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Asymmetric coupling in two-lane simple exclusion processes with Langmuir kinetics:
Phase diagrams and boundary layers
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We use boundary layer analysis for an open system consisting of two parallel totally asymmetric simple
exclusion processes with Langmuir kinetics under a biased lane-changing rule. The two kinds of phase
transitions—bulk transitions and surface transitions—have been examined. The dynamics of shock and their
dependence on the system parameters have been investigated. We find a reduction in the number of steady-state
phases with increase in lane-changing rate.
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The asymmetric simple exclusion process (ASEP) is the
simplest model for studying driven diffusive systems, in
which particles hop in a preferred direction along the lattice.
Despite their simplicity, ASEPs can explain some complex
nonequilibrium phenomena such as boundary-induced phase
transitions [1], phase separation [2], symmetry breaking [3],
and shock formation [4–6].

In a totally asymmetric simple exclusion process (TASEP)
connected to boundary reservoirs, the total number of particles
remains conserved in the bulk. Recently, a lot of attention has
been given to the exclusion processes coupled with a bulk
reservoir, where the particles can attach and/or detach at bulk
sites [Langmuir kinetics (LK)]. The LK dynamics violate
particle conservation in the bulk. Single-channel TASEP
coupled with LK has been studied comprehensively [7,8].
The competing dynamics of particle conservation (TASEP)
and particle nonconservation (LK) in a single-channel lattice
results in the localization of shocks. This is in contrast to
the TASEP without LK, where shocks move with a constant
velocity and are driven out of the system. A few studies have
been reported in the literature which investigate multichannel
TASEP models with LK [9]. The steady-state dynamics of
two-channel symmetrically coupled TASEP with LK are
the same as that of the corresponding single-channel model
because of the symmetry in lane-changing rates.

The present work explores the consequences of asymmetric
coupling conditions in a two-lane totally asymmetric simple
exclusion process with Langmuir kinetics. We consider a two-
lane open system consisting of two parallel one-dimensional
lattice channels, A and B, each with L sites. The state of
the system is defined by a set of occupation numbers ni

j

(i = 1,2,3, . . . ,L; j = A,B), each of which is either zero
(vacant site) or one (occupied site). The system consists
of indistinguishable particles distributed under the hard-core
exclusion principle. For each time step, a lattice site (i,j ) is
randomly chosen. At entrance (i = 1), a particle can enter
the lattice with rate α when n1

j = 0; and at exit (i = L), a
particle can leave the lattice with rate β when nL

j = 1. If
ni

A = 1 (i = 2,3, . . . ,L − 1), then the particle will first try
to detach itself from the site with a rate wd . If it cannot detach
from site (i,A), it will jump to site (i + 1,A) with unit rate
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provided ni+1
A = 0; otherwise it shifts to lane B with rate w

if ni
B = 0. If ni

A = 0, then a particle attaches to the site with
a rate wa . The dynamics in lane B are similar, with the only
exception being that particles are forbidden to shift from lane
B to lane A.

The temporal evolution of bulk particle densities
(1 < i < L) in the two lanes is given by the master equation

d
〈
ni

A,B

〉
dt

= 〈
ni−1

A,B

(
1 − ni

A,B

)〉 − 〈
ni

A,B

(
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A,B

)〉
+ωa

〈
1 − ni
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〉 − ωd

〈
ni
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〉 ∓ ω
〈
ni

Ani+1
A

(
1 − ni

B

)〉
,

where 〈· · · 〉 denotes the statistical average. The last term
takes a negative sign for lane A and positive for lane B. At
boundaries, the particle densities evolve as

d
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n1

j

〉
dt

= α
〈(

1 − n1
j

)〉 − 〈
n1

j

(
1 − n2

j

)〉
, (1)

d
〈
nL

j

〉
dt

= 〈
nL−1

j

(
1 − nL

j

)〉 − β
〈
nL

j

〉
. (2)

The continuum limit of the model in a mean-field ap-
proximation can be obtained by coarse-graining a discrete
lattice with lattice constant ε = 1/L and rescaling the time
as t ′ = t/L. Define �a = ωaL, �d = ωdL, and � = ωL.

Rewriting 〈ni
j 〉 = ρi

j and dropping the superscript i, since both
lattices are free of any kind of spatial inhomogeneity, we get

∂

∂t ′

[
ρA

ρB

]
+ ∂

∂x

[
− ε

2
∂ρA

∂x
+ ρA(1 − ρA)

− ε
2

∂ρB

∂x
+ ρB(1 − ρB)

]

=
[
�a(1 − ρA) − �dρA − �ρ2

A(1 − ρB)

�a(1 − ρB) − �dρB + �ρ2
A(1 − ρB)

]
, (3)

where ρA,B is the average density in lanes A and B. The
right-hand side represents the nonconservative terms formed
by combination of lane-changing transitions and Langmuir
kinetics. Under the case �a = �d , system (3) in the steady
state reduces to

ε

2

d2ρA,B

dx2
+ (2ρA,B − 1)

(
dρA,B

dx
− �d

)
∓ �ρ2

A(1 − ρB) = 0,

(4)
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with the boundary conditions ρA(0) = ρB(0) = α, ρA(1) =
ρB(1) = 1 − β = γ (say).

The coupling term �ρ2
A(1 − ρB) acts as a sink for lane A

and source for lane B and its presence restrains us from finding
the explicit solutions for average densities in both lanes. We
use a combination of boundary layer analysis and numerical
techniques to obtain bulk (outer) and boundary layer (inner)
solutions separately and then match these solutions suitably.
The outer solution is found in the limit ε → 0. This gives
an over-determined system of first-order equations, which
cannot fulfill the four boundary conditions simultaneously.
The density profiles in the steady state have been obtained
numerically [9] by keeping the time derivative terms in the
system and capturing the solution after sufficiently long time to
ensure the occurrence of a steady state. For the inner solution,
we define x̃ = x−xd

ε
, where xd is the position of the boundary

layer. This rescaling leads to elimination of the source and
sink terms in the system of hydrodynamic equations, which
is well justified because particle-nonconserving dynamics are
irrelevant in regions of width of O(ε). In terms of x̃, the inner
solution ρj,in is given by

dρj,in

dx̃
= 2

(
aj + ρj,in − ρ2

j,in

)
. (5)

Here, the integration constant aj is computed from the
matching condition of outer and inner solutions. Suppose the
boundary layer appears at the right boundary (x = 1) in lane j ,
the matching condition requires ρj,in(̃x → −∞) = ρj,out(x =
1) = ρj,o (say). Here, ρj,o is the value of the left outer solution
in lane j at x = 1. Clearly, ρj,o is a function of system parame-
ters �d and �. The lane-changing and attachment-detachment
phenomena impart their effects in the inner solution through
the matching conditions. Solving Eq. (5) with aj = ρ2

j,o −
ρj,o, we get ρj,in = 1

2 + |2ρj,o−1|
2 tanh( x̃

wj
+ ξj ), where wj =

1
|2ρj,o−1| and ξj = tanh−1( 2γ−1

|2ρj,o−1| ). Being computed from the
left boundary condition, ρj,o is a function of α, so ξj becomes
a function of α as well as γ . This gives a density profile
with the right boundary layer (rbl) in lane j with a positive
slope (tanh −r), which exists for γ > ρj,o(α). As x̃ → ∞,
the boundary layer at x = 1 saturates to ρj,s (say) given
by ρ2

j,o − ρj,o + ρj,s − ρ2
j,s = 0, equivalent to ρj,s = 1 − ρj,o.

When γ > ρj,s(α), the inner solution fails to satisfy the right
boundary condition ρj,in(̃x → ∞) = γ and deconfines from
the boundary to enter the bulk of lane j in the form of a
shock. Thus γ = 1 − ρj,o(α) acts as a bulk transition line
between low-density (LD) and shock (S) phases. Such a
continuous transition is reminiscent of the bulk transition
observed in single-channel TASEP with LK [8], known as
a shockening transition. Within the LD phase, the slope of
the boundary layer is negative for γ < ρj,o(α) and the inner
solution in this region is ρj,in = 1

2 + |2ρj,o−1|
2 coth( x̃

wj
+ ξ̂j ),

where ξ̂j = coth−1( 2γ−1
|2ρj,o−1| ). Here, the change in the slope

of the boundary layer describes a surface transition. The
length scale described by ξj shows a logarithmic divergence
(ξj ∼ ln |γ − ρj,o|) as one approaches the surface transition
line from either direction in the phase plane. On the surface
transition curve, i.e., ρj,o = γ , we get a density profile without
a boundary layer. Fixing α, if one reduces the withdrawal
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FIG. 1. (Color online) Phase diagram for �d = 0.2 and � = 1.
D1: tanh-r, D2: coth-r, D3: tanh-r with lbl, D4: coth-r with lbl, D5:
tanh-l, D6: coth-l, D7: tanh-l with rbl, D8: coth-l with rbl, D9: S+lbl
and D10: S + rbl. Curves marked with triangles and squares represent
phase boundaries of lanes A and B, respectively. Solid (dashed) curves
denote bulk (surface) transitions.

rate of particles, particles start accumulating near the right
boundary forming an increasing boundary layer. Similarly,
reducing γ increases the withdrawal rate which creates a
scarcity of particles near the right boundary and justifies the
formation of a decaying right boundary layer. Along similar
lines, one can analyze the boundary layer at x = 0.

We have obtained the phase diagram for �d = 0.2 and
� = 1. The biased lane-changing rule generates a richer and
more complex phase diagram (Fig. 1). To gain deeper insight
into the various phase transitions, we inspect the topology of
the phases for each lane separately (Fig. 2). The LD phase in
α-γ phase plane for lane A comprises of two major parts
(α < 1/2 and α > 1/2), each of which is further divided
into two subregions by a surface transition line L1. When
α > 1/2, the bulk density (less than 1/2) is not compatible
with the boundary condition ρA(x = 0) = α, which produces
a decaying boundary layer at x = 0. Across the curve L2,
one finds the formation of shock through the shockening
transition, while the dynamics at the left boundary remain
preserved. In the S phase, the density profile comprises a
shock with a left boundary layer (lbl) for α > 1/2. Further,
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FIG. 2. (Color online) Phase diagrams for (a) lane A and (b)
lane B. The notation and parameters are the same as in Fig. 1.
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an increase in γ leads to a leftward motion of shock in the
bulk, until it reaches x = 0 to produce a high-density (HD)
profile with a tanh-type left boundary layer (tanh-l). The
HD phase also involves surface transition L3, which leads to
formation of two subregions, viz., 1 − ρA,o(γ ) < α < ρA,o(γ )
and α > ρA,o(γ ). Here, ρA,o(γ ) is the value of the right outer
solution at x = 0. The intersection of lines α = ρA,o(γ ) and
α = 1 − ρA,o(γ ) locates a critical point (αcA,γcA) in the phase
plane (marked P1), where αcA = 1/2 and γcA is given by
ρA,o(γcA) = 1/2. Across the phase boundary between the S
and HD phases, i.e., α = 1 − ρA,o(γ ) and α < αcA, shock is
formed due to deconfinement of the tanh-l type inner solution,
while the coth-l boundary layer in α > ρA,o(γ ) does not
deconfine to produce shock. Here, γcA remains the critical
value of γ for α > αcA, which gives the horizontal transition
line γ = γcA as the phase boundary between the HD and S
phases. The various phase boundaries and critical point P2 for
lane B can also be obtained similarly as discussed for lane A.

Lane A can be thought of as a homogeneous bulk reservoir
of particles for lane B. So, in addition to attachment and
detachment occurring due to LK, more particles detach from
lane A and attach to lane B. This creates an imbalance between
attachment and detachment rates in both lanes. Now, the
effective detachment rate in lane A (B) has become higher
(lower) than the effective attachment rate in lane A (B). Due
to this reason, the structure of the phase diagram for lane A
and lane B comes out qualitatively similar to that of a single-
channel TASEP with LK for �a < �d (more detachment) and
�a > �d (more attachment), respectively [8].

Figure 3(a) shows six distinct steady-state phases, viz.,
(LD, LD), (LD, S), (S, HD), (S, S), (HD, HD), and (LD, HD)
for �d = 0.2 and � = 1. On comparing Fig. 3(a) with the
phase diagram of an uncoupled system for �a = �d [8], one
finds that a major part of the phase plane is covered by the
(LD, HD) phase due to the absence of a maximal-current
(MC) phase in our system. Also, the region of the LD (HD)
phase expands while that of the HD (LD) phase shrinks in
lane A (B). This is physically justified because the shifting
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FIG. 3. Effect of � on the phase diagram for �d = 0.2.
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FIG. 4. (Color online) Density profiles with �d = 0.2, � = 1.
The continuum mean-field density profiles are shown by red (blue)
and solid (dashed) in lane A (B). The curves marked with triangles
(squares) show Monte Carlo simulation results for lane A (B).
(a) (LD, LD) phase for α = 0.1,γ = 0.4; (b) (LD, S) for α = 0.3,γ =
0.3; (c) (S, S) phase for α = 0.2,γ = 0.85; (d) (S, HD) phase for
α = 0.8,γ = 0.8; (e) (HD, HD) phase for α = 0.7,γ = 0.95; and
(f) (LD, HD) phase for α = 0.7,γ = 0.3.

of additional particles from lane A to B creates a relative
shortage (abundance) of particles in lane A (B). Therefore,
ρA < ρB by virtue of which we have nonexistence of (S, LD),
(HD, S), and (HD, LD) steady-state phases. Figure 3(b) shows
the steady-state phase diagram with � = 10, which indicates
an enlargement (shrinkage) in the region confined to the LD
(HD) phase. The reverse phenomenon happens for phases in
lane B. This combined effect can be seen from the phase
diagram, where the major part of the phase plane is covered by
the (LD, HD) phase. Note that the number of steady-state
phases is reduced to five due to the disappearance of the
(HD, HD) phase. For � = 100, the number of steady-state
phases further reduces to four with the exclusion of (LD, LD)
phase [Fig. 3(c)]. For � = 1000, the (S, S), (LD, S), and
(S, HD) phases are confined to a very small region [Fig. 3(d)].
Figure 4 shows the density profiles from continuum mean-field
equations and their validation using Monte Carlo simulations
obtained for L = 1000. Since the size of a real system is
normally not very large, it is reasonable to simulate the system
for a lattice size up to 1000 to realistically describe the motion
of motor proteins [9]. The Monte Carlo simulations are carried
out for 1010–1011 time steps and the first 5% steps are ignored
to ensure the occurrence of a steady state. The densities in both
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FIG. 5. (Color online) (a) Width of the transition region formed
by the left boundary layer in lane A decreases with increase in system
size for α = 0.8,γ = 0.8. (b) Effect of system size on shock profile
in lane A for α = 0.2,γ = 0.85 with Monte Carlo simulation (MCS).
The steepness of the shock increases with increase in system size.
The dashed profiles are the continuum mean-field (CMF) result for
L = 1000.

the lanes have been computed by taking time averages over an
interval of 10L.

We have investigated the effect of lattice size on the density
profiles and observed that the bulk solution given by Monte
Carlo simulations is independent of lattice size. However, it is
found that the width of the transition region of boundary layer
decreases as the number of lattice sites increases [Fig. 5(a)].
This indicates that the boundary layer is a finite-size effect
which disappears in the limit of an infinite system. Similarly,
one finds an increase in the sharpness in the steep rise of the
shock with an increase in system size [Fig. 5(b)]. For the sake
of clarity, average densities in only one of the two lanes, viz.,
lane A, are shown in Fig. 5. These observations are consistent
with the results reported in the literature [9].

A discontinuity in the bulk connecting a low (high)-density
part on the left to a high (low)-density part on the right is known
as upward (downward) shock. An interesting observation
is that no downward shock is possible in our system. The
nonexistence of downward shock in lane B would imply the
same for lane A and vice versa. Figure 6(a) and the inset show
the situations when density in either lane incurs a downward
shock. Both situations violate ρA < ρB . Therefore, it is
sufficient to show that there does not exist a downward shock
in lane B. This is justified with the help of fixed-point the-
ory [10]. Ignoring the contribution of particle-nonconserving
terms in the boundary layer or shock regions, we set these
terms to zero in the system (4) to get ρA = f (ρB) (say).
System (4) gives

ε

2

(
dρA

dx
+ dρB

dx

)
+ ρ2

A − ρA + ρ2
B − ρB = c. (6)

Here, c is a constant of integration. The fixed points of
Eq. (6) are given by ρ2

A − ρA + ρ2
B − ρB = c. Substituting

ρA = f (ρB), we obtain a two-dimensional fixed-point diagram
in the c-ρB plane [Fig. 6(b)], in which the lower branch (ab)
is unstable while the upper branch (bc) is stable. A downward
shock is possible if a point on the curve in the upper branch
can be connected to a point in the lower branch by a vertical
line [10]. One can easily see from the direction of the vertical
arrows that it is not possible to get a downward shock in
lane B. So, we cannot get downward shock in the bulk of the
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FIG. 6. (Color online) (a) Downward shock in lane B; the inset
shows downward shock in lane A; (b) fixed-point diagram; (c) DW
location for different values of γ ; and (d) height of DW for different
values α.

density profiles in any of the two lanes. This important result
supports our previous observation that a decaying boundary
layer at either boundary cannot produce a shock through its
deconfinement.

We compute the position of the domain wall (DW) in lane
j (xs,j ) using the constancy of current across the shock, viz.,
ρ2

j,+ − ρj,+ = ρ2
j,− − ρj,−, where ρj,− = limx→x−

s,j
ρj (x) and

ρj,+ = limx→x+
s,j

ρj (x). Figure 6(c) shows that upon increasing
α, there is a continuous (linear) change in the position of DW
from right to left in the bulk till α � 1/2 for different values
of γ in lane A. A further increase in α leads to a gradual
settlement of the DW to a fixed position. This is due to the
presence of a boundary layer at the entrance which obstructs
the incoming particles from entering the bulk and localizes the
DW. Figure 6(d) shows the variation of height of DW in lane
A (�s,A = ρA,+ − ρA,− = 2ρA,+ − 1) with respect to γ along
lines of constant entrance rate α. For 1 − ρA,o(γ ) < α < 1/2,
�s,A jumps discontinuously to a finite value on entering the
S region from the HD phase, whereas there is a continuous
rise in the height from zero for α � 1/2. Further, at the phase
boundary between the LD and S phases [γ = 1 − ρA,o(α)],
�s,A jumps to zero discontinuously.

In this study, we have investigated a two-lane totally
asymmetric simple exclusion process with Langmuir kinetics
in asymmetric coupling conditions using boundary layer
analysis of continuum mean-field equations for ωa = ωd . The
structure of the phase diagram of a two-lane TASEP with LK in
asymmetric coupling conditions is quite complex as compared
to that in symmetric coupling. The bulk transition from LD
(HD) to the shock phase occurs through deconfinement of
the right (left) boundary layer, and the surface transition
occurs in both LD and HD phases, which changes the sign
of slope of the boundary layer. We find a reduction in the
number of steady-state phases in the system with increasing
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lane-changing rate. We have examined the finite-size effect and
found that the width of the transition region of the boundary
layer reduces with an increase in system size. Fixed-point
theory shows the nonexistence of a downward shock in the
system. We have also analyzed the dependence of shock

on boundary rates, its motion in the bulk, position, and
height.

The second author acknowledges CSIR, New Delhi, India,
for providing financial support.
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