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Interplay between spin-glass clusters and geometrical frustration
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The presence of spin-glass (SG) order in highly geometrically frustrated systems is analyzed in a cluster SG
model. The model considers infinite-range disordered interactions among cluster magnetic moments and the J1-J2

model couplings between Ising spins of the same cluster. This model can introduce two sources of frustration: one
coming from the disordered interactions and another coming from the J1-J2 intracluster interactions (intrinsic
frustration). The framework of one-step replica symmetry breaking is adopted to obtain a one-cluster problem
that is exactly solved. As a main result we create phase diagrams of the temperature T versus intensity of the
disorder J , where the paramagnetic-SG phase transition occurs at Tf when T decreases for high-J values. For
low-J values, the SG order is absent for antiferromagnetic clusters without intrinsic frustration. However, the
SG order can be observed within the intracluster intrinsic frustration regime even for lower intensity of disorder.
In particular, the results indicate that the presence of small clusters in geometrically frustrated antiferromagnetic
systems can help stabilize the SG order within a weak disorder.
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I. INTRODUCTION

The interplay between geometrical frustration (GF) and
disorder is an interesting problem with many open ques-
tions. For instance, there are several geometrically frustrated
magnets that exhibit spin-glass (SG) -like behavior such as
Y2Mo2O7 [1,2], Zn1−xCdxCr2O4 [3], and ZnCr2(1−x)Ga2xO4

[4,5]. Nevertheless, the level of disorder present in some of
these geometrically frustrated systems has been estimated to
be extremely small [1,4]. In fact, the amount of disorder to
stabilize a glassy state in these real systems is much smaller
than predicted by usual mean field theory for canonical SG
systems [2,6]. Therefore, a very intriguing issue is how a
SG-like state is stabilized in these geometrically frustrated
systems with very small disorder. This issue is the main subject
of the present work.

It should be remarked that there are few theoretical
works to account the interplay between disorder and GF in
systems presenting a SG-like state. For example, the classical
Heisenberg antiferromagnet model with random variations
in the exchange interactions has been studied to consider
the SG state in geometrically frustrated systems [7,8]. This
random bond model with weak disorder has estimated a
critical temperature Tf proportional to the disorder strength.
The pyrochlore compound Y2Mo2O7 has been investigated
by Monte Carlo simulations of this antiferromagnetic bond-
disordered model with additional local lattice distortions [9]. In
particular, a high Tf for the GF regime with very low disorder
was found and attributed to the spin-lattice coupling [9].
The Heisenberg model on the pyrochlore lattice with random
disorder was also simulated in Ref. [10], which indicated
a possible cluster glass scenario to describe the SG state
in geometrically frustrated systems. Nevertheless, no precise
mechanism was proposed. Therefore, alternative approaches

are required in order to understand the low-disorder SG
phase in highly geometrically frustrated systems in which, for
instance, magnetically correlated spin clusters can be present
as in the case of ZnCr2(1−x)Ga2xO4 [4,5].

In this work we present an approach in which the presence
of spin clusters can be an essential element to account
for the extreme sensitivity to the effects of disorder in
geometrically frustrated systems. We consider clusters of spins
with nondisordered intracluster spin interactions. The disorder
appears only as a quenched random magnetic interaction
between these spin clusters. For an appropriate choice of
intracluster interactions, GF can arise, leading to a degeneracy
of intracluster spins configurations. In that case, the intercluster
random interaction could select from the manifold of spins
configurations those that not only avoid, for instance, the full
compensation of the total cluster magnetic moment but also
greatly enhance the spin cluster sensitivity to the intercluster
random interaction stabilizing a cluster SG order even when
the intercluster random interaction is very weak.

Motivated by the above considerations, we study a simple
cluster spin model in which it is possible to introduce intraclus-
ter frustration and disorder. This model considers clusters with
a square lattice geometry that has two types of interactions:
intercluster long-range disordered interactions and intracluster
short-range interactions between first J1 and second neighbors
J2, which can be an antiferromagnetic (AF) interaction or a
ferromagnetic exchange (FE) one. The short-range interactions
are between Ising spins on a square lattice that belong to the
same cluster. Therefore, the intracluster interaction is given
by the so-called J1-J2 model that can introduce frustration by
adjusting the relation between J1 and J2 [11]. This we call
intrinsic frustration.

The present cluster SG model with J2 = 0 (without in-
tracluster frustration) was used successfully to studied the
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inverse freezing (IF) [12]. Inverse freezing is characterized by
a transition from the SG state to the paramagnetic phase when
the temperature diminishes [13]. In this case, the simultaneous
presence of short-range interactions with AF cluster spin
compensation and disorder has been pointed out as being
responsible for the IF phenomenon [12]. Therefore, the present
work could also provide clarification of the mechanisms
underlying IF, in which the interplay among disorder, AF
short-range interactions, and intrinsic frustration is explored.

II. GENERAL FORMULATION

The model can be obtained from the Ising spin lattice that
is divided into Ncl clusters with ns sites in each cluster [14]. In
the present approach the intercluster interactions are assumed
to be of infinite range and disordered, while the intracluster
interactions are short range [14]. This model can be described
by the Hamiltonian

H = −
Ncl∑
νλ

JνλSνSλ −
Ncl∑
ν

ns∑
(i,j )

J ν
ij siνsjν, (1)

where Jνλ is a random variable that follows a Gaussian
distribution with zero mean and variance J 2/Ncl . In Eq. (1),
Jνλ couples all distinct pairs of clusters, in which Sν = ∑ns

i siν

is the magnetic moment of cluster ν with siν representing the
Ising spin of site i of cluster ν. The intracluster interaction
follows the J1-J2 model and is written as

ns∑
(i,j )

J ν
i,j siνsjν =

ns∑
(i,j )1

J1siνsjν +
ns∑

(i,j )2

J2siνsjν, (2)

where the sum (i,j )1 [(i,j )2] runs over all nearest-neighbor
(next-nearest-neighbor) sites of cluster ν with a square lattice
geometry. In this work we study two types of couplings
between nearest neighbor J1 and next-nearest neighbor J2.
The first one considers J1 and J2 to be antiferromagnetic,
while in the second J1 is ferromagnetic and J2 AF.

The replica method is used to carry out the disorder
average. The average free energy per cluster is βf =
− limn→0(〈Zn〉Jνλ

− 1)/Ncln, where 〈· · · 〉Jνλ
means the av-

erage over the quenched disorder of Jνλ and Zn is the
replicated partition function. This produces an effective replica
Hamiltonian

H = − βJ 2

2Ncl

Ncl∑
νλ

n∑
α,γ

Sα
ν Sγ

ν Sα
λ S

γ

λ −
Ncl∑
ν

n∑
α

ns∑
(i,j )

J ν
i,j s

α
iνs

α
jν, (3)

where β = 1/T (T is the temperature) and α and γ are replica
labels.

The four-spin cluster term is decoupled, introducing the
replica matrix elements {Q} via Hubbard-Stratonovitch trans-
formations. The free energy per cluster is then obtained as

βf = lim
n→0

1

n

{
β2J 2

2

∑
αγ

Q2
αγ − 1

Ncl

ln Tr exp

×
⎡
⎣β

∑
ν

⎛
⎝∑

α

ns∑
(i,j )

J ν
i,j s

α
iνs

α
jν +

∑
αγ

βJ 2Qαγ Sα
ν Sγ

ν

⎞
⎠
⎤
⎦
⎫⎬
⎭,

(4)

where the saddle-point equations are used, resulting in Qαγ =
1

Ncl
〈∑ν Sα

ν S
γ
ν 〉.

Parisi’s scheme of one-step replica symmetry breaking
(1S RSB) [15] is adopted to parametrize the replica matrix
as R = Qαα and

Qα,γ =
{
Q1 if I (α/a) = I (γ /a)

Q0 if I (α/a) �= I (γ /a),
(5)

where I (x) gives the smallest integer that is greater than or
equal to x. The order parameter R = 〈Sα

ν Sα
ν 〉 represents the

replica diagonal correlation of the cluster magnetic moment.
Different from the canonical Ising SG models (where R = 1),
here it can range from 0 to n2

s . In addition, R can be interpreted
as the intensity of the cluster magnetic moment [14]. In partic-
ular, R is strongly affected by AF intracluster interactions that
can introduce compensated magnetic moments, decreasing the
intensity of the cluster magnetic moment (R → 0). The replica
symmetry breaking is given by Q1 − Q0, which is the SG order
parameter. The parameter a represents the size of diagonal
blocks of the 1S RSB solution.

In this approximation, the free energy is obtained as

βf = β2J 2

4

[
R2 + a

(
Q2

1 − Q2
0

) − Q2
1

]
− 1

a

∫
Dz ln

∫
Dv[K(z,v)]a, (6)

where K(z,v) = ∫
Dξ Tr e−βHeff ,

∫
Dx = ∫ ∞

−∞ dx e−x2/2√
2π

(x = z, v, or ξ ), and

Heff = −
ns∑

(i,j )1

J1siνsjν −
ns∑

(i,j )2

J2siνsjν − hSν (7)

represents the effective one-cluster model with the 1S RSB
self-consistent field

h = J [
√

Q1 − Q0v +
√

R − Q1ξ +
√

Q0z]. (8)

The parameters Q1, Q0, R, and a are obtained from the ex-
treme of the free energy (6). The magnetic cluster susceptibility
χ and specific heat cv are derived from Eq. (6): χ = β[R −
Q1 + a(Q1 − Q0)] and cv = ∂U

∂T
, where U = −T 2 ∂(βf )

∂T
.

III. RESULTS AND DISCUSSION

The effective one-cluster problem [Eqs. (6)–(8)] is now nu-
merically solved by using exact diagonalization. We consider
clusters with ns Ising spins on a bidimensional lattice with
short-range interactions with intensities J1 and J2. The analy-
ses are done for two different intracluster J1-J2 couplings: one
with both J1 and J2 antiferromagnetic (Sec. III A) and other
with J1 ferromagnetic and J2 antiferromagnetic (Sec. III B). In
particular, the intercluster disorder J results from the 1S RSB
approximation for the effective field h [Eq. (8)]. Therefore, the
SG order is characterized by the RSB solution (Q1 − Q0 > 0).
In order to compare results for different clusters size, J is
divided by ns , becoming related to the intensity of the disorder
per spin.
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FIG. 1. (Color online) Temperature of the maximum value of the
specific heat cv , T ∗, versus J2/J1 for an AF finite-size system with
ns = 24 and J = 0 (without disorder). The lattice geometry is shown
at the bottom left and periodic boundary conditions are considered.
The inset exhibits the cv behavior for several J2/J1 values. The
minimum of T ∗ appears at J2/J1 = 0.5 corresponding to the strongest
intrinsic frustration.

A. Antiferromagnetic intracluster interactions

We present results for the classical antiferromagnetic J1-J2

model in a finite-size system without intercluster disorder
(decoupled clusters with J/J1 = 0). For example, the specific
heat cv for a square lattice with 24 spins and periodic boundary
conditions (PBCs) is shown in the inset of Fig. 1. The cv curve
displays a maximum value at temperature T ∗. The value of
T ∗ for different ratios J2/J1 (the parameter that controls the
intrinsic frustration) is used to create the phase diagram of
Fig. 1, which presents the behavior expected for this model
[16–18]. At temperatures below T ∗, the finite-cluster results
suggest that the Néel and collinear (lines of spins parallel are
coupled antiparallel) antiferromagneticlike orders are found
for values of J2/J1 lower and higher than 0.5, respectively [16].
It is important to observe that T ∗ is minimum at J2/J1 = 0.5,
where the maximum intrinsic frustration occurs.

The effects of disorder are introduced by considering the
intercluster disorder J �= 0 for different cluster sizes with even
numbers of spins and without PBCs. For instance, Fig. 2 shows
that J is able to stabilize the SG phase and a second-order
transition (solid lines) from the paramagnetic (PM) phase to
the SG order occurs when the temperature decreases for high-J
values. As J diminishes, the transition becomes first order
(dotted lines) and reentrance can appear except for J2/J1 = 0.5
(intracluster frustration). This reentrance is associated with the
interesting phenomenon of inverse freezing that was already
discussed in Ref. [12], in which J2 = 0. Here the phase
diagrams exhibited in Fig. 2 with small-J2/J1 values are
qualitatively the same as those obtained in Ref. [12]. The
IF results from the interplay between intercluster disorder and
short-range AF interactions. The intercluster disorder favors
the SG phase that can present a higher entropic content than
a low-temperature cluster PM phase. This PM phase appears
as a result of the AF interactions, in which the intracluster

spins become AF compensated, establishing clusters with low
magnetic moments without long-range order. In other words,
in the PM phase at low T , many nonmagnetic clusters with
total moment S = 0 are found, where the intracluster spins
freeze into perfect AF zero-moment states. This is the source
of a small amount of magnetic entropy for the low-temperature
cluster PM phase [12].

However, J2 can introduce intracluster frustration effects on
Tf . For instance, the maximum intracluster intrinsic frustration
appears at J2/J1 = 0.5 for clusters with PBCs (see Fig. 1),
where the number of intracluster J1 and J2 interactions are the
same. Nevertheless, the PBCs are not used for the disordered
intercluster problem. Instead, the cluster shapes of Fig. 2
are chosen such that the number of intracluster interactions
between nearest neighbors and next-near neighbors are very
close (see dashed red and black lines in the insets of Fig. 2)
in order to explore the property of intrinsic frustration for
J2/J1 very close to 0.5. In this case, the T ∗ dependence on
J2/J1 for J = 0 (without disorder) exhibits behavior similar
to that of Fig. 1 [see the inset of Fig. 2(b)]. However, the
T ∗ is displaced to lower temperatures and its minimum at
J2/J1 = 0.5 is hard locate because of the finite size of the
cluster [16]. Nevertheless, the most important effect occurs
when J > 0, in which case the Tf behavior for J2/J1 near the
intracluster frustrated regime can be analyzed. For instance,
Fig. 2 indicates that there is a minimum critical value of
disorder to introduce the SG phase when J2/J1 �= 0.5. In
addition, Tf appears at lower temperatures when J2 increases,
but the most relevant result is obtained for J2/J1 = 0.5, where
the SG phase occurs at lower intensities of disorder (see the
black lines in Fig. 2). This result seems to be independent of
the cluster size and shape. This means that the intracluster
intrinsic frustration favors the SG phase that is stabilized for
any infinitesimal value of disorder.

It is worth pointing out that Tf presents two different behav-
iors particularly around J2/J1 = 0.5: one for lower intensities
of disorder, where the intrinsic frustration effects are relevant,
and the other for high-J/J1 values, in which there is no
qualitative distinction between intracluster interaction regimes
(see Tf for J/J1 > 4 with different J2/J1 values in Fig. 2).
In this regime Tf increases linearly with J . Furthermore, the
intrinsic frustration affects the IF phenomenon by changing
the Tf behavior. The reentrance disappears in the presence of
intracluster geometrical frustration, which breaks one of the
essential conditions for the occurrence of IF: the low entropy of
the PM phase. The inset of Fig. 2(d) helps one understand the
effects of the intrinsic frustration on the PM phase. It shows the
correlation R as a function of J2 for low temperatures in the PM
region close to the PM-SG phase transition. The intracluster
frustration causes an increment in the R curves, which has
a direct impact on the intensity of the total cluster magnetic
moment. This can contribute to the intercluster long-range
disorder and at the same time it prevents the occurrence of the
PM phase with a small-cluster magnetic moment. In other
words, the cluster magnetic moment is maximized in the
presence of intrinsic frustration and therefore the sensitivity
to intercluster disordered interactions is enhanced.

The effects of J2/J1 on the intercluster disorder can also
be analyzed in Fig. 3, which exhibits the minimal intensity
of disorder Jmin required to get the SG phase, as a function of
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FIG. 2. (Color online) Phase diagrams T/J1 versus J/J1 for several values of J2/J1 with different cluster sizes and antiferromagnetic
intracluster couplings. Cluster shapes without periodic boundary conditions are presented in each panel, where black and dashed red lines
represent first- and second-neighbor interactions, respectively. Solid and dotted lines represent PM-SG second- and first-order transitions,
respectively. Dashed lines correspond to the maximum of the susceptibility (discussed in Fig. 4). The inset in (b) shows the T ∗/J1 vs J2/J1

behavior for J = 0. The inset in (d) shows the order parameter R as a function of J2/J1 within the PM phase at low T (J/J1 = 1.0 and
T/J1 = 0.3 and 0.5). The SG phase is always found when the disorder increases for an AF Ising cluster, but it is stabilized at lower intensities
of disorder in the presence of intracluster frustration.

J2/J1. This phase diagram shows that the SG phase can always
be obtained for a certain range of temperature when J > Jmin,
while the PM phase is stable in the whole range of temperature
for J < Jmin. The intensity of this minimum disorder is clearly
reduced as the intrinsic frustration increases. For instance, the
SG phase can be obtained for extremely small but nonzero
J as J2/J1 → 0.5. In other words, the intrinsic frustration
potentiates the intercluster disordered couplings favoring the
cluster SG phase. In addition, Jmin/J1 increases faster when
J2/J1 > 0.5 than when J2/J1 < 0.5. This behavior can also
be attributed to the R dependence on J2 that is not symmetric
around J2/J1 = 0.5. As J2/J1 increases from 0.5, R decreases
faster when compared with the case J2/J1 < 0.5 [see the
inset of Fig. 2(d)], which affects the intercluster disordered
interactions.

Figure 4 exhibits the 1S RSB order parameters for different
ratios of J2/J1. It enforces the previous discussion related to

the intensity of the cluster magnetic moment R, which depends
on the temperature J and J2. For J2 = 0, R goes to zero as
the temperature decreases for small-J values. This indicates
that the cluster spins become AF compensated, affecting the
intercluster coupling, which remains in the PM phase down to
zero temperature. In contrast, the intracluster intrinsic frustra-
tion can introduce a different scenario, in which degenerate
cluster spin configurations with uncompensated spins are
thermodynamically favored. It can reflect on the increment of
the magnetic moment of clusters as compared to other J2/J1

regimes. This increment of R favors the intercluster coupling
that can generate the SG phase at lower disordered regimes
(see Q1 − Q0 > 0 for J2/J1 = 0.5 in Fig. 4).

The cluster magnetic susceptibility χ can also be explored
to clarify the low-disorder regime (see the inset of Fig. 4). Here
χ shows a Curie-Weiss-like behavior at the high-temperature
cluster PM phase. However, as previously discussed, one
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FIG. 3. Phase diagram Jmin/J1 versus J2/J1 for ns = 16, in which
Jmin is the minimum intensity of the intercluster disorder able to
generate the SG phase with an AF cluster. The cluster shape is the
same as in Fig. 2(b). At J2/J1 = 0.5, Jmin is arbitrarily small but
positive (Jmin/J → 0+).

can find a low-temperature PM phase, in which χ decreases
when diminishing T from a certain value T ∗

χ (temperature
of the smooth maximum in χ ). In this case, low magnetic
moment clusters characterize the PM phase that arises as
a consequence of the short-range AF interactions without
long-range order. The location of T ∗

χ in the phase diagrams
of Fig. 2 is given by the dashed lines, which show clearly the
dependence of T ∗

χ on the short-range interactions. In particular,
the intracluster frustration can eliminate the low-temperature
PM and the system presents SG phase with a susceptibility

FIG. 4. (Color online) Order parameters in the low-disorder
regime (J/J1 = 2.0) for several J2/J1 values and ns = 16 with
the same AF cluster shape as in Fig. 2(b). The inset exhibits
the susceptibility as a function of the temperature. The intrinsic
frustration can increase the intensity of the the magnetic moment
of clusters R favoring the occurrence of a cluster SG phase at lower
disorder.

FIG. 5. (Color online) Results for FE and AF intracluster inter-
actions with ns = 16 and the same cluster shape as in Fig. 2(b).
(a) Phase diagrams T/J1 versus J/J1 for several values of J2/J1.
(b) Order parameter R as a function of J2/J1 for lower temperatures.
The inset exhibits the behavior of T ∗/J1 as a function of J2/J1 for
J = 0.

weakly dependent on temperature (see χ for J2/J1 = 0.5 in
Fig. 4).

B. Ferromagnetic and antiferromagnetic
intracluster interactions

Now, ferromagnetic and antiferromagnetic intracluster in-
teractions are considered between first and second neighbors,
respectively. Here we assume explicitly the sign of the AF
interaction. For ferromagnetic clusters (0 > J2/J1 > −0.5),
the phase diagrams exhibit SG order even for low values
of disorder J/J1 [see Fig. 5(a)]. When −J2/J1 increases
(J2/J1 < −0.5), the antiferromagnetic short-range intracluster
interactions become stronger and the SG phase is only
observed for higher intensities of disorder. Furthermore,
a reentrant first-order PM-SG transition appears in which
the IF occurs. In particular, at J2/J1 very close to −0.5
[see inset of Fig. 5(a)], intracluster intrinsic frustration is strong
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FIG. 6. Phase diagram Jmin/J1 versus J2/J1 for ns = 16 with FE
(J1) and AF (J2) short-range intracluster interactions. The cluster
shape is the same as in Fig. 2(b).

and the SG phase is found for J → 0. As in the case of AF
J1-J2 interactions, the results for other cluster sizes explored
(ns = 12, 18, and 20) are qualitatively the same.

The behavior of R in Fig. 5(b) shows two different intra-
cluster regimes: one for low −J2/J1 (where R is maximum)
and another for high −J2/J1 (R is minimum). It can help to
explain the presence of the cluster SG phase for lower J when
the ferromagnetic intracluster interactions are dominant. In
this case, the intercluster disordered couplings are enhanced
by the large cluster magnetic moments. In contrast, intracluster
AF compensation makes the clusters less predisposed to the
intercluster disordered interactions. Therefore, the SG phase
cannot be found at lower intensities of J when −J2 is
higher. Furthermore, this AF compensation can introduce the
low-temperature PM phase, which is an essential condition for
IF occurrence (see Sec. III A).

Figure 6 also enforces that FE clusters are able to present the
cluster SG state within a very small disordered regime, while

AF clusters require higher disorder to show the SG phase. It
suggests that FE clusters are able to enhance the SG phase,
but AF clusters can suppress the SG phase. In addition, the
effects of intrinsic frustration are less pronounced than in the
case analyzed in Sec. III A.

IV. CONCLUSION

Summing up, we studied the interplay between intrinsic
frustration and quenched disorder in a cluster spin-glass
model that considers intracluster interactions following the
(J1-J2)-like model for finite clusters and long-range disordered
intercluster interactions. The mean-field replica method is used
to obtain an effective one-cluster model, which is computed
by exact diagonalization.

The results show that the intracluster AF compensation
affects the disordered intercluster interactions. It suppresses
the spin-glass phase and can introduce a reentrant SG-PM
transition that is associated with the inverse freezing. On the
contrary, FE clusters can reinforce the SG states. However, the
more important result is obtained by considering AF clusters
with intrinsic frustration. At the most frustrated point, there are
some spins that can be returned freely without any energy cost.
It results that the S = 0 ground state of the cluster becomes
degenerate with nonzero spin states and then any infinitesimal
value of intercluster interaction will induce a SG state. In other
words, the intracluster frustration can increase the intensity of
cluster magnetic moment favoring the intercluster SG order
even with a very weak disorder. Although these conclusions
are obtained for a particular model (Ising spins on a square
lattice), they indicate that the presence of small clusters in
geometrically frustrated systems can help stabilize the SG
order within weakly disordered regimes.
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