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Thermal conductivity of simple liquids: Temperature and packing-fraction dependence
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The thermal conductivity of rare gases in liquid and dense fluid states has been evaluated using molecular
dynamics simulation with the Lennard-Jones (LJ) potentials and the Green-Kubo (GK) formula. All the calculated
thermal conductivities are in very good agreement with experimental results for a wide range of temperature
and density. Special attention was paid to temperature and packing-fraction dependence which is nontrivial from
dimensional analysis on the LJ potentials and the GK formula. First, the temperature dependence of T 1/4 was
determined from the calculations at constant densities. Secondly, in order to obtain the dependence on packing
fraction from that on number density separately, a scaling method of particle and/or cell size was introduced. The
number density dependence of (N/V )2/3 which is expected from the dimensional analysis of the GK formulas
was confirmed and the packing-fraction dependence of η3/2 was determined by using the scaling method. It
turned out that the summarized functional form of m−1/2(N/V )2/3η3/2T 1/4 can well express both the calculated
and experimental thermal conductivities for Ar, Kr, and Xe, where m is the atomic mass. The scaling method
has also been applied to molten NaCl and KCl so that it has been found that the thermal conductivity has the
packing-fraction dependence of η2/3 which is much weaker than that of the simple LJ liquids.
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I. INTRODUCTION

Among the transport properties of liquids, thermal conduc-
tion has less extensively been studied theoretically compared
with diffusion and viscous flow [1–3], although several
theoretical equations of thermal conductivity of liquids have
been proposed for simple and polyatomic liquids [4–10]. The
Bridgman equation [4] is based on the simple model that heat
can be transferred between atoms which are arranged on a
cubic lattice along the temperature gradient with the sound
velocity:

λ = 3kU

l2
, (1)

where k is the Boltzmann constant, U the sound velocity,
and l the mean neighbor interatomic distance. The l equals to
(V/N )1/3, where V is the system volume and N the particles
number included in the V . Using the expression for sound
velocity [5] of

U =
(

vl

vf

)1/3(
γ kT

m

)1/2

, (2)

where vl and vf meanV/N and the free volume per particle,
respectively, γ the ratio of specific heats for ideal gas, T the
temperature, and m the atomic mass, Eq. (1) can be rewritten
as

λ = 3k

(
vl

vf

)1/3(
γ kT

m

)1/2

(N/V )2/3. (3)

For simple liquids, the Enskog formulas, proposed for
transport coefficients for the hard-sphere fluids, have been
extended to the smooth hard-sphere and the rough hard-sphere
models [11,12]. A useful equation based on the formulas with
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the Carnahan-Starling approximation has been given for the
thermal conductivity as

λ = 4ηHS

[
1.025 13

y
+ 1.230 16 + 0.776 483y

]
λB, (4)

λB =
(

75k

64σHS
2

)(
kT

mπ

)1/2

, (5)

y ≈ 4ηHS

(
1 − 1

2
ηHS

)/(
1 − ηHS

)3
, (6)

where ηHS is the packing fraction with hard-sphere diameter,
σHS, and λB the Boltzmann equation of thermal conductivity
for dilute gas [13].

In these representative equations, there are two common
and characteristic points. One is that the terms of mass and
temperature are directly taken from the kinetic theory, as
(kT /m)1/2. The other is that free volume or packing fraction
is included explicitly in them. Although both density, mN/V ,
and packing fraction, πσ 3

HSN/(6V ), have number density term,
N/V , and they all change in the same way when thermal
expansion or contraction occurs, we think here that packing
fraction has different physical meaning from that of number
density. That is, whereas number density has the literal sense,
packing fraction may represent the scale of the amount of void
rather than particle volume in liquids. In the other theoretical
equations [6–10], both atomic mass and number density depen-
dencies of m−1/2 (N/V )2/3 can be seen explicitly or implicitly
and some of them also assume the temperature dependence
of T 1/2, while free volume or packing-fraction dependence
is widely divergent. In the semiempirical equations obtained
using the principle of corresponding states [14], temperature
is usually used as a single variable for the reduced thermal
conductivity which should include both dependencies.

For liquid and fluid states of Ar, whereas experimental
results are available as a function of both wide ranges of

1539-3755/2014/89(2)/022129(5) 022129-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.022129


OHTORI, ISHII, TOGAWA, OONO, AND TAKASE PHYSICAL REVIEW E 89, 022129 (2014)

temperature and pressure or density [15], there is no verifi-
cation for these equations. Since density is not only a product
of atomic mass and number density but includes also the in-
formation of packing fraction, any assumptions are necessary
for deriving each dependence of number density and packing
fraction from the density dependence. Primarily, it is unex-
amined whether it is possible to divorce the packing-fraction
dependence from the density dependence. Therefore, even in
simple liquids, dependence on thermodynamic variables has
not theoretically been established for thermal conductivity.

In this work, using computer experiments, we directly
derive the dependence not only on temperature and density
but also on mass, number density, and packing fraction of
thermal conductivity for simple liquids and give a decisive
expression with these variables. Molecular dynamics (MD)
simulation is useful as a tool of computer experiments for this
purpose. We have evaluated the thermal conductivity of simple
molten alkali halides by MD simulation with the Green-Kubo
(GK) formula [16–19] and shown that it follows the equation
of m−1/2 (N/V )2/3, where m means the geometric average
mass of cation and anion, and has practically no temperature
dependence. It is a natural way to think that any collective
excitation can carry heat in liquids as phonon in solids so that
void or vacancy in liquids might have any effect on propagation
of the collective wave. Therefore, it is an original question why
the above equation without packing fraction and temperature
works so well in the molten salt systems, which has led us to
this more fundamental work.

In the framework of the Lennard-Jones (LJ) potentials,

φ(rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6]
, (7)

used in this work, dimensional analysis for the GK formula is
useful for deriving the dependence on some variables, before
the MD simulation. First, we express the thermal conductivity
as a dimensionless quantity by using appropriate units, i.e., σ

for length, m for mass, ε/k for temperature, and (mσ 2/48ε)1/2

for time, where the σ and ε are the parameters of particle
size and interaction energy used in the above LJ potentials,
respectively. Then, by inserting these into the GK formula,

λ = 1

3kV T 2

∫ ∞

0
〈Je(t)Je(0)〉dt, (8)

where Je is the energy current [1], we obtain a result as

λ(σ,ε,m,N,V,E) = aσ−2ε1/2m−1/2λ∗(N,V ∗,E∗), (9)

where a is the proportional coefficient, E the internal energy,
V ∗=V/σ 3, E∗ = E/ε, and λ∗ the dimensionless thermal
conductivity. This shows directly the mass dependence of
m−1/2. Since, with change of density, both number density and
packing fraction change simultaneously, we introduce a simple
scaling method for particle size σ and/or cell size L = V 1/3, in
order to discuss these separately. A diagrammatic explanation
for the method is given in Fig. 1, where we assume that the
particle can be scaled as if it is hard sphere. Therefore, the
packing fraction η is defined as πσ 3N/6V . Scaling only the
particle size changes packing fraction, keeping number density
at a constant. On the other hand, scaling both the particle
size and cell size changes number density, keeping packing

FIG. 1. (Color online) Schematic illustration for number density
change at a constant packing fraction and packing fraction change
at a constant number density by scaling particle size σ , and/or cell
size L. The plot of potential energy φ shows the position change of
repulsive barrier (r at φ = 0) which corresponds to the change of
particle size by scaling σ .

fraction at constant. Under constant packing fraction, since
V ∗ = (L/σ )3 is constant and (N/V )2/3 = (N/V ∗σ 3)2/3 =
(N/V ∗)σ−2, σ−2 means (N/V )2/3, which suggests the number
density dependence of (N/V )2/3 in Eq. (9). In summary, for the
simple LJ liquids, the thermal conductivity can be expressed
as

λ(m,N/V,T ,η) = m−1/2(N/V )2/3f (T ,η). (10)

MD simulations are necessary for further discussions regard-
ing the functional form of temperature and packing-fraction
dependence, f (T ,η).

II. CALCULATION

MD calculations were carried out for Ar, Kr, and Xe using
NV E conditions. The particle number N was 864 and the cell
volume V was determined from the experimental density [20]
at each temperature. The parameters for the LJ potentials are
given in Table I [21]. The equations of motion were integrated
using the velocity Verlet algorithm [22] with a time step
of 10 fs. The initial configuration of the atoms had an fcc
structure. The kinetic energy was kept at each temperature by
scaling the velocities of all atoms during the initial 10 ps, and
then without scaling them, the calculation was carried out for
up to 10 ps to equilibrate each system. The velocities of all
atoms were corrected every 5000 steps in order to keep the total

TABLE I. Parameters for LJ potentials, σ and ε, in rare gases
system [21].

Atom σ (nm) εk−1 (K)

Ar 0.3405 119.8
Kr 0.3670 167.0
Xe 0.3924 257.4
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FIG. 2. (Color online) Thermodynamic states studied in this
work on the phase diagram of Ar [20].

momentum of the system negligible. The atomic coordinates
and velocities obtained for the subsequent 50 ns were used
for the calculation of thermal conductivity using Eq. (8). MD
calculations for molten NaCl and KCl are also performed in
order to determine precise temperature and packing-fraction
dependence of the thermal conductivity. A detailed description
of calculations for them is given in Ref. [16].

III. RESULTS AND DISCUSSION

Figure 2 shows the thermodynamic states calculated on
the phase diagram of Ar which is based on the results of
Ref. [20]. In order to compare with the experimental results, a
wide range of the conditions was sampled. In particular, from
the viewpoint of examining packing-fraction dependence, it
ranged up to the fluid region. Figure 3 shows representative
comparisons between the calculated and the experimental
results. They are in very good agreement with each other.
The upper figure shows calculated λ as a function of T

at densities which correspond to the saturated vapor line
shown in Fig. 2. The lower figure shows calculated λ as a
function of T at a constant density. We can see the apparent
temperature dependence is caused by density change and the
net temperature dependence is very weak.

Figure 4(a) shows the definitive evaluation of the tempera-
ture dependence and clearly tells that it follows T 1/4 rather than
T 1/2 which is plotted in the inset. We have confirmed the same
temperature dependence at all the densities. As stated above,
in the case of molten alkali halides, we observed practically
no temperature dependence. The reason why the temperature
dependence in the LJ and the molten salt systems is weaker
than that in the hard-sphere system, T 1/2, will be discussed in
the subsequent paper by using the Weeks-Chandler-Anderson
potentials. Figures 4(b) and 4(c) show the results of the number
density dependence at a constant packing fraction and the
packing-fraction dependence at a constant number density,
obtained using the scaling method, respectively. The number
density dependence of (N/V )2/3 is the same as expected from
the dimensional analysis. This supports the assumption used
in the analysis. Packing-fraction dependence at a constant
number density was determined as η3/2 in the figure. We have

FIG. 3. (Color online) Temperature dependence of the thermal
conductivity of Ar (a) with density change which corresponds to the
saturated vapor line and (b) under constant densities of 1125 and
1325 kg m−3.

confirmed the same dependence on η at all the states shown in
Fig. 2.

The present result of packing-fraction dependence is
significantly different from those which Eqs. (3) and (4)
give. In Eq. (3), (vl/vf )1/3 equals to (1 − η)−1/3 and can
be approximated as η1/6 in the range of η discussed in
this work. Obviously, the dependence is excessively under-
estimated, compared with this result and, in addition, the
experimental results shown in Fig. 5. In Eq. (4), the term
σ−2

HS can be converted to the term of number density via
the definition of packing fraction, ηHS = πσ 3

HSN/(6V ), as
η

2/3
HS σ−2

HS (π/6)−2/3 = (N/V )2/3. Using this relation, in Eq. (4)
the net packing-fraction dependence can be approximated as
η1.9. The reason why the packing-fraction dependence in the
LJ systems, η1.5, is weaker than that in the hard-sphere system,
η1.9, will also be discussed in the subsequent paper.

The mass dependence of m−1/2 was also confirmed by
artificial change of mass in MD simulation. In summary, the
thermal conductivity of simple LJ liquids should follow the
function of m−1/2(N/V )2/3η3/2T 1/4, if they are not coupled
among them. Figure 5 shows plots of all the calculated
results and the experimental results [15,23] in the states with
temperatures and densities on each saturated vapor line for
Ar, Kr, and Xe as a function of m−1/2(N/V )2/3T 1/4 and
m−1/2(N/V )2/3η3/2T 1/4.

In the states shown in Fig. 5, since temperature and density
change on the saturated vapor lines, both N/V and η change
simultaneously with the density through volume expansion or
contraction even in each material. However, the plot shows
that the parameters in the abscissa are practically independent
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FIG. 4. (Color online) The calculated thermal conductivity of Ar
as a function of (a) temperature at constant densities, (b) number
density at a constant packing fraction, and (c) packing fraction at a
constant number density.

of one another or there is no significant coupling among them.
Therefore, Fig. 5 shows also each dependence on N/V and
η in each material with a constant σ . On the other hand,
Figs. 4(b) and 4(c) show each dependence on N/V and η in
the LJ liquids with varying σ , since the material is changed
by scaled σ from Ar as a reference. Therefore, the fact that
the dependence shown in Figs. 4(b) and 4(c) is valid also
under all the states shown in Fig. 5 means that σ expressing
originally individuality of materials such as Ar, Kr, and Xe
has effect on the thermal conductivity simply as a common

FIG. 5. (Color online) The calculated and experimental thermal
conductivity in the states with temperatures and densities on each
saturated vapor line for Ar, Kr, and Xe as a function of (a) mass and
number density and (b) mass, number density, and packing fraction.

parameter to the LJ liquids, taking a form of packing fraction
of πσ 3N/6V . If we regard packing fraction as a measure of
the amount of void rather than entity in liquid, it is natural
that it is a common parameter to the LJ liquids as a group.
In the expression of m−1/2(N/V )2/3η3/2T 1/4 for the thermal
conductivity, only the mass term is an explicit parameter
showing individuality of material. However, implicitly, at
a given temperature, density including number density and
packing fraction is determined through potential parameters,
σ and ε, which express individuality of the materials. We
can see the explicit individuality of materials through packing
fraction as the difference between groups such as the LJ
liquids and molten alkali halides. In fact, using the method
of scaling particle size, we have obtained the packing-fraction
dependence of η2/3 for molten NaCl and KCl which is very
different from that for the LJ liquids.

These results show the validity of both the obtained
functional form and the present method. The most important
finding is a strong packing-fraction dependence in simple
liquids, which is different from that in molten NaCl and
KCl. The dependence on temperature and packing fraction
in the molten salts are much weaker than those in the simple
liquids. Therefore, it turned out that, in the previous work
[16], the thermal conductivity was practically well expressed
by m−1/2(N/V )2/3 without considering both temperature and
packing-fraction dependence. The origin of these behaviors
based on the interaction potentials, i.e., the softness of
repulsive part, will be reported in the subsequent paper.
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Once one has known the results obtained in this work,
one might think that he could derive similar results from
the experimental data. First, he might carefully examine the
temperature dependence for the data under constant density.
Then, he might obtain the packing-fraction dependence simply
by dividing the data by both the temperature and number
density dependence. However, no one has ever done that.
Without the present results, one must first assume that the
thermal conductivity can be expressed simply by temperature,
number density, and packing fraction, and that they are
independent of one another. In addition, one must assume the
explicit expression of number density dependence. Although
we have first assumed the independence between number
density and packing fraction, we have validated the assumption
by the present MD simulation. By using the present method
of scaling particle size, we have successfully obtained the
single variable dependence on number density or packing
fraction. Furthermore, as a result, the plot shown in Fig. 5
has validated the practical independence among temperature,
number density, and packing fraction.

IV. CONCLUSIONS

We have performed MD simulation of simple LJ liquids
and fluids in a wide range of temperature and density, and

calculated the thermal conductivity using the Green-Kubo
formula. The calculated thermal conductivities were in very
good agreement with experimental results. The temperature
dependence of T 1/4 has been determined from the calculations
under constant density, and has been confirmed in all the states
calculated. The number density dependence of (N/V )2/3 and
the packing-fraction dependence of η3/2 have been obtained
from the calculations by using the scaled particle size. It
has turned out that the combination of each dependence can
well reproduce the thermal conductivities in the states of
temperatures and densities on the saturated vapor lines of Ar,
Kr, and Xe. These results show that there is no significant
coupling among temperature, number density, and packing
fraction which are variables of the thermal conductivity. The
same scaling method has been applied to molten NaCl and KCl
so that we have obtained the same number density dependence
but the different packing-fraction dependence of η2/3.
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