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Surface phase diagram of the three-dimensional kinetic Ising model in an oscillating magnetic field

Keith Tauscher and Michel Pleimling
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA

(Received 12 December 2013; published 18 February 2014)

We study the surface phase diagram of the three-dimensional kinetic Ising model below the equilibrium critical
point subjected to a periodically oscillating magnetic field. Changing the surface interaction strength as well as
the period of the external field, we obtain a nonequilibrium surface phase diagram that in parts strongly resembles
the corresponding equilibrium phase diagram, with an ordinary transition, an extraordinary transition, and a
surface transition. These three lines meet at a special transition point. For weak surface couplings, however, the
surface does not order. These results are found to remain qualitatively unchanged when using different single-spin
flip dynamics.
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I. INTRODUCTION

The presence of surfaces can have a huge impact on
local quantities close to a bulk critical point. For example,
in magnetic spin systems a surface can not only change
the local critical exponents, it can also yield a complicated
surface diagram with different surface transitions [1–4]. At the
ordinary transition the bulk alone is critical, yielding surface
critical exponents which have been computed systematically
using field-theoretical techniques. In the presence of strongly
enhanced surface couplings, the surface of a d-dimensional
system may order alone if the (d − 1)-dimensional bulk
system can order on its own. Lowering the temperature, this
so-called surface transition is followed by the extraordinary
transition at which the bulk orders in the presence of an
already ordered surface. These three transition lines meet at
the special transition point at which both the surface and bulk
correlation lengths diverge. The presence of external fields
can yield additional interesting phenomena as, for example,
critical wetting.

However, much less is understood when nonequilibrium
systems with surfaces are considered. Here we may distinguish
between systems that are prepared in a nonequilibrium initial
state and allowed to relax toward equilibrium and systems with
a truly nonequilibrium steady state. In the former case, col-
lective dynamical properties emerge due to the simultaneous
presence of a temporal and a spatial surface [5–8]. Very few
attempts have been made to investigate surface criticality of
systems with nonequilibrium steady states. These few studies
focused on some absorbing phase transitions (as, for example,
directed percolation) [9–12] or on the kinetic Ising model
subjected to an oscillating magnetic field [13–15].

In this paper we complement the investigation of the semi-
infinite kinetic Ising model below the equilibrium critical point
in a periodically oscillating magnetic field. In [13] surface crit-
ical exponents were investigated numerically for both the two-
and three-dimensional systems in cases where the bulk and
surface couplings have identical strengths [14], corresponding
to the ordinary transition. This study revealed that the surface
exponents at the ordinary transition differ markedly from
those obtained from the corresponding equilibrium system.
This is an interesting result, as it is well established that the
bulk kinetic Ising model in a periodically oscillating magnetic
field belongs to the same universality class as the equilibrium

Ising model [16–19]. Clearly, the presence of a surface at a
nonequilibrium phase transition results in effects that are not
yet fully understood.

The aim of the present study is twofold. On the one hand,
by changing the ratio between surface and bulk couplings we
want to elucidate numerically the surface phase diagram of
the three-dimensional semi-infinite kinetic Ising model. (The
reader should note that the phase diagram presented in Fig. 4(b)
of Ref. [13] is in fact the phase diagram for Js = Jb kept fixed
but with varying coupling strength between the surface layer
and the underlying layer; see the Erratum [14].) As we will
see, our study reveals a surface phase diagram very similar to
the equilibrium model, with an ordinary transition, a surface
transition, an extraordinary transition, and a special transition
point. This fully supports a recent study [15] where in the
framework of an effective field theory the existence of a special
transition point was predicted. On the other hand, we are also
interested in understanding how a change of dynamics changes
the steady-state properties of our system. In an equilibrium
system static properties are the same for every choice of the
dynamics that fulfills detailed balance. However, for a system
with a nonequilibrium steady state, the choice of the dynamics
can alter the properties of the system. As we show in this
paper, going from Glauber to Metropolis dynamics does not
change qualitatively the surface phase diagram and has only
small effects on the location of the phase-transition lines.

II. MODEL

The nonequilibrium phase transition encountered in mag-
netic systems below their equilibrium critical points subjected
to a periodically oscillating magnetic field has attracted much
interest, both theoretically [17,19–23] and experimentally
[24–26]. This is a dynamic order-disorder phase transition,
where changing the period of the field allows the system
to move from one phase to the other. When the period of
the field is large, the spins are able to follow the magnetic
field and the magnetization averaged over one period is zero.
This is the disordered phase. However, when the period of
the field is small, the system is not able to fully reverse its
magnetization before the sign of the magnetic field changes
again. Consequently, the magnetization averaged over one
period is no longer zero, which is the signature of the ordered
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phase. Here “small” and “large” period is to be understood with
respect to the metastable lifetime, which is the time needed for
the system to decay from a fully magnetized state in presence
of a field pointing in the opposite direction.

Many insights regarding this nonequilibrium phase transi-
tion have been gained by studying Ising systems with periodic
boundary conditions in all space directions. In the following
we consider the three-dimensional Ising model on a cubic
lattice with free boundary conditions in the z direction and
periodic boundary conditions in the x and y directions, thereby
introducing two surfaces in the z direction. We allow for
different interaction strengths in the surface layers as compared
to the interactions elsewhere in the system. The Hamiltonian
is then

H = −Js

∑
[x,y]

SxSy − Jb

∑
〈x,y〉

SxSy − H (t)
∑

x

Sx, (1)

where the first sum is exclusively over pairs of surface spins,
whereas the second term is over pairs of spins where at least
one spin is not in the surface layer. Here Sx = ±1 is the
Ising spin located at site x. The surface and bulk coupling
constants are both ferromagnetic, i.e., Js > 0 and Jb > 0. The
third term in (1) is due to the interaction of the spins with
the time-dependent external field. We use square-wave fields
with strength H0 and half-period t1/2. In this work we restrict
ourselves to values for the field amplitude and temperature
used in previous studies [13,17,19]: H0 = 0.4Jb and T =
0.8Tc, where Tc = 4.5115Jb/kB is the critical temperature of
the three-dimensional equilibrium Ising model.

In all the simulations reported below we considered cubic
systems with L3 spins where L ranges from 32 to 128.

Due to the presence of surfaces all quantities of interest
depend on the distance to the surface. We therefore study layer-
dependent quantities, notably (i) the layer-dependent order
parameter

Q(z) = 1

2t1/2

∮
m(z,t) dt, (2)

i.e., the layer magnetization averaged over one period, where
m(z,t) is the magnetization of layer z at time t , (ii) the layer
Binder cumulant

U (z) = 1 − 〈[Q(z)]4〉
3〈[Q(z)]2〉2

, (3)

and (iii) the layer-dependent scaled variance of the order
parameter

χ (z) = Ld−1(〈[Q(z)]2〉 − 〈Q(z)〉2). (4)

Here 〈· · · 〉 indicates an average over many periods. The surface
quantities are obtained for z = 1 and z = L, whereas we take
as bulk quantities the quantities in the middle of the sample.

In order to better understand the effect of the chosen
dynamics we study two different single-spin flip schemes,
namely Glauber dynamics and Metropolis dynamics. After
selecting a spin Sx at random, we compute the energy
difference �E = H(−Sx) − H(Sx) that would entail when
flipping this spin. This change of configuration is then accepted
with the rate

wG (Sx −→ −Sx) = αG

1 + e�E/kBT
(5)
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FIG. 1. (Color online) Determination of the metastable lifetime
for both Glauber and Metropolis dynamics for T = 0.8Tc and H0 =
0.4J . The system is prepared in a fully positively magnetized state
and a magnetic field pointing in the negative direction is applied. The
metastable lifetime is defined as the average time the system needs
to reach zero magnetization, as indicated by the dashed line. The
data shown here, which result from averaging over 1000 independent
runs, have been obtained for systems with L = 128, but the metastable
lifetime is found to be independent of the system size.

for Glauber dynamics. For Metropolis dynamics a spin flip
yielding a decrease of energy is always accepted, whereas a
spin flip yielding an increase of energy is accepted with rate

wM (Sx −→ −Sx) = αMe−�E/kBT . (6)

αG and αM are constants that only fix the time scale. We make
the common choice αG = αM = 1.

The important reference time for the following discussion
is the metastable lifetime. This is the average time needed
for a fully magnetized sample to reach zero magnetization
when a magnetic field pointing in the opposite direction is
applied. Figure 1 shows the time evolution of such a fully
magnetized sample for our parameters T = 0.8Tc and H0 =
0.4J . The intersection with the zero magnetization line yields
the metastable lifetimes τ = 47.05 and τ = 35.95 for Glauber
and Metropolis dynamics, respectively.

III. NUMERICAL RESULTS

In order to determine the surface phase diagram we consider
surface couplings ranging from Js = Jb to Js = 2Jb. The data
reported in the following result from averaging over typically
105 periods of the field after having reached the steady state.
Error bars are of the order of the symbols used in the figures.

An important quantity is the parameter � = t1/2

τ
that

describes the competition between the oscillating magnetic
field and the metastable state characterized by the lifetime
τ . In our kinetic model this quantity takes over the role
played by temperature in the equilibrium system: when �

increases (due to an increase of the half period t1/2) a phase
transition takes place between a dynamically ordered and a
dynamically disordered phase. When using Glauber dynamics,
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FIG. 2. (Color online) Surface (open symbols) and bulk (filled
symbols) order parameter and Binder cumulant as a function of of the
competition parameter � for (a), (b) Js = Jb and (c), (d) Js = 1.25Jb,
using Glauber dynamics. Data for different system sizes are shown.

this transition takes place at �G = 1.285 [19]. For Metropolis
dynamics we locate the bulk transition point at �M = 1.257.

As shown in Figs. 2 and 3 for the case of Glauber dynamics,
different scenarios prevail depending on the strength of the sur-
face couplings. For weak surface couplings, with Js < 1.25Jb,
the surface does not order dynamically at the bulk transition
point, as demonstrated by the surface Binder cumulant which
does not exhibit a crossing of the lines obtained for different
system sizes; see Fig. 2(b). Due to missing bonds surface
spins can follow much easier the oscillating magnetic field
than bulk spins, and no surface ordering takes place at the
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FIG. 3. (Color online) Surface (open symbols) and bulk (filled
symbols) order parameter and Binder cumulant as a function of the
competition parameter � for (a), (b) Js = 1.50Jb and (c), (d) Js =
1.75Jb, using Glauber dynamics. Data for different system sizes are
shown.
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FIG. 4. (Color online) Scaled variance of the local order param-
eter at the surface (open symbols) and in the middle of the system
(filled symbols) for Js = 1.75Jb, using Glauber dynamics.

bulk critical point. A partial dynamic ordering is observed for
lower values of �, see Fig. 2(a), but this effect is not related
to a phase transition. For surface couplings of intermediate
strength, with 1.25Jb � Js < 1.45Jb, the surface orders at the
bulk transition point; see Figs. 2(c) and 2(d). At this ordinary
transition, the surface quantities display a singular behavior
governed by surface critical exponents, as discussed in [13].
Finally, for strong surface couplings, see Fig. 3, the surface
orders alone at values of � larger than the bulk transition
point, followed by the extraordinary transition where the bulk
orders in the presence of an already ordered surface. These
two different phase transitions are also clearly observed when
studying the layer dependent variance of the order parameter;
see Fig. 4. Based on our data, we encounter the two distinct
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FIG. 5. (Color online) Surface phase diagram for both Glauber
and Metropolis dynamics as a function of the coupling ratio Js/Jb

and the competition parameter � for H0 = 0.4 and T = 0.8Tc. The
kinetic surface phase diagram resembles the phase diagram of the
equilibrium model, with an ordinary transition, a surface transition,
and an extraordinary transition. These three lines meet at the special
transition point whose location for both dynamics is at Js ≈ 1.45Jb.
For values of Js < 1.25Jb, the surface does not order at the bulk
critical point.
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phase transitions for values of Js > 1.45Jb. This allows us to
locate the special transition point at Js ≈ 1.45Jb.

Figure 5 shows the resulting dynamic surface phase diagram
for the kinetic semi-infinite Ising model exposed to a square-
wave field with field amplitude H0 = 0.4 at the temperature
T = 0.8Tc. With the exception of the regime of weak surface
couplings, where no surface ordering takes place at the bulk
transition point, this phase diagram resembles very much
the surface phase diagram observed for the semi-infinite
equilibrium Ising model [4]. We include in Fig. 5 our results for
both Glauber and Metropolis dynamics. The general features
of the surface diagram are independent of the chosen dynamics.
Especially, for both schemes the special transition point is
found to be at Js ≈ 1.45Jb. The only quantitative differences
are given by small shifts of the phase-transition lines, mainly
due to the fact that for Metropolis dynamics the bulk transition
takes place at a slightly smaller value of � than for Glauber
dynamics.

IV. CONCLUSION

Our study reveals that the nonequilibrium surface phase
diagram of the ordered three-dimensional kinetic Ising model
in a periodically oscillating field exhibits all the phase tran-
sitions encountered in the corresponding equilibrium models.
The existence of a special transition point is in agreement
with the effective field calculations presented in [15]. Another
feature in the nonequilibrium system is the absence of surface
ordering at the bulk transition point for weak surface couplings,
which is due to the physical mechanism underlying the
ordering process.
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Täuber for a critical reading of the manuscript.

[1] K. Binder, in Phase Transitions and Critical Phenomena, edited
by C. Domb and J. L. Lebowitz (Academic Press, London,
1983), Vol. 8.

[2] H. W. Diehl, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic Press, London,
1986), Vol. 10.

[3] H. W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997).
[4] M. Pleimling, J. Phys. A: Math. Gen. 37, R79 (2004).
[5] U. Ritschel and P. Czerner, Phys. Rev. Lett. 75, 3882 (1995).
[6] S. N. Majumdar and A. M. Sengupta, Phys. Rev. Lett. 76, 2394

(1996).
[7] M. Pleimling, Phys. Rev. B 70, 104401 (2004).
[8] M. Marcuzzi, A. Gambassi, and M. Pleimling, Europhys. Lett.

100, 46004 (2012).
[9] H.-K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 71,

377 (1988).
[10] J. W. Essam, A. J. Guttmann, I. Jensen, and D. TanlaKishani,

J. Phys. A: Math. Gen. 29, 1619 (1996).
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[20] T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251 (1990).
[21] B. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71, 847

(1999).
[22] M. Acharyya, Int. J. Mod. Phys. C 16, 1631 (2005).
[23] S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett.

81, 834 (1998).
[24] Q. Jiang, H.-N. Yang, and G.-C. Wang, Phys. Rev. B 52, 14911

(1995).
[25] D. T. Robb, Y. H. Xu, O. Hellwig, J. McCord, A. Berger,

M. A. Novotny, and P. A. Rikvold, Phys. Rev. B 78, 134422
(2008).

[26] A. Berger, O. Idigoras, and P. Vavassori, Phys. Rev. Lett. 111,
190602 (2013).

022121-4

http://dx.doi.org/10.1142/S0217979297001751
http://dx.doi.org/10.1142/S0217979297001751
http://dx.doi.org/10.1142/S0217979297001751
http://dx.doi.org/10.1142/S0217979297001751
http://dx.doi.org/10.1088/0305-4470/37/19/R01
http://dx.doi.org/10.1088/0305-4470/37/19/R01
http://dx.doi.org/10.1088/0305-4470/37/19/R01
http://dx.doi.org/10.1088/0305-4470/37/19/R01
http://dx.doi.org/10.1103/PhysRevLett.75.3882
http://dx.doi.org/10.1103/PhysRevLett.75.3882
http://dx.doi.org/10.1103/PhysRevLett.75.3882
http://dx.doi.org/10.1103/PhysRevLett.75.3882
http://dx.doi.org/10.1103/PhysRevLett.76.2394
http://dx.doi.org/10.1103/PhysRevLett.76.2394
http://dx.doi.org/10.1103/PhysRevLett.76.2394
http://dx.doi.org/10.1103/PhysRevLett.76.2394
http://dx.doi.org/10.1103/PhysRevB.70.104401
http://dx.doi.org/10.1103/PhysRevB.70.104401
http://dx.doi.org/10.1103/PhysRevB.70.104401
http://dx.doi.org/10.1103/PhysRevB.70.104401
http://dx.doi.org/10.1209/0295-5075/100/46004
http://dx.doi.org/10.1209/0295-5075/100/46004
http://dx.doi.org/10.1209/0295-5075/100/46004
http://dx.doi.org/10.1209/0295-5075/100/46004
http://dx.doi.org/10.1007/BF01312497
http://dx.doi.org/10.1007/BF01312497
http://dx.doi.org/10.1007/BF01312497
http://dx.doi.org/10.1007/BF01312497
http://dx.doi.org/10.1088/0305-4470/29/8/010
http://dx.doi.org/10.1088/0305-4470/29/8/010
http://dx.doi.org/10.1088/0305-4470/29/8/010
http://dx.doi.org/10.1088/0305-4470/29/8/010
http://dx.doi.org/10.1103/PhysRevE.61.167
http://dx.doi.org/10.1103/PhysRevE.61.167
http://dx.doi.org/10.1103/PhysRevE.61.167
http://dx.doi.org/10.1103/PhysRevE.61.167
http://dx.doi.org/10.1142/S0217979201004526
http://dx.doi.org/10.1142/S0217979201004526
http://dx.doi.org/10.1142/S0217979201004526
http://dx.doi.org/10.1142/S0217979201004526
http://dx.doi.org/10.1103/PhysRevLett.109.175703
http://dx.doi.org/10.1103/PhysRevLett.109.175703
http://dx.doi.org/10.1103/PhysRevLett.109.175703
http://dx.doi.org/10.1103/PhysRevLett.109.175703
http://dx.doi.org/10.1103/PhysRevLett.110.239903
http://dx.doi.org/10.1103/PhysRevLett.110.239903
http://dx.doi.org/10.1103/PhysRevLett.110.239903
http://dx.doi.org/10.1103/PhysRevLett.110.239903
http://arxiv.org/abs/arXiv:1302.2727.
http://dx.doi.org/10.1103/PhysRevLett.55.2527
http://dx.doi.org/10.1103/PhysRevLett.55.2527
http://dx.doi.org/10.1103/PhysRevLett.55.2527
http://dx.doi.org/10.1103/PhysRevLett.55.2527
http://dx.doi.org/10.1103/PhysRevE.63.016120
http://dx.doi.org/10.1103/PhysRevE.63.016120
http://dx.doi.org/10.1103/PhysRevE.63.016120
http://dx.doi.org/10.1103/PhysRevE.63.016120
http://dx.doi.org/10.1103/PhysRevE.78.051108
http://dx.doi.org/10.1103/PhysRevE.78.051108
http://dx.doi.org/10.1103/PhysRevE.78.051108
http://dx.doi.org/10.1103/PhysRevE.78.051108
http://dx.doi.org/10.1103/PhysRevE.87.032145
http://dx.doi.org/10.1103/PhysRevE.87.032145
http://dx.doi.org/10.1103/PhysRevE.87.032145
http://dx.doi.org/10.1103/PhysRevE.87.032145
http://dx.doi.org/10.1103/PhysRevA.41.4251
http://dx.doi.org/10.1103/PhysRevA.41.4251
http://dx.doi.org/10.1103/PhysRevA.41.4251
http://dx.doi.org/10.1103/PhysRevA.41.4251
http://dx.doi.org/10.1103/RevModPhys.71.847
http://dx.doi.org/10.1103/RevModPhys.71.847
http://dx.doi.org/10.1103/RevModPhys.71.847
http://dx.doi.org/10.1103/RevModPhys.71.847
http://dx.doi.org/10.1142/S0129183105008266
http://dx.doi.org/10.1142/S0129183105008266
http://dx.doi.org/10.1142/S0129183105008266
http://dx.doi.org/10.1142/S0129183105008266
http://dx.doi.org/10.1103/PhysRevLett.81.834
http://dx.doi.org/10.1103/PhysRevLett.81.834
http://dx.doi.org/10.1103/PhysRevLett.81.834
http://dx.doi.org/10.1103/PhysRevLett.81.834
http://dx.doi.org/10.1103/PhysRevB.52.14911
http://dx.doi.org/10.1103/PhysRevB.52.14911
http://dx.doi.org/10.1103/PhysRevB.52.14911
http://dx.doi.org/10.1103/PhysRevB.52.14911
http://dx.doi.org/10.1103/PhysRevB.78.134422
http://dx.doi.org/10.1103/PhysRevB.78.134422
http://dx.doi.org/10.1103/PhysRevB.78.134422
http://dx.doi.org/10.1103/PhysRevB.78.134422
http://dx.doi.org/10.1103/PhysRevLett.111.190602
http://dx.doi.org/10.1103/PhysRevLett.111.190602
http://dx.doi.org/10.1103/PhysRevLett.111.190602
http://dx.doi.org/10.1103/PhysRevLett.111.190602



