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Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise
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We study the dynamics of a system of coupled oscillators of distributed natural frequencies, by including the
features of both thermal noise, parametrized by a temperature, and inertial terms, parametrized by a moment
of inertia. For a general unimodal frequency distribution, we report here the complete phase diagram of the
model in the space of dimensionless moment of inertia, temperature, and width of the frequency distribution.
We demonstrate that the system undergoes a nonequilibrium first-order phase transition from a synchronized
phase at low parameter values to an incoherent phase at high values. We provide strong numerical evidence for
the existence of both the synchronized and the incoherent phase, treating the latter analytically to obtain the
corresponding linear stability threshold that bounds the first-order transition point from below. In the limit of zero
noise and inertia, when the dynamics reduces to the one of the Kuramoto model, we recover the associated known
continuous transition. At finite noise and inertia but in the absence of natural frequencies, the dynamics becomes
that of a well-studied model of long-range interactions, the Hamiltonian mean-field model. Close to the first-order
phase transition, we show that the escape time out of metastable states scales exponentially with the number of
oscillators, which we explain to be stemming from the long-range nature of the interaction between the oscillators.
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I. INTRODUCTION

Collective synchronization refers to the remarkable phe-
nomenon of a large population of coupled oscillators spon-
taneously synchronizing to oscillate at a common frequency,
despite each constituent having a different natural frequency.
This many-body cooperative effect is observed in many phys-
ical and biological systems, pervading length and time scales
of several orders of magnitude. Some examples are metabolic
synchrony in yeast cell suspensions [1], synchronized firings
of cardiac pacemaker cells [2], flashing in unison by groups
of fireflies [3], voltage oscillations at a common frequency
in an array of current-biased Josephson junctions [4], phase
synchronization in electrical power distribution networks [5–
7], rhythmic applause [8], animal flocking behavior [9]; see
Ref. [10] for a recent survey.

A paradigmatic model to study synchronization is the
Kuramoto model, comprising N phase-only oscillators of
distributed natural frequencies that are globally coupled
through the sine of their phase differences [11,12]. Specifically,
the system involves N interacting oscillators i = 1,2, . . . ,N .
The ith oscillator has natural frequency ωi and is characterized
by its phase θi , which is a periodic variable of period 2π . The
ωi’s have a common probability distribution given by g(ω).
The phase θi evolves in time according to the equation

dθi

dt
= ωi + K̃

N

N∑
j=1

sin(θj − θi), (1)

where K̃ is the coupling constant, while the factor 1/N makes
the model well behaved in the continuum limit N → ∞.
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In this work, we study a generalization of the dynamics
Eq. (1) that includes inertial terms parametrized by a moment
of inertia and stochastic noise parametrized by a tempera-
ture [13–15]. Noise accounts for the temporal fluctuations
of the natural frequencies [16], while inertia elevates the
first-order Kuramoto dynamics to second-order [17]. For a
general unimodal distribution of the natural frequencies, we
report here the complete phase diagram of the model in
the space of dimensionless moment of inertia, temperature,
and width of the frequency distribution, showing that the
system in the steady state may exist in either of two possible
phases, namely, a synchronized phase and an unsynchronized
or incoherent phase. We show that a nonequilibrium first-order
transition occurs from the synchronized phase at low parameter
values to the incoherent phase at high values. While strong
numerical evidence is provided to support the existence of
both the synchronized and the incoherent phase, only the latter
could be treated analytically to obtain the corresponding linear
stability threshold that bounds the first-order transition point
from below. In proper limits of the dynamics, we recover the
known continuous phase transitions in the Kuramoto model
and in its noisy extension [16], and an equilibrium continuous
transition in a related model of long-range interactions, the
Hamiltonian mean-field model [18].

The Kuramoto model has been almost exclusively studied
within the field of synchronization and nonlinear dynamical
systems. On the other hand, there has been much recent
activity within the community of statistical physicists to
study nonequilibrium stationary states (NESSs) and develop
a general framework akin to the one due to Boltzmann and
Gibbs for equilibrium that allows analysis of nonequilibrium
states on a general footing [19]. Unfortunately, there are few
examples of NESSs for which one knows the probability
measure of configurations exactly, so that the bulk of stud-
ies have relied on numerical simulations and approximate
analysis [20].
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Our work interprets the dynamics of the Kuramoto model
to be of true nonequilibrium character. Moreover, quenched
disorder in the form of natural frequencies of the oscillators
provides a very rich setting to study the interplay of the
nonequilibrium character of the dynamics with the disorder.
In this rich backdrop, we are able to characterize the nature
of the NESS and ascertain under quite general conditions the
whole spectrum of phase transitions.

The paper is organized as follows. In the following section,
we describe the model of interest and briefly review previous
studies of the model. In Sec. III, we present the complete phase
diagram of the model, providing numerical simulation results
in support. In Sec. IV, we present an analytical treatment of
the properties of the incoherent phase, based on the Kramers
equation for the single-oscillator distribution. This is followed
in Sec. V by a comparison of our analytical predictions with
numerical simulations. The paper ends with conclusions. Some
of the technical details are relegated to the two appendices.

II. THE MODEL

We now give a precise definition of the generalized
dynamics that we study in this paper. In addition to phase θi ,
we associate with the ith oscillator another dynamical variable,
namely, the angular velocity vi . With a Gaussian noise force
ηi(t) and the natural frequency ωi , the dynamics is [13,15]

dθi

dt
= vi,

(2)

m
dvi

dt
= −γ vi + Kr sin(ψ − θi) + γωi + √

γ ηi(t),

where m is the oscillator moment of inertia, γ is the friction
constant, while r is the synchronization order parameter:

r(t)eiψ(t) ≡
∑N

j=1 eiθj (t)

N
. (3)

Here, we have

〈ηi(t)〉 = 0, 〈ηi(t)ηj (t ′)〉 = 2T δij δ(t − t ′), (4)

with temperature T in units of the Boltzmann constant. We
consider a unimodal g(ω) (that is, symmetric about mean ω̃,
and decreases to zero with increasing |ω − ω̃|) and denote
its width by σ . In the absence of inertia, the dynamics with
the redefinition K/γ = K̃ reduces at T = 0 to that of the
Kuramoto model [11,12] and at T 	= 0 to that of its extension
studied by Sakaguchi in Ref. [16].

The dynamics Eq. (2) also describes motion of particles
with an XY interaction on a unit circle, with θi,vi , and
γωi being, respectively, the angular coordinate, velocity, and
external torque. In the absence of ωi’s, Eq. (2) for γ = 0 is
the microcanonical dynamics of the Hamiltonian mean-field
model [18], a prototype of long-range interacting systems [21].
In this case, the equations of motion are the Hamilton equations
associated with the Hamiltonian

H =
N∑

i=1

p2
i

2m
+ K

2N

N∑
i,j=1

[1 − cos(θi − θj )], (5)

with pi = mvi the momentum of the ith particle. The dynamics
of this system is microcanonical, conserving energy and total

momentum. With no ωi’s, but γ 	= 0, the dynamics of the
resulting Brownian mean-field (BMF) model is canonical,
mimicking the interaction of the HMF system with a heat
bath [22].

The dynamics Eq. (2) is invariant under θi → θi +
ω̃t, vi → vi + ω̃, ωi → ωi + ω̃, and the effect of σ may be
made explicit by replacing ωi in the second equation with
σωi . We thus consider from now on the dynamics Eq. (2)
with the substitution ωi → σωi . In the resulting model, we
take g(ω) to have zero mean and unit width, without loss of
generality.

For m 	= 0, using dimensionless variables

t ≡ t
√

K/m, (6)

vi ≡ vi

√
m/K, (7)

1/
√

m ≡ γ /
√

Km, (8)

σ ≡ γ σ/K, (9)

T ≡ T/K, (10)

ηi(t) ≡ ηi(t)
√

γ /K, (11)

the dynamics becomes

dθi

dt
= vi,

dvi

dt
= − 1√

m
vi + r sin(ψ − θi) + σωi + ηi(t),

(12)

where

〈ηi(t)ηj (t ′)〉 = 2
T√
m

δij δ(t − t
′). (13)

For m = 0, using dimensionless time t ≡ t(K/γ ), the dynam-
ics becomes the overdamped motion

dθi

dt
= r sin(ψ − θi) + σωi + ηi(t), (14)

where

〈ηi(t)ηj (t ′)〉 = 2T δij δ(t − t
′). (15)

From now on, we will consider in place of dynamics Eq. (2)
the reduced dynamics Eq. (12) [that reduces for m = 0 to the
overdamped dynamics Eq. (14)] involving three dimensionless
parameters, m, T , σ ; we will drop overbars for simplicity of
notation. With σ = 0 (i.e., g(ω) = δ(ω) [13,15]), the resulting
BMF dynamics has an equilibrium stationary state [22]. For
other g(ω), the dynamics Eq. (12) violates detailed balance due
to the external driving by the set of torques {γωi}, yielding a
NESS. We demonstrate this in Appendix A.

Several stationary state aspects of the dynamics Eq. (12) in
the continuum limit N → ∞ are known. For the Kuramoto
dynamics (m = T = 0), the system exhibits a continuous
transition from a low-σ synchronized [rst = r(t → ∞) 	= 0]
to a high-σ incoherent (rst = 0) phase across the critical
point [11]

σc(m = 0,T = 0) = πg(0)

2
; (16)
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extending to T 	= 0, the point becomes a second-order critical
line σc(m = 0,T ) on the (T ,σ ) plane, given, on using the
results of Sakaguchi in Ref. [16], by solving

2 =
∫ ∞

−∞

T g(ω)dω

T 2 + ω2σ 2
c (m = 0,T )

. (17)

For the BMF dynamics (σ = 0; m,T 	= 0), the synchroniza-
tion transition is again continuous, occurring at the critical

temperature given by [22]

Tc = 1
2 . (18)

Although there have been some numerical studies of the
full dynamics for nonzero m, T , σ [13,15,23], the complete
synchronization phase diagram for a general unimodal g(ω)
has not been addressed before, a question we take up and
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FIG. 1. (Color online) (a) Schematic phase diagram of model Eq. (12) in terms of dimensionless moment of inertia m, temperature T , and
width σ of the frequency distribution: the shaded blue surface is a first-order transition surface, the thick red lines are second-order critical
lines. The system is synchronized inside the region bounded by the surface and is incoherent outside. The limits (the Kuramoto model, the
Sakaguchi model, and the BMF model) in which known transitions are obtained are labeled. (b) The known transition line for the Sakaguchi
model, given by Eq. (17), showing also the Kuramoto model transition point, Eq. (16), for a Gaussian g(ω) with zero mean and unit width [24].
(c) The known transition line for the BMF model, given by Eq. (18). The shaded blue surface in (a) is bounded from above and below by
the dynamical stability thresholds σ coh(m,T ) and σ inc(m,T ) of the synchronized and the incoherent phase, respectively. These thresholds may
be estimated in N -body simulations from hysteresis plots (see Fig. 2 for an example); Panel (d) shows the surfaces σ coh(m,T ) and σ inc(m,T )
obtained from N -body simulations with N = 500 for a Gaussian g(ω) with zero mean and unit width, with cuts of the three-dimensional plot
at m = 10 shown in panel (e) and at T = 0.25 shown in panel (f).
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answer in this paper. In the next section, we describe the
complete phase diagram that emerges out of our analysis.

III. PHASE DIAGRAM

The complete phase diagram is shown schematically in
Fig. 1(a), where the thick red second-order critical lines stand
for the continuous transitions mentioned above. For nonzero
m, T , σ , the synchronization transition becomes first-order,
occurring across the shaded blue transition surface; this surface
is bounded by the second-order critical lines on the (T ,σ ) and
(m,T ) planes, and by a first-order transition line on the (m,σ )
plane.

The phase diagram in Fig. 1(a) is a generalization of the one
for typical fluids where a first-order transition line ends in a
critical point, while we have here a first-order transition surface
ending in critical lines. All transitions for σ 	= 0 are in NESS,
and we interpret them to be of dynamical origin, accounted for
by stability considerations of stationary solutions of equations
describing evolution of phase-space distribution. Showing
that the phases extremize a free-energy-like quantity (e.g.,
a large deviation functional [25]) in NESS is a daunting
task in the absence of a general framework akin to that for
equilibrium [26]. For σ = 0, the different phases actually
minimize the equilibrium free energy [21].

To confirm the first-order transition, we performed N -
body simulations involving integrations of Eq. (12) for a
representative g(ω), i.e., a Gaussian. Details of the simulation
procedure are given in Appendix B. For given m and T and
an initial state with oscillators at θ = 0 and angular velocities
sampled from a Gaussian distribution with zero mean and
width ∝T , we let the system equilibrate at σ = 0. We then tune
σ adiabatically to high values and back in a cycle. Figure 2
shows the behavior of the synchronization order parameter r

for several m’s at a fixed T less than the BMF transition point

FIG. 2. (Color online) r vs. adiabatically tuned σ for different
m values at T = 0.25 < Tc = 1/2, showing also the stability thresh-
olds, σ inc(m,T ) and σ coh(m,T ), for m = 1000. For a given m, the
branch of the plot to the right (left) marked with an arrowhead
pointing down (up) corresponds to σ increasing (decreasing); for
m = 1, the two branches almost overlap. The data are obtained in
N -body simulations with N = 500 for a Gaussian g(ω) with zero
mean and unit width.

FIG. 3. (Color online) r vs. adiabatically tuned σ for different
temperatures T � Tc = 1/2 at a fixed moment of inertia m = 10.
For a given T , the branch of the plot to the right (left) marked
with an arrowhead pointing down (up) corresponds to σ increasing
(decreasing); for T � 0.35, the two branches almost overlap. The data
are obtained in N -body simulations with N = 500 for a Gaussian
g(ω) with zero mean and unit width. Similar disappearance of the
hysteresis loop with increase of T was reported in Ref. [14].

Tc = 1/2, illustrating sharp jumps and hysteresis behavior
expected of a first-order transition. With decrease of m,
the jump in r becomes less sharp and the hysteresis loop
area decreases, both consistent with the transition becoming
second-order-like as m decreases; see Fig. 1. For m = 1000,
Fig. 2 shows σ inc(m,T ) and σ coh(m,T ), the stability thresholds
for the incoherent and the synchronized phase, respectively;
the phase transition point σc(m,T ) lies in between the two
thresholds [see Fig. 1(d)]. Figure 2 shows that the thresholds
decrease and approach zero with the increase of m; it also
suggests, together with Fig. 3, that σ inc and σ coh coincide both
on the second-order critical lines and as m → ∞ at a fixed T .

For given m and T and σ between σ inc(m,T ) and
σ coh(m,T ), r versus time in the stationary state shows bistabil-
ity, with the system switching back and forth between incoher-
ent and synchronized states [Fig. 4(a)]. To have not-too-large
switching times, these simulations have been performed with a
relatively small number of oscillators, N = 100, causing large
fluctuations in the order parameter r . Therefore, in Fig. 4(a) the
synchronized and the unsynchronized state are characterized
by values of r fluctuating above and below 0.4, respectively;
however, this does allow for a clear visualization of the
switches. The distribution P (r) in Fig. 4(b) is bimodal with a
peak around r ≈ 0 or r > 0 as σ varies between σ inc and σ coh,
consistent with the transition being first-order. Indeed, a first-
order transition point is characterized by two equally likely val-
ues of the order parameter, while at a second-order phase tran-
sition point, the order parameter has its value equal to zero [27].

IV. ANALYTICAL TREATMENT

We now turn to an analytical treatment of the first-order
transition. In the continuum limit N → ∞, the dynamics
Eq. (12) is described by the single-oscillator distribution
f (θ, v, ω, t), which gives at time t and for each ω the
fraction of oscillators with phase θ and angular velocity v. The
distribution is 2π -periodic in θ , and obeys the normalization
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FIG. 4. (Color online) For m = 20, T = 0.25, and a Gaussian
g(ω) with zero mean and unit width, (a) shows at σ = 0.195, the
numerically estimated first-order phase transition point, r vs. time in
the stationary state, while (b) shows the distribution P (r) at several
σ ’s around 0.195. The data are obtained in N -body simulations with
N = 100.∫ 2π

0 dθ
∫ ∞
−∞ dvf (θ,v,ω,t) = 1, while evolving following the

Kramers equation [15],

∂f

∂t
= −v

∂f

∂θ
+ ∂

∂v

[
v√
m

− σω − r sin(ψ − θ )

]
f

+ T√
m

∂2f

∂v2
, (19)

where reiψ = ∫
dθdvdωg(ω)eiθf (θ,v,ω,t). We now give the

derivation of Eq. (19), followed by a discussion of its stationary
solution corresponding to the incoherent phase.

A. The Kramers equation for the single-oscillator distribution:
Incoherent stationary state

Here, we start with deriving the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy equations for the dy-
namics Eq. (12) for any number of oscillators N , and, from
there, by considering the limit N → ∞, obtain the Kramers

Eq. (19). For simplicity, we first discuss the derivation of the
BBGKY equations for the case of a bimodal g(ω) and then
generalize it to a general g(ω).

Consider a given realization of g(ω), in which
there are N1 oscillators with frequencies ω1, and N2

oscillators with frequencies ω2, where N1 + N2 = N .
We then define the N -oscillator distribution function
fN (θ1,v1, . . . ,θN1 ,vN1 ,θN1+1,vN1+1, . . . ,θN ,vN,t) as the prob-
ability density at time t to observe the system around the values
{θi,vi}1�i�N . In the following, we use the shorthand notations
zi ≡ (θi,vi) and z = (z1,z2, . . . ,zN ). Note that fN satisfies the
normalization

∫
(
∏N

i=1 dzi)fN (z,t) = 1. We assume that
(1) fN is symmetric with respect to permutations of

dynamical variables within the group of oscillators with the
same frequency, and

(2) fN , together with the derivatives ∂fN/∂vi∀i, vanish on
the boundaries of the phase space.

The evolution of fN follows the Fokker-Planck equation,
which may be straightforwardly derived from the equations of
motion Eq. (12):

∂fN

∂t
= −

N∑
i=1

[
vi

∂fN

∂θi

− 1√
m

∂(vifN )

∂vi

]

−σ

N∑
j=1

(�T )j
∂fN

∂vj

+ T√
m

N∑
i=1

∂2fN

∂v2
i

− 1

2N

N∑
i,j=1

sin(θj − θi)

[
∂fN

∂vi

− ∂fN

∂vj

]
, (20)

where we have defined the N × 1 column vector � whose first
N1 entries equal ω1 and the following N2 entries equal ω2, and
where the superscript T denotes matrix transpose operation:
�T ≡ [ω1ω1 . . . ω1ω2 . . . ω2].

To proceed, we follow standard procedure [28], and
define the reduced distribution function fs1,s2 , with s1 =
0,1,2, . . . ,N1 and s2 = 0,1,2, . . . ,N2, as

fs1,s2

(
z1,z2, . . . ,zs1 ,zN1+1, . . . ,zN1+s2 ,t

)
= N1!

(N1 − s1)!Ns1
1

N2!

(N2 − s2)!Ns2
2

×
∫

dzs1+1 . . . dzN1dzN1+s2+1 . . . dzNfN (z,t). (21)

Note that the following normalizations hold for the single-
oscillator distribution functions:

∫
dz1f1,0(z1,t) = 1, and∫

dzN1+1f0,1(zN1+1,t) = 1.
Using Eq. (20) in Eq. (21) and simplifying, we get the

BBGKY hierarchy equations for oscillators with frequencies
ω1 as

∂fs,0

∂t
+

s∑
i=1

[
vi∂fs,0

∂θi

− 1√
m

∂

∂vi

(vifs,0)

]
+ σ

s∑
i=1

ω1
∂fs,0

∂vi

− T√
m

s∑
i=1

∂2fs,0

∂v2
i

= − 1

2N

s∑
i,j=1

sin(θj−θi)

[
∂fs,0

∂vi

−∂fs,0

∂vj

]
− N1

N

s∑
i=1

∫
dzs+1 sin(θs+1−θi)

∂fs+1,0

∂vi

− N2

N

∫
dzN1+1

s∑
i=1

sin
(
θN1+1−θi

)∂fs,1

∂vi

,

(22)
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and similar equations for f0,s for oscillators of frequencies ω2. The first equations of the hierarchy are

∂f1,0(θ,v,t)

∂t
+ v∂f1,0(θ,v,t)

∂θ
− 1√

m

∂

∂v
[vf1,0(θ,v,t)] + σω1

∂f1,0(θ,v,t)

∂v
− T√

m

∂2f1,0(θ,v,t)

∂v2

= −N1

N

∫
dθ ′dv′ sin(θ ′ − θ )

∂f2,0(θ,v,θ ′,v′,t)
∂v

− N2

N

∫
dθ ′dv′ sin(θ ′ − θ )

∂f1,1(θ,v,θ ′,v′,t)
∂v

, (23)

and

∂f0,1(θ,v,t)

∂t
+ v∂f0,1(θ,v,t)

∂θ
− 1√

m

∂

∂v
[vf0,1(θ,v,t)] + σω2

∂f0,1(θ,v,t)

∂v
− T√

m

∂2f0,1(θ,v,t)

∂v2

= −N2

N

∫
dθ ′dv′ sin(θ ′ − θ )

∂f0,2(θ,v,θ ′,v′,t)
∂v

− N1

N

∫
dθ ′dv′ sin(θ ′ − θ )

∂f1,1(θ,v,θ ′,v′,t)
∂v

. (24)

In the limit of large N , we can write

g(ω) =
[
N1

N
δ(ω − ω1) + N2

N
δ(ω − ω2)

]
, (25)

and express Eqs. (23) and (24) in terms of g(ω).
In order to generalize Eqs. (23) and (24) to the case of a continuous g(ω), we denote for this case the single-oscillator

distribution function as f (θ,v; ω,t). The first equation of the hierarchy is then

∂f (θ,v,ω,t)

∂t
+ v∂f (θ,v,ω,t)

∂θ
− 1√

m

∂

∂v
[vf (θ,v,ω,t)] + σω

∂f (θ,v,ω,t)

∂v
− T√

m

∂2f (θ,v,ω,t)

∂v2

= −
∫

dω′g(ω′)
∫

dθ ′dv′ sin(θ ′ − θ )
∂f (θ,v,θ ′,v′,ω,ω′,t)

∂v
. (26)

In the continuum limit N → ∞, we may neglect two-
oscillator correlations and approximate f (θ,v,θ ′,v′,ω,ω′,t)
as

f (θ,v,θ ′,v′,ω,ω′,t) = f (θ,v,ω,t)f (θ ′,v′,ω′,t)

+ corrections subdominant in N,

(27)

so that Eq. (26) reduces to the Kramers Eq. (19).
The stationary solutions of Eq. (19) are obtained by setting

the left-hand side to zero. For σ = 0, the stationary solution is

fst(θ,v) ∝ exp[−(v2/2 − rst cos θ )/T ], (28)

that corresponds to canonical equilibrium, with rst determined
self-consistently [22]. For σ 	= 0, the incoherent stationary
state is [15]

f inc
st (θ,v,ω) = 1

(2π )3/2
√

T
exp[−(v − σω

√
m)2/(2T )].

(29)

The existence of the synchronized stationary state is borne
out by our simulation results discussed above (see Figs. 2, 3,
and 4), although its analytical form is not known.

B. Linear stability analysis of the incoherent state

Let us now discuss the linear stability analysis of the
incoherent state Eq. (29), pursued in Ref. [15] by linearizing
Eq. (19) about the state by expanding f as

f (θ,v,ω,t) = f inc
st (θ,v,ω) + eλt δf (θ,v,ω), (30)

with δf  1. The solution of the linearized equation yields
that λ satisfies [15]

2T

emT
=

∞∑
p=0

(−mT )p
(
1 + p

mT

)
p!

∫ ∞

−∞

g(ω)dω

1 + p

mT
+ i σω

T
+ λ

T
√

m

.

(31)

The above equation contains valuable information about
the range of values of the parameters m, T , σ for which
the incoherent state is stable, and consequently, about the
transition from the incoherent to synchronized phase. This
warrants a detailed analysis of Eq. (31) for a general unimodal
g(ω). The analysis for Lorentzian g(ω) in Ref. [15] left
untouched the crucial issue of the synchronization transition.

We rewrite Eq. (31) as

F (λ; m, T , σ ) ≡ emT

2T

∞∑
p=0

(−mT )p
(
1 + p

mT

)
p!

×
∫

g(ω)dω

1 + p

mT
+ λ

T
√

m
+ i σω

T

− 1 = 0,

(32)

where g(ω) is unimodal. The incoherent state is unstable if
there is a λ with a positive real part that satisfies the above
eigenvalue equation. We will now prove that, depending on
the values of the parameters appearing in the above equation,
there can be at most one such λ that can be only real. In
addition, for the case of a Gaussian g(ω) explicitly used in
simulations reported in this paper, we obtain the general shape
of the surface in the (m, T , σ ) space that defines the instability
region of the incoherent state.
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Considering m and T strictly positive, we multiply for
convenience the numerator and denominator of Eq. (32) by
mT to obtain

F (λ; m, T , σ ) = emT

2T

∞∑
p=0

(−mT )p (p + mT )

p!

× g(ω)dω

mT + p + √
mλ + iσmω

− 1 = 0.

(33)

Let us first look for pure imaginary solutions of this equation.
Separating into real and imaginary parts, we have

Re [F (iμ; m, T , σ )]

= emT

2T

∞∑
p=0

(−mT )p

p!

∫
dω g(ω)

× (p + mT )2

(p + mT )2 + (mσω + √
mμ)2

− 1 = 0, (34)

Im [F (iμ; m, T , σ )]

= −emT

2T

∞∑
p=0

(−mT )p

p!

∫
dω g(ω)

× (p + mT )(mσω + √
mμ)

(p + mT )2 + (mσω + √
mμ)2

= 0. (35)

In the second equation above, we make the change of variables
mσω + √

mμ = mσx and exploit the parity in x of the sum,
to obtain

Im [F (iμ; m, T , σ )]

= −mσ

∫ ∞

0
dx

{ [
g

(
x − μ√

mσ

)
− g

(
−x − μ√

mσ

)]

×x

∞∑
p=0

(−mT )p

p!

p + mT

(p + mT )2 + m2σ 2x2

}
= 0. (36)

It can be shown that the sum on the right-hand side is
positive definite for any finite σ . Furthermore, for our class
of distribution functions, one may see that the term in square
brackets is positive (respectively, negative) definite for μ > 0
(respectively, for μ < 0). As a consequence, the last equation
is never satisfied for μ 	= 0 and finite, and therefore, the
eigenvalue equation does not admit pure imaginary solutions
[the proof holds also for the particular case g(ω) = δ(ω), as
may be checked]. We also conclude that there can be at most
one solution with positive real part. In fact, if in the complex
λ plane, we perform the loop depicted in Fig. 5(a) (where
it is meant that the points A and C represent Imλ → ±∞,
respectively, and the radius of the arc extends to ∞), then, in
the complex-F (λ) plane, we obtain, due to the sign properties
of Im [F (iμ; m, T , σ )] just described, the loop qualitatively
represented in Fig. 5(b). The point F = −1 in Fig. 5(b) is
obtained for λ, in Fig. 5(a), for values at points A and C and in
the whole of the arc extending to infinity. The position of the
point B in the complex-F plane is determined by the value of

FIG. 5. The loop in the complex F plane (b), corresponding to
the loop in the complex λ plane (a), as determined by the function
F (λ) in Eq. (33).

F (0), which is given by

F (0; m, T , σ ) = emT

2T

∞∑
p=0

(−mT )p

p!

×
∫

dω g(ω)
(p + mT )2

(p + mT )2 + (mσω)2 − 1.

(37)

From the well-known theorem of complex analysis on the
number of roots of a function in a given domain of the complex
plane [29], we therefore obtain that for F (0; m,T ,σ ) > 0, there
is one and only one solution of the eigenvalue equation with
positive real part; on the other hand, for F (0; m, T , σ ) < 0,
there is no such solution. When the single solution with positive
real part exists, it is necessarily real, since a complex solution
would imply the existence of its complex conjugate. The value
of F (0; m, T , σ ) is readily seen to be equal to 1/(2T ) − 1 for
σ = 0. For positive σ , the value will depend on the particular
form of the distribution function g(ω). However, it is possible
to prove that the value is always smaller than 1/(2T ) − 1;
this is consistent with the physically reasonable fact that if
the incoherent state is stable for σ = 0, which happens for
T > 1/2, it is all the more stable for σ > 0.

The surface delimiting the region of instability in the
(m, T , σ ) phase space is implicitly defined by Eq. (37) [i.e.,
F (0; m, T , σ ) = 0], which, in principle, can be solved to
obtain the threshold value of σ (denoted by σ inc) as a function
of (m,T ): σ inc = σ inc(m,T ). On physical grounds, we expect
that the latter is a single valued function, and that for any given
value of m, it is a decreasing function of T for 0 � T � 1/2,
reaching 0 for T = 1/2. We are able to prove analytically
these facts for the class of unimodal distribution functions
g(ω) considered in this work that includes the Gaussian
case. However, we can prove in general for any g(ω) that
σ inc(m,T ) tends to 0 for m → ∞. This is done using the
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integral representation
∞∑

p=0

(−mT )p

p!

(p + mT )2

(p + a)2 + (mσω)2

= e−mT − (mσω)
∫ ∞

0
dt exp[−mT (t+e−t )] sin (mσωt) .

(38)

For σ > 0 and m → ∞, one may see that the term within the
integral in the last equation tends to e−mT . We thus obtain by
examining Eq. (37) that F (0; m → ∞,T > 0,σ > 0) = −1.
Combined with the fact that F (0; m,T ,0) = 1/(2T ) − 1, this
shows that σ inc(m → ∞,0 � T � 1/2) = 0.

Let us now turn to the Gaussian case, g(ω) =
1√
2π

exp[−ω2

2 ]. Denoting with a subscript g in this case, and
using Eq. (38), we have

Fg(0; m, T , σ ) = 1

2T
− 1 − emT

2T
√

2π

∫
dω e− ω2

2 (mσω)

×
∫ ∞

0
dt exp[−mT (t + e−t )] sin(mσωt).

(39)

The integral in ω can be easily performed. Making the change
of variable mσt = y, we arrive at the following equation:

Fg(0; m, T , σ )

= 1

2T
− 1 − 1

2T

∫ ∞

0
dy ye− y2

2

× exp

[
mT

(
1 − y

mσ
− e− y

mσ

)]
. (40)

The equation Fg(0; m, T , σ ) = 0 defines implicitly the func-
tion σ inc(m,T ). We can show that this is a single-valued
function with the properties ∂σ inc

∂m
< 0 and ∂σ inc

∂T
< 0. We

show this by explicitly computing the partial derivatives of
Fg(0; m, T , σ ) with respect to m and σ , and by evaluating the
behavior with respect to changes in T by adopting a suitable
strategy. We begin by computing the derivative with respect to
σ . From Eq. (40), we readily obtain

∂

∂σ
Fg(0; m, T , σ ) = − 1

2σ 2

∫ ∞

0
dy y2e− y2

2 (1 − e− y

mσ )

× exp
[
mT

(
1 − y

mσ
− e− y

mσ

)]
,

(41)

which is clearly negative. Second, the derivative with respect
to m gives

∂

∂m
Fg(0; m, T , σ )

= −1

2

∫ ∞

0
dy ye− y2

2

(
1 − e− y

mσ − y

mσ
e− y

mσ

)
× exp

[
mT

(
1 − y

mσ
− e− y

mσ

)]
. (42)

This derivative is negative, since 1 − e−x − xe−x is positive for
x > 0. From the implicit function theorems, we then derive that

∂σ inc

∂m
< 0. The study of the behavior with respect to a change in

T is a bit more complicated. Since we are considering T > 0,
we multiply Eq. (40) by 2T to obtain

2T Fg(0; m, T , σ )

= 1−2T −
∫ ∞

0
dy ye− y2

2 exp

[
mT

(
1− y

mσ
− e− y

mσ

)]
.

(43)

Let us consider the integral on the right-hand side∫ ∞

0
dy ye− y2

2 exp

[
mT

(
1 − y

mσ
− e− y

mσ

)]
. (44)

Since 1 − x − e−x is negative for x > 0, we conclude that the
T derivative of this expression is negative, while its second T

derivative is positive. Then the right-hand side of Eq. (43) can
be zero, for T > 0, for at most one value of T . Furthermore,
since for fixed y and m the value of y/(mσ ) decreases
if σ increases, the T value for which Fg(0; m, T , σ ) = 0
decreases for increasing σ at fixed m. This concludes the proof.
Furthermore, for what we have seen before, σ inc(m,1/2) = 0
and limm→∞ σ inc(m,T ) = 0 for 0 � T � 1/2.

From the above analysis, it should be clear that the proof is
not restricted to the Gaussian case, but would work exactly in
the same way for any g(ω) such that

β

∫
dx g(x)x sin(βx), (45)

is positive for any β. However, on physical grounds, we are
led to assume that the same conclusions hold for any unimodal
g(ω).

On the basis of our analysis, it follows that at the point
of neutral stability, one has λ = 0, which when substituted in
Eq. (31) gives σ inc(m,T ) to be satisfying

2T

emT
=

∞∑
p=0

(−mT )p
(
1 + p

mT

)2

p!

∫ ∞

−∞

g(ω)dω(
1 + p

mT

)2 + (σ inc)2ω2

T 2

.

(46)

In the (m, T , σ ) space, Eq. (46) defines the stability surface
σ inc(m,T ). There will similarly be the stability surface
σ coh(m,T ) [see Fig. 1(d) which shows the two surfaces
as obtained in N -body simulations for N = 500 for a
Gaussian g(ω)]. The two surfaces coincide on the critical
lines on the (T ,σ ) and (m,T ) planes where the transition
becomes continuous; outside these planes, the surfaces enclose
the first-order transition surface σc(m,T ); i.e., σ coh(m,T ) >

σc(m,T ) > σ inc(m,T ). We now show by taking limits that the
surface σ inc(m,T ) meets the critical lines on the (T ,σ ) and
(m,T ) planes, and also obtain its intersection with the (m,σ )
plane. On considering m → 0 at a fixed T , only the p = 0
term in the sum in Eq. (46) contributes, giving

lim
m→0,T fixed

σ inc(m,T ) = σc(m = 0,T ), (47)

with the implicit expression of σc(m = 0,T ) given by Eq. (17).
Similarly, one finds that

lim
T →T −

c ,m fixed
σ inc(m,T ) = 0, (48)
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FIG. 6. (Color online) The figure shows the limit Eq. (49) for the
case of a Gaussian g(ω) with zero mean and unit width.

that is, on the (m,T ) plane, the transition line is given by
Tc = 1/2. When T → 0 at a fixed m, we get

σ inc
noiseless(m) ≡ lim

T →0,m fixed
σ inc(m,T ), (49)

with

1 = πg(0)

2σ inc
noiseless

− m

2

∫ ∞

−∞

g(ω)dω

1 + m2
(
σ inc

noiseless

)2
ω2

. (50)

For the case of a Gaussian g(ω), the limits Eqs. (47) and (48)
are shown in Figs. 1(b) and 1(c), while the limit Eq. (49) is
shown in Fig. 6.

V. COMPARISON WITH NUMERICS

For a Gaussian g(ω), Eq. (46) gives

1 = emT
√

π

2
√

2σ inc

∞∑
p=0

(−mT )p
(
1 + p

mT

)
p!e

− T 2(1+p/mT )2

2(σ inc)2

Erfc

[
T

(
1 + p

mT

)
σ inc

√
2

]
.

(51)

Choosing m = 20 and T = 0.25, the above equation gives
σ inc(m,T ) ≈ 0.10076. Then, preparing the system in the
incoherent stationary state at a given σ , our theoretical analysis
predicts that r , in the dynamically unstable regime of the
incoherent state (i.e., with σ < σ inc), relaxes at long times
to its steady-state value corresponding to the synchronized
phase. For σ > σ inc(m,T ), when the incoherent initial state is
linearly stable, r is zero for all times. We now compare the
above continuum-limit predictions with N -body simulations.
We monitor the evolution of r in time while starting from the
incoherent stationary state. To discuss the results, we employ
the standard picture of phase transitions occurring dynamically
as the dissipative relaxation of the order parameter toward the
minimum of a phenomenological Landau free energy [30].
For a first-order phase transition, we draw in Fig. 7 the
corresponding schematic free-energy F (r) versus r for fixed
m and T at different σ ’s [31]. The picture helps to explain,
e.g., the flips in r in Fig. 4, which correspond to dynamics at σ

close to σc, when the system switches back and forth between
the two almost stable synchronized and incoherent states.

σ = σc

0 1

σ > σcoh

σ < σinc σ = σinc σinc < σ < σc

σc < σ < σcoh σ = σcoh

r

F
(r

)

(ii)

(vii)(vi)

(iv)

(iii)(i)

(v)

FIG. 7. (Color online) Schematic Landau free-energy F (r) vs. r

for first-order transitions at fixed m and T while varying σ . Panels (i)
and (vii) correspond to the synchronized and incoherent phase being at
the global minimum. In panel (iii) [respectively, (v)], the synchronized
(respectively, incoherent) phase is at the global minimum, while the
incoherent (respectively, synchronized) phase is at a local minimum,
hence, metastable. Panel (iv) corresponds to the first-order transition
point, with the two phases coexisting at two minima of equal heights.

Let us investigate the dynamics for σ around σ inc(m,T ).
Figures 8(a)–8(d) show simulation results for r versus time
for four values of σ , two below and two above σ inc(m,T ). In
each case, we display the dependence for 20 realizations of
the initial incoherent state for three values of N . Figure 8(a)
for σ < σ inc(m,T ) illustrates that the system while starting
from the unstable incoherent state settles down in time into
the globally stable synchronized state; this corresponds to
dynamics in the landscape in Fig. 7(i). The relaxation of
r from the initial to final synchronized state value occurs
exponentially fast in time as eλt ; the growth rate λ is obtained
from Eq. (31) after substituting a Gaussian distribution for
g(ω). In Fig. 9, we demonstrate a match of λ in theory and
simulations.

In Fig. 8(b), when σ is larger than in Fig. 8(a), yet
below σ inc(m,T ), the system settles at long times into the
synchronized state for all realizations. Yet, some of them,
at short times, tend to stay in the initial incoherent state
due to finite-N effects not captured by our continuum limit
theory; see Eq. (27). For σ > σ inc(m,T ), but σ < σc(m,T ),
we expect on the basis of the landscape sketched in Fig. 7(iii)
that the system settles at long times into the globally stable
synchronized state, while for finite times, remains trapped in
the metastable incoherent state. Indeed, Fig. 8(c) shows that
most realizations relax to synchronized states. However, as N

increases, the number of realizations staying close to the initial
incoherent state for a finite time increases. We found that the
fraction η of realizations relaxing to synchronized state within
a fixed time decreases exponentially fast in N for large N ;
see Fig. 10. This observation implies that for the fixed time of
observation, there exists a larger N than the ones in Fig. 8(c)
for which all realizations remain close to the incoherent state;

022123-9



SHAMIK GUPTA, ALESSANDRO CAMPA, AND STEFANO RUFFO PHYSICAL REVIEW E 89, 022123 (2014)

FIG. 8. (Color online) Panels (a)–(d) show r vs. time at m =
20, T = 0.25 for four values of σ , two below [(a) σ = 0.09, (b) σ =
0.095], and two above [(c) σ = 0.11, (d) σ = 0.12] the theoretical
threshold σ inc(m,T ) ≈ 0.10076. The data are obtained in N -body
simulations for a Gaussian g(ω) with zero mean and unit width.

it then follows that in the continuum limit, all realizations stay
close to the incoherent state.
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FIG. 9. (Color online) (a) Simulation results denoted by points,
demonstrating exponentially fast relaxation ∼eλt of r from its initial
incoherent state value to its final synchronized state value for values of
σ below σ inc(m,T ) ≈ 0.10076 for a Gaussian g(ω) with m = 20, T =
0.25, N = 104; the black solid lines denote exponential growth with
theoretically computed growth rates λ obtained from Eq. (31) for a
Gaussian g(ω) with zero mean and unit width. The simulation data
are obtained from N -body simulation for a Gaussian g(ω) with zero
mean and unit width. (b) Theoretical λ as a function of σ for the same
m and T values; in particular, λ hits zero at the stability threshold
σ inc(m,T ).

To explain the above-mentioned behavior of η with N , let
us first consider the noisy dynamics of a single particle on
a potential landscape, when the typical time to get out of a
metastable state is given in the weak-noise limit by the Kramers
time, i.e., an exponential in the ratio of the potential energy
barrier to come out of the metastable state to the strength of
the noise [32]. For the dynamics of the order parameter on
a free-energy landscape for mean-field systems, the escape
time out of a metastable state obeys Kramers formula with the
value of the free-energy barrier replacing the potential energy
barrier, and with an extra factor of N multiplying the barrier
height [33]; this explains Fig. 8(c) and the behavior of η.

Figure 8(d), for σ larger than σ inc(m,T ) than in Fig. 8(c),
shows that with respect to Fig. 8(c), more realizations stay
close to the initial incoherent state for longer times, due to a
larger barrier between the incoherent and synchronized state.
On the basis of the above discussions, we conclude that our
theoretical predictions are borne out by our simulation results.
In particular, the simulation results for N = 500 suggest that
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FIG. 10. (Color online) For m = 20, T = 0.25, σ = 0.11, the
figure shows the fraction η of realizations of initial incoherent state
relaxing to synchronized state within the fixed time of observation
t = 200, for a value of σ above σ inc(m,T ), for which the incoherent
phase is linearly stable in the continuum limit. The figure shows that
η for large N decreases exponentially fast with increase of N . The
data are obtained in N -body simulations for a Gaussian g(ω) with
zero mean and unit width.

the stability threshold of the incoherent state lies in between
σ = 0.095 and σ = 0.11, a range that includes its theoretical
continuum-limit value (≈0.10076).

VI. CONCLUSIONS

To summarize, we considered an extension of the Kuramoto
model that includes an inertial term and a stochastic noise.
For a general unimodal frequency distribution, we obtained
the complete phase diagram of the model, demarcating
parameter ranges to observe synchronization. We showed that
the system displays a nonequilibrium first-order transition
from a synchronized phase at low parameter values to an
incoherent phase at high values. The phase diagram contains
all previous results derived in specific limits of the dynamics.
While we provided strong numerical evidence for the existence
of both the synchronized and the incoherent phase, only the
latter could be treated analytically to obtain the corresponding
linear stability threshold that bounds the first-order transition
point from below. It would be interesting to consider possible
extension of our studies to systems with non-mean-field
couplings, taking hints from similar previous studies in specific
limits of the dynamics [34–37].
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APPENDIX A: PROOF THAT THE DYNAMICS EQ. (12)
DOES NOT SATISFY DETAILED BALANCE

In this section, we prove that the dynamics Eq. (12) does
not satisfy detailed balance unless g(ω) = δ(ω), thus σ is zero.
For simplicity, we discuss the proof here for the case of two

distinct natural frequencies [bimodal g(ω)]. Let us say that in a
given realization of g(ω), there are N1 oscillators with natural
frequencies ω1, and N2 oscillators with natural frequencies ω2,
where N1 + N2 = N .

To prove that the dynamics Eq. (12) does not satisfy detailed
balance unless σ = 0, we rewrite the Fokker-Planck Eq. (20)
as

∂fN (x)

∂t
= −

2N∑
i=1

∂[Ai(x)fN (x)]

∂xi

+1

2

2N∑
i,j=1

∂2[Bi,j (x)fN (x)]

∂xi∂xj

, (A1)

where

xi =
{
θi ; i = 1,2, . . . ,N,

vi−N ; i = N + 1, . . . ,2N,
(A2)

and

x = {xi}1�i�2N . (A3)

In Eq. (A1), the drift vector Ai(x) is given by

Ai(x) =
⎧⎨⎩

vi ; i = 1,2, . . . ,N,

− 1√
m

vi−N + 1
N

∑N
j=1 sin(θj − θi−N )

+σ (�T )i−N ; i = N + 1, . . . ,2N,

(A4)

while the diffusion matrix is

Bi,j (x) =
{ 2T√

m
δij ; i,j > N,

0, otherwise.
(A5)

The dynamics described by the Fokker-Planck equation of
the form Eq. (A1) satisfies detailed balance if and only if the
following conditions are satisfied [38]:

εiεjBi,j (εx) = Bi,j (x), (A6)

εiAi(εx)f s
N (x) = −Ai(x)f s

N (x) +
2N∑
j=1

∂Bi,j (x)f s
N (x)

∂xj

,

(A7)

where f s
N (x) is the stationary solution of Eq. (A1). Here, εi =

±1 is a constant that denotes the parity with respect to time
reversal of the variables xis: Under time reversal, the latter
transform as xi → εixi , where εi = −1 or +1 depending on
whether xi is odd or even under time reversal. In our case, θis
are even, while vis are odd.

Using Eq. (A5), we see that the condition Eq. (A6) is
trivially satisfied for our model. To check the other condition,
we formally solve Eq. (A7) for f s

N (x) and check if the solution
solves Eq. (A1) in the stationary state. From Eq. (A7), we see
that for i = 1,2, . . . ,N , the condition reduces to

εiAi(εx)f s
N (x) = −Ai(x)f s

N (x), (A8)

which, using Eq. (A4), is obviously satisfied. For i = N +
1, . . . ,2N , we have

vkf
s
N (x) = − T ∂f s

N (x)
∂vk

; k = i − N. (A9)
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Solving Eq. (A9), we get

f s
N (x) ∝ d(θ1,θ2, . . . ,θN ) exp

[
− 1

2T

N∑
k=1

v2
k

]
, (A10)

where d(θ1,θ2, . . . ,θN ) is a yet undetermined function. Sub-
stituting Eq. (A10) into Eq. (A1), and requiring that it is a
stationary solution, we get that σ has to be equal to zero and
that d(θ1,θ2, . . . ,θN ) = exp{− 1

2NT

∑N
i,j=1[1 − cos(θi − θj )]}.

Thus, for σ = 0, when the dynamics reduces to that of the BMF
model, we get the stationary solution as

f s
N,σ=0(z) ∝ exp

[
−H

T

]
, (A11)

where H is the Hamiltonian (expressed in terms of dimen-
sionless variables introduced above). The lack of detailed
balance for σ 	= 0 obviously extends to any distribution
g(ω).

APPENDIX B: SIMULATION DETAILS

Here we describe the method to simulate the dynamics
Eq. (12) for given values of m, T , σ (note that we are
dropping overbars for simplicity of notation), and for a given
realization of ωi’s, by employing a numerical integration
scheme [39]. To simulate the dynamics over a time interval
[0 : T ], we first choose a time step size �t  1. Next, we
set tn = n�t as the nth time step of the dynamics, where
n = 0,1,2, . . . ,Nt , and Nt = T /�t . In the numerical scheme,
we first discard at every time step the effect of the noise (i.e.,
consider 1/

√
m = 0) and employ a fourth-order symplectic

algorithm to integrate the resulting symplectic part of the
dynamics [40]. Following this, we add the effect of noise
and implement an Euler-like first-order algorithm to update
the dynamical variables. Specifically, one step of the scheme
from tn to tn+1 = tn + �t involves the following updates of
the dynamical variables for i = 1,2, . . . ,N : For the symplectic
part, we have, for k = 1, . . . ,4,

vi

(
tn + k�t

4

)
= vi

(
tn + (k − 1)�t

4

)
+ b(k)�t

{
r

(
tn + (k − 1)�t

4

)
sin

[
ψ

(
tn + (k − 1)�t

4

)
− θi

(
tn + (k − 1)�t

4

)]
+ σωi

}
;

r

(
tn + (k − 1)�t

4

)
=

√
r2
x + r2

y , ψ

(
tn + (k − 1)�t

4

)
= tan−1 ry

rx

,

rx = 1

N

N∑
j=1

sin

[
θj

(
tn + (k − 1)�t

4

)]
, ry = 1

N

N∑
j=1

cos

[
θj

(
tn + (k − 1)�t

4

)]
, (B1)

θi

(
tn + k�t

4

)
= θi

(
tn + (k − 1)�t

4

)
+ a(k)�tvi

(
tn + k�t

4

)
, (B2)

where the constants a(k)’s and b(k)’s are obtained from Ref. [40]: one has

a(1) = 0.5153528374311229364, a(2) = −0.085782019412973646,

a(3) = 0.4415830236164665242, a(4) = 0.1288461583653841854,
(B3)

b(1) = 0.1344961992774310892, b(2) = −0.2248198030794208058,

b(3) = 0.7563200005156682911, b(4) = 0.3340036032863214255.

At the end of the updates Eqs. (B1) and (B2), we have the set {θi(tn+1),vi(tn+1)}. Next, we include the effect of the stochastic
noise by keeping θi(tn+1)’s unchanged, but by updating vi(tn+1)’s as

vi(tn+1) → vi(tn+1)

[
1 − 1√

m
�t

]
+

√
2�t

T√
m

�X(tn+1). (B4)

Here �X is a Gaussian distributed random number with zero mean and unit variance.
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