particle PDF
(13) conditioned on nonabsorption,

pn(x; t) ∼
(

N

n − 1

)
(S(t))N−n+1f (as)(x; Dnt |T > t). (26)

The only difference is that here we have Dn instead of D in
(13). The initial order of particle n controls, in a decisive way,
the main asymptotics. The smaller the n, the faster the decay
of the PDF (for a given x). As a consequence, in the long-time
limit, the sum (19) is dominated by the PDF pN (x; t).

Our next goal is the analysis of the mean positions of the
individual particles. For the rightmost particle, the calculation
is based on Eq. (21). We obtain

〈XN (t)〉 = N〈X(t)〉 − N (N − 1)
〈X(0)〉2

√
8πDt

+ O(t−1). (27)

The main asymptotic behavior of 〈XN (t)〉 is covered by the first
term on the right-hand side, that is, apart from the multiplica-
tion by N , it coincides with that for the single particle where we
have 〈X(t)〉 = 〈X(0)〉. The second term describes corrections.
As for the remaining particles, the interaction changes the
mean-position dynamics. The evaluation of the first moments
of the densities (26) yields the main asymptotics,

〈Xn(t)〉 ∼ Bnt
−(N−n)/2, n = 1, . . . ,N, (28)

with the prefactor,

Bn = (N − n + 1)−1/2

(
N

n − 1

) 〈X(0)〉N−n+1

(πD)(N−n)/2
. (29)

Thus, the initial condition and the total number of particles
enter the asymptotics only through the prefactor. Notice that
the asymptotic mean position of the nth particle for n < N

differs from that for the rightmost particle (and, therefore,
from that for the single particle)–it asymptotically decays to
zero as the power law with n-dependent exponent.
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FIG. 2. (Color online) Mean positions (the upper panel) and
square roots of the second moments (the lower panel) for the
individual particles in the system of N = 4 interacting particles. In
the underlying single-particle problem, we took D = 1 and the initial
condition (8) with L = 2.

In a similar way, we readily obtain the second moments.
The results are 〈

X2
N (t)

〉 ∼ N〈X2(t)〉 − CN−1, (30)

〈
X2

n(t)
〉 ∼ Cnt

−(N−n−1)/2, n = 1, . . . ,N − 1, (31)

with the prefactors,

Cn = 4D

N − n + 1

(
N

n − 1

)( 〈X(0)〉√
πD

)N−n+1

. (32)

For the rightmost particle, the main asymptotic behavior
of the second moment is proportional to 〈X2(t)〉 ∼ 4Dt .
Interestingly, for n = (N − 1), the second moment approaches
the nonzero value CN−1, whereas, for n < (N − 1), the second
moment decreases towards zero.

The first and the second moments for the individual particles
are illustrated in Fig. 2. After multiplying Eq. (19) by xk and
integrating, we get the relationship,

〈Xk(t)〉 = 1

N

N∑
n=1

〈
Xk

n(t)
〉
, k = 0,1,2, . . . (33)

valid for any time. In the asymptotic domain, the main
asymptotic of the left-hand side is covered by the n = N

term on the right-hand side. Differently speaking, the main
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asymptotics of the remaining terms in the sum are subdominant
with respect to the main asymptotics of the n = N term.

B. Tracer dynamics conditioned on nonabsorption

If Tn denotes the time of absorption of the nth particle, its
survival probability at time t is defined by

Sn(t) = Prob{Tn > t} =
∫ +∞

0
dx pn(x; t). (34)

In Ref. [31], we have shown that the above integral can be
expressed solely through the survival probability S(t) of the
single-diffusing particle, i.e., through the expression (9). The
leading term in the long-time limit is

Sn(t) =
(

N

n − 1

)
(S(t))N−n+1 + O(t−(N−n+2)/2). (35)

Being interested in the long-time dynamics of the individual
surviving particles, we introduce the conditional PDFs

pn(x; Dt |Tn > t) = pn(x; t)

Sn(t)
. (36)

On the right-hand side, the numerator is given in Eq. (18), and
the denominator is given in Eq. (35). In the long-time limit,
the fraction greatly simplifies. Dividing the main asymptotics
(26) by the leading term in (35) yields

pn(x; Dt |Tn > t) ∼ f (as)(x; Dnt |T > t). (37)

This result is remarkable for its simplicity. The asymptotic
dynamics of the nth tracer is the same as the dynamics
of a single-diffusing particle with the diffusion coefficients
Dn = D/(N − n + 1). In other words, the only implication of
the hard-core interaction is the renormalization of the diffusion
coefficient. The leftmost particle diffuses with the smallest
effective diffusion coefficients D1 = D/N . On the other
hand, the rightmost particle has the same effective diffusion
coefficient as a single-diffusing particle DN = D.

The above asymptotic relation means that the moments of
the conditioned dynamics also are (except for the value of
the diffusion coefficient) simply the moments of the single-
diffusing particle. More precisely, using Eq. (37), we get
(see Fig. 3)

〈Xn(t)〉Tn>t ∼
√

πDnt, (38)〈
X2

n(t)
〉
Tn>t

∼ 4Dnt. (39)

Thus, the interparticle interaction does not imply new n-
dependent dynamical exponents, which is the case in the
unconditioned dynamics, cf. Eqs. (28), (30), and (31).

Finally, notice that, in the present conditioned description,
there exists no simple relationship similar to Eq. (33). The N

average of the conditioned kth moments is no more equal to
the kth conditioned moment for the single-particle diffusion,
i.e.,

〈Xk(t)〉T>t 
= 1

N

N∑
n=1

〈
Xk

n(t)
〉
Tn>t

. (40)
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FIG. 3. (Color online) The double-logarithmic plot of the con-
ditioned mean positions 〈Xn(t)〉Tn>t of the individual particles in
the system of N = 4 interacting particles. The curves are obtained
by the numerical integration using PDFs (36) with the parameters
L = 2 and D = 1. The curves never cross, i.e., the inequalities
〈X1(t)〉T1>t < · · · < 〈X4(t)〉T4>t hold for all t � 0. The long-time
asymptotics do not depend on the initial conditions, and they are
given by Eq. (38).

V. TRACER DYNAMICS IN THE
THERMODYNAMIC LIMIT

A. Tracer dynamics with absorption

We now wish to focus on the dynamics of the tracer in
a system with an infinite number of particles. First, at the
initial time t = 0, the particles are distributed randomly on
the half-line with a constant density ρ. At the initial instant,
we activate the absorbing boundary at the origin. Next, the
SFD system evolves in time, and we are again interested in the
dynamics of the nth tagged particle.

Similar to the previous finite-N case, the analysis is based
on the exact PDF for the position of the nth particles. The
analytical expression which, in the present context, replaces
the formula (18) reads

pn(x; t) = ∂μ(x,t)

∂x

[μ(x,t)]n−1

(n − 1)!
e−μ(x,t), (41)

where

μ(x,t) = ρ

[√
4Dt

π
+

∫ x

0
dy erf

(
y√
4Dt

)]
. (42)

Notice a straightforward probabilistic interpretation of these
formulas. The first term on the right-hand side of Eq. (42),
ρ
√

4Dt/π , is simply the mean number of the particles
absorbed in the time interval (0,t). The second term on the
right-hand side represents the mean number of particles which
are, at time t , diffusing in the space interval (0,x). Hence,
at time t, μ(x,t) stands for the mean number of particles
located to the left of coordinate x, including those which
were absorbed. In Eq. (41), one recognizes the probability
(∂μ/∂x)dx of finding a noninteracting particle in the interval
(x,x + dx) multiplied by the probability that there are (n − 1)
particles to the left of x (including those already absorbed by
the boundary).

The formal derivation of Eq. (41) from Eq. (18) proceeds
as follows. At the initial time, we assume that N particles are
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homogenously distributed within a finite spatial interval (0,L).
For a large L, the probability of finding a single particle to the
right of x behaves as∫ ∞

x

dx ′
∫ L

0

dy

L
f (x ′; t |y; 0) ∼ 1 − 1

L

μ(x,t)

ρ
, L → ∞,

(43)

where ρ = N/L. We insert this estimation into Eq. (18). The
final result (41) follows after performing the thermodynamic
limit: L → ∞, N → ∞, and ρ is fixed. Interestingly enough,
the passage from Eqs. (18) to (41) is similar in spirit to the well
known passage from the binomial to the Poisson distribution
(the law of rare events).

We are again primarily interested in the long-time dynamics
of the tracer. After employing an expansion of the integral of
the error function in (42), the main asymptotic behavior of
PDF (41) is given by

pn(x; t) ∼
(
ρ

√
4Dt
π

)n−1

(n − 1)!
e−ρ

√
4Dt/π ρx√

πDt
e−ρx2/

√
4πDt . (44)

As for the first two moments of the tracer position, we get the
asymptotic formulas,

〈Xn(t)〉 ∼
(
ρ

√
4Dt
π

)n−1

(n − 1)!

√√
π3Dt

2ρ
e−ρ

√
4Dt/π , (45)

〈
X2

n(t)
〉 ∼

(
ρ

√
4Dt
π

)n−1

(n − 1)!

√
4πDt

ρ2
e−ρ

√
4Dt/π . (46)

Contrary to the finite-N case [cf. Eqs. (27), (28), (30),
and (31)], the moments vanish for any n. The decrease is
controlled by a stretched exponential.

B. Tracer dynamics conditioned on nonabsorption

In the thermodynamic limit, the survival probability of the
nth tagged particle still depends on its order, and asymptoti-
cally, it assumes the form

Sn(t) ∼
(
ρ

√
4Dt
π

)n−1

(n − 1)!
e−ρ

√
4Dt/π , (47)

which is derived by the spatial integration of PDF (41).
Let us now focus on the dynamics of the tracer which

has survived by time t . In the long-time limit, the trace
PDF, conditioned on nonabsorption, is given by the ratio of
asymptotic expressions (44) and (47),

pn(x; t |Tn > t) ∼ x

2D1/2
√

t
e−x2/4D1/2

√
t , (48)

where we have introduced the generalized diffusion coeffi-
cient,

D1/2 =
√

πD

4ρ2
. (49)

The asymptotics (48) should be contrasted against the single-
particle PDF (13) and the tracer PDF (37) for the finite-N case.

The first two moments of PDF (48) are

〈Xn(t)〉Tn>t ∼
√

πD1/2

√
t, (50)〈

X2
n(t)

〉
Tn>t

∼ 4D1/2

√
t . (51)

Thus, the average position of the tracer increases as t1/4 in
contrast to the t1/2 law as observed for a finite N [cf. Eq. (38)].
The second moment grows as t1/2, and hence, the tracer
dynamics is subdiffusive.

Finally, notice that the generalized diffusion coefficient
D1/2 is different as compared to that obtained in a system
without the absorbing boundary [20,40]. As pointed out in
Refs. [40,41], coefficient D1/2 is sensitive to the way the
system is prepared. In fact, our result (49) indicates that it
also depends on the boundary conditions used.

VI. CONCLUDING REMARKS

Returning to the objectives which were outlined in the
Introduction, in the long-time limit, the following overall
picture emerges. First, due to the hard-core repulsion, the
particle which possesses a right-hand neighbor feels the
(moving) reflecting barrier to the right. The barrier restricts its
motion, it reflects the right-moving paths, and hence, increases
the number of left-moving paths. This left-pushing tendency
is illustrated by the asymptotic formulas (28), (30), and (31).
The mean position and the mean-square displacement of the
tracer exhibit new dynamical exponents which depend on its
initial order. Of course, the rightmost particle has no right-hand
neighbor, and hence, it behaves differently. In the transient
regime, its left-hand neighbors still exist, and the first particle is
pushed to the right. In the asymptotic regime, all other particles
have already disappeared, and the first one simply undergoes
the free diffusion. Second, the conditioning on nonabsorption
removes a part of the left-moving trajectories from the
unconditioned ensemble. Hence, it imposes, effectively, the
right-oriented drift. Surprisingly enough, the conditioning
significantly reduces the effect of the hard-core interaction.
The cooperative impact of both tendencies is behind the
asymptotic formulas (38) and (39). The conditioned mean
position of the tracer grows as t1/2, regardless of its order.
The interparticle repulsion manifests itself only through the
order-dependent tracer diffusion coefficient. The closer the
relative particle position to the boundary, the less mobile
should that particle be in order to survive for long times.

The above reasoning holds for the system which initially
contains a finite number of particles N . In the thermody-
namic limit (i.e., initially assuming an infinite number of
particles randomly distributed along a half-line with a constant
density ρ), the long-time dynamics of a tracer is rather
different. The new features are based on a simple observation
that, for any tracer, there are infinite numbers of particles to the
right of it. This implies the n-independent exponential damping
of the unconditioned moments (45) and (46); the initial order
n appears only in the preexponential factor. The conditioned
dynamics of a tracer is subdiffusive and independent of n [see
Eqs. (48), (50), and (51)]. This is in parallel to what has been
observed in the SFD without an absorbing boundary. Namely,
for a finite N , Aslangul [23] has shown that, in the long-time

022132-6



TRACER DYNAMICS IN A SINGLE-FILE SYSTEM WITH . . . PHYSICAL REVIEW E 89, 022132 (2014)

limit, the tracer diffusion is normal with the effective diffusion
coefficient dependent both on N and on n. On the other hand,
for an infinite N , one observes an anomalous diffusion and no
n dependence [20]. The present paper detects the same features
in the SFD with an absorbing boundary.

ACKNOWLEDGMENT

This work was supported by Grant No. SVV-2014-267-305
and by the Charles University Grant Agency (Project No.
301311).

APPENDIX: ASYMPTOTIC EXPANSION OF
THE SINGLE-PARTICLE PDF CONDITIONED

ON NONABSORPTION

The main aim of this Appendix is to justify the relations
(12) and (16) from the main text.

First, we insert the explicit expression (6) into the mean
value in Eq. (7). This yields

f (x; t) = 2e−x2/4Dt

√
4πDt

〈
sinh

(
xX(0)

2Dt

)
e−X2(0)/4Dt

〉
. (A1)

Using the power series representation for the functions inside
the averaging brackets, we obtain〈

sinh

(
xX(0)

2Dt

)
e−X2(0)/4Dt

〉

= x

2Dt

∞∑
k=0

∞∑
l=0

(−1)l2−2l

l!(2k + 1)!

(
1

Dt

)k+l

×
(

x2

4Dt

)k

〈X2(k+l)+1(0)〉. (A2)

The above double sum is treated by the substitution p = k + l,

f (x; t) = xe−x2/4Dt

2Dt

〈X(0)〉√
πDt

∞∑
p=0

p∑
k=0

c(k,p)

(
x2

4Dt

)k( 1

Dt

)p

,

(A3)

where the time-independent coefficients c(k,p) carry all the
information concerning the initial condition. Explicitly, they
read

c(k,p) = (−1)p−k2−2p+2k

(p − k)!(2k + 1)!

〈X2p+1(0)〉
〈X(0)〉 . (A4)

We now prepare a similar expansion for the survival
probability S(t) as defined in Eq. (9). Inserting the power

series [37],

erf(z) = 2√
π

∞∑
k=0

(−1)kz2k+1

k!(2k + 1)
(A5)

into the averaging in (9), we immediately obtain

S(t) = 〈X(0)〉√
πDt

∞∑
p=0

(−1)p

22pp!(2p + 1)

〈X2p+1(0)〉
〈X(0)〉

(
1

Dt

)p

.

(A6)
Interestingly, the numerical factors 22pp!(2p + 1) in the
denominators of the individual terms of (A6) form a sequence
1,12,160,2688,55 296, . . . (for p = 0,1,2,3,4, . . .), which is
the A167558 sequence in Ref. [42]. This sequence originally
emerged in a completely different situation without any
obvious connection to the expansion of the error function (see
also, A167546).

One can arrive at an equivalent expansion of the function
S(t) by starting with the first equality in Eq. (9) from the main
text. The series (A3) is integrated term by term, and it assumes
the form

S(t) = 〈X(0)〉√
πDt

∞∑
p=0

p∑
k=0

k!c(k,p)

(
1

Dt

)p

. (A7)

By term by term comparison of the series (A6) and (A7), one
obtains a nontrivial identity,

p∑
k=0

(−1)k22kk!

(p − k)!(2k + 1)!
= 1

p!(2p + 1)
. (A8)

Returning to the main goal of the Appendix, we divide the
series (A3) by (A6). Notice that the prefactor 〈X(0)〉/√πDt

appears in both (A3) and (A6), therefore, it cancels. Repre-
senting the fraction 1/S(t) by the geometrical series, we finally
obtain the sought asymptotic expansion,

f (x; Dt |T > t)

= x

2Dt
e−x2/4Dt

⎛
⎝1 +

1∑
k=0

c(k,1)

(
x2

4Dt

)k 1

Dt
+ O(t−2)

⎞
⎠

×
(

1 + 1

12

〈X3(0)〉
〈X(0)〉

1

Dt
+ O(t−2)

)
. (A9)

The asymptotic expansion of the corresponding distribution
function, i.e.,∫ x

0
dx ′ f (x ′; t)

S(t)
= 1 − e−x2/4Dt (1 + O(t−1)) (A10)

has been employed in steps leading from Eqs. (20) to (21) and
from Eqs. (23) to (24).
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J. S. Martı́n, Ann. Probab. 37, 1926 (2009).

022132-7

http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf
http://dx.doi.org/10.1016/j.tree.2003.09.007
http://dx.doi.org/10.1016/j.tree.2003.09.007
http://dx.doi.org/10.1016/j.tree.2003.09.007
http://dx.doi.org/10.1016/j.tree.2003.09.007
http://dx.doi.org/10.1016/j.tpb.2003.10.007
http://dx.doi.org/10.1016/j.tpb.2003.10.007
http://dx.doi.org/10.1016/j.tpb.2003.10.007
http://dx.doi.org/10.1016/j.tpb.2003.10.007
http://dx.doi.org/10.2307/1428186
http://dx.doi.org/10.2307/1428186
http://dx.doi.org/10.2307/1428186
http://dx.doi.org/10.2307/1428186
http://dx.doi.org/10.1214/09-AOP451
http://dx.doi.org/10.1214/09-AOP451
http://dx.doi.org/10.1214/09-AOP451
http://dx.doi.org/10.1214/09-AOP451


ARTEM RYABOV AND PETR CHVOSTA PHYSICAL REVIEW E 89, 022132 (2014)

[7] P. Mandl, Czechoslovak Math. J. 11, 558 (1961).
[8] P. A. Ferrari, S. Martı́nez, and J. S. Martı́n, J. Stat. Phys. 86, 213

(1997).
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