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Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of
natural gas and oil from old, low-permeability shales. These developments include a change from low-volume,
high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed
damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we
utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly
disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical
simulations on a two-dimensional square lattice and find significant differences from other percolation models.
Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network
statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster
extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series
of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good
agreement with a power-law frequency-area distribution. These results are generally consistent with the observed
distribution of microseismicity observed during a high-volume frack.
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I. INTRODUCTION

Fracking is the use of hydraulic fractures to enhance the
permeability in petroleum reservoirs. The fluid is water with
small quantities of additives. In a frack, water is injected
from a well perforation that can be regarded as a point
source. The objective is to generate fractures that result in
distributed damage and a network of flow pathways to the
well after the frack is completed. In this paper we utilize
a loopless nontrapping invasion percolation model for the
statistical migration of an invading fluid from a point source.
We hypothesize that the migrating fluid reactivates preexisting
healed fractures.

A standard procedure in oil (or gas) production is to inject
a fluid (typically water) in injection wells in order to drive
the oil (or gas) to production wells. In order to model this
process, the invasion percolation model was introduced [1].
In two dimensions a square grid of sites represent the fluid
filled pores. The sites are connected by bonds through which
fluid can flow. In this model all sites are initially occupied
by a defending fluid, for example, oil. An invading fluid
such as water is injected along one side of the region under
consideration; typically, this region is a layer of width L. The
bonds are assigned random strengths s. A random number
is drawn from a uniform distribution in the range [0,1]. At
each time step, the invading fluid flows through the weakest
pathway (smallest s) displacing the defending fluid. As time
proceeds the cluster of occupied invading sites grows from the
injection side of the layer, the maximum selected strength s

also increases with time. When the cluster crosses the region
in consideration, it has been found to follow many power-law

*jqnorris@ucdavis.edu
†dlturcotte@ucdavis.edu
‡rundle@physics.ucdavis.edu

scalings [2]. Additionally, the highest strength of the invaded
bonds is approximately equal to the critical value pc of the
static model for bond percolation.

The original version of the invasion percolation model
assumed that the defending fluid (oil) was incompressible.
Thus when a region became disconnected from an edge of
the lattice, that region could no longer be invaded, and the
defending fluid was trapped. One of the earliest and simplest
variants was to remove trapping rule. Models without the
trapping rule are called nontrapping or compressible invasion
percolation. It was found that the nontrapping version of
invasion percolation is equivalent to ordinary percolation,
details of which have been given by Stauffer and Aharony [3].
The trapping version of the model appears to be much more
complicated [4]. A comprehensive review of the invasion
percolation literature has been given by Ebrahimi [5].

An interesting aspect of invasion percolation is the occur-
rence of “bursts.” The failure of a strong bond (large s) allows
fluid to enter a region where there are weaker bonds (smaller
s). The failure of these bonds is considered to be a burst. Roux
and Guyon [6] defined the size of a burst to be the number of
smaller s values that follow each failure in the sequences. Thus
there can be bursts within bursts. Maslov [7] and Paczuski
et al. [8] have carried out extensive studies of these burst
statistics. They found the frequency-size statistics of bursts to
be well approximated by power laws. Roux and Wilkinson [9]
associated invasion percolation bursts with resistance jumps
observed in laboratory studies of mercury injection into a
porous medium.

The purpose of this paper is to reintroduce a form of
invasion percolation that is applicable to fracking. Before
doing this, a brief discussion of the physics of fracking is given.
Oil- and gas-producing reservoirs are made up of sediments
and organic material. As the thickness of deposited sediments
increases, the temperature of the sediments increases and oil
and/or gas is generated from the organic material. Oil is
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generated from organic material in the “oil window” (tem-
peratures of 60–120 ◦C, depths of 2–4 km). Gas is generated
from the organic material in the “gas window” (temperatures
of 100–200 ◦C, depths of 3–6 km).

The current principal focus of fracking is the recovery of
oil and gas from very old (200–300 million yr) tight shale
rocks. Shales are very fine grained sedimentary rocks. Oil
and gas shales typically have grain diameters of about 4 μm
and gas- and/or oil-filled porosity of 2%–12%. Capillary
forces associated with the fine structure reduce granular
permeabilities to very low values. However, the chemical
reactions associated with oil and gas generation produce high
pressures in the oil and gas shales. One consequence of these
high pressures is the generation of extensive sets of natural
hydraulic fractures. In relatively young (2–30 million yr) oil
and gas shales these natural fractures generally produces high
fracture permeabilities.

While natural hydraulic fractures generate high perme-
abilities in young shale reservoirs, these fractures are often
sealed by natural processes in old shale reservoirs. One sealing
process is deposition of calcite in the fractures. The existence
of the sealed natural fracture sets plays an essential role in the
effectiveness of fracking in the extraction of oil and gas from
tight shales. The calcite fills the natural fractures impeding the
flow of injected fluids. However, the bond between the calcite
and the shale is relatively weak, allowing the natural fractures
to be reopened.

In the past 10–15 yr a new approach to fracking has been
successful in extracting large quantities of tight shale oil and
gas. An essential feature of the new approach is the use
of “slickwater” as the fracking fluid where additives reduce
the viscosity of the water. Large volumes of water, typically
5000–15 000 m3, are used in each frack. The water is driven
into the preexisting natural fractures reactivating them [10].
Observed associated microseismicity indicates shear offsets
on these fractures [11]. The preexisting stress field focuses the
seismicity in a plane perpendicular to the maximum principal
compressive stress. The maximum principal compressive
stress is generally vertical so that the seismicity is concentrated
in a horizontal plane. We will associate the microseismicity
observed in fracking with the bursts associated with invasion
percolation. We will also associate the efficiency of fracking in
extracting oil and gas to the self-similar structure of invasion
percolation clusters.

II. OUR MODEL

Our invasion percolation model is based on the model given
by Wilkinson and Barsony [12]. These authors considered
invasion percolation from a point source in two and three
dimensions. The result was a single growing cluster of invaded
sites. The scaling properties of this model were studied by De
Arcangelis and Herrmann [13].

While our model may be applied to any lattice in any
number of dimensions, we consider only a two-dimensional
(2D) square lattice as illustrated in Fig. 1. The sites are
connected by bonds. The sites are considered to be pore spaces
on sealed natural fractures that the injected fluid will fill. The
bonds are the sealed pathways for fluid flow between the pore
spaces. The injected fluid flows through the natural fractures

when the bonds are opened. If fluid injection is relatively slow,
the injection is resisted primarily by capillary forces rather
than viscous forces. Our invasion percolation model neglects
pressure drops associated with viscous flow. In Fig. 1, occupied
sites are shown as solid circles, and adjacent accessible sites are
shown as dashed circles. The numbers in the circles identify the
sites. Opened bonds (open fractures) between sites are shown
as double solid lines, and unopened bonds (sealed pathways)
are shown as dashed lines.

High-pressure fluid is introduced at the central site (0,0).
The central cite is connected to the four neighboring sites (0,1),
(1,0), (0,−1), and (−1,0) with closed bonds. These bonds
are given random strengths s in the range [0,1]. The random
strengths s = 0.49, 0.22, 0.53, 0.32 of the bonds to the adjacent
sites are shown in Fig. 1(a). The weakest bond (smallest s)
opens, and the high-pressure fluid flows into the adjacent site.
In the example illustrated in Fig. 1(b) the weakest bond is
(0,0)–(1,0) with s = 0.22 and fluid fills site (1,0). This site is
now connected with closed bonds to three neighboring sites
(1,1), (2,0), (1,−1). These bonds are given random strengths
s = 0.10, 0.83, 0.56. On the next time step, illustrated in
Fig. 1(b), fluid is allowed to flow through the weakest (smallest
s) of the six available bonds, this bond is (1,0)–(1,1) with
s = 0.10. Site (1,1) is now connected with closed bonds to
three neighboring sites (0,1), (1,2), and (2,1). These bonds are
given random strengths s = 0.26, 0.66, 0.52. On the next time
step illustrated in Fig. 1(d), fluid is allowed to flow through the
weakest (smallest s) of the eight available bonds, and this bond
is (0,1)–(1,1) with s = 0.26 and site (0,1) is filled. Two new
nearest neighbor bonds are added, but the bond (0,0)–(0,1) is
removed because both adjacent sites are filled.

We justify this removal because the two adjacent sites
are at the same injection pressure, so there is no differential
pressure to open the bond. This bond removal condition is the
major difference between our model and nontrapping invasion
percolation. It prevents internal loops of opened bonds; thus
the evolving cluster has a single path from the injection site
to each filled site. This loop removal rule has been introduced
previously by Barabási [14] for determining minimum energy
spanning trees on a lattice and by Cieplak et al. [15] to model
optimal polymers in a strongly disordered medium. In the
case of minimum energy spanning trees, it was shown that this
model is simply the application of Prim’s algorithm [16] to a
lattice. Also, we note that Sahimi et al. [17] intoduced a more
complicated invasion percolation model that also prevents the
formation of internal loops. Additionally, a loopless version of
regular percolation based upon the Leath algorithm [18] has
been introduced by Tzschichholz et al. [19].

The process illustrated in Fig. 1 is continued forming a
single connected cluster. At each time step, a bond is opened
and an occupied site is added to the growing cluster. We will
refer to the number of occupied sites in the growing cluster
as the mass m of the cluster. Because there is a one-to-one
correspondence between an opened bond and a occupied site,
m is also the number of opened bonds in the cluster. The
structure of our evolving cluster can be illustrated using either
the filled sites or the opened bonds. A typical small cluster
with mass m = 200 is shown in Fig. 2. It can be clearly seen
that the bond structure illustrated in Fig. 2(b) has no internal
loops.
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FIG. 1. (Color online) Illustration of our invasion percolation model. Fluid-filled sites are shown as solid circles and adjacent accessible
sites are shown as dashed circles. The numbers in the circles identify the sites. Open bonds between fluid filled sites are shown as double solid
lines. Unopened bonds between fluid filled and adjacent accessible empty sites are shown as dashed lines. The numbers next to the unbroken
bonds are the random assigned strengths s. At each time step the weakest (smallest s) unbroken bond breaks and fluid flows to the adjacent
accessible site. At any time there is an unbroken bond between two occupied sites, the bond is removed and remains closed for the rest of the
simulation. A sequence of times steps is shown in Figs. 1(a)–1(d).

(a) (b) (c)

FIG. 2. (Color online) Illustration of a small cluster with a mass m = 200 (a) Fluid-filled sites are shown as circles. The open bonds through
which fluid flows are also shown. (b) Only the open bonds are shown. (c) Same as (a) except filled sites are shown as connected squares. The
injection site is shown as the red star. There is a single path from each filled site to the injection site.
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(a) m = 1000 (b) m = 2000 (c) m = 3000

FIG. 3. (Color online) Growth of a typical invasion percolation
cluster. Three steps in the growth are shown. The first 1000 sites
invaded are shown in blue (medium gray), the second 1000 in green
(light gray), and the third 1000 are shown in red (dark gray). The
injection site is shown as a black star.

To prevent confusion, we wish to clearly define the
terminology used in this paper for the various percolation
models. Random percolation (RP) is the traditional, nonin-
vasion model covered in detail by Stauffer and Aharony [3].
Loopless random percolation (LRP) is the modification of this
model introduced by Tzschichholz et al. [19]. Nontrapping
invasion percolation (NTIP) is a variant of invasion percolation
where the defending fluid is compressible and invasion can
occur along the entire cluster perimeter. Trapping invasion
percolation (TIP) is the more common variant where the
defeding fluid is incompressible and invasion can occur only
along portions of the cluster perimeter that are connected to the
edges of the lattice. Loopless nontrapping invasion percolation
(LNTIP) is the invasion percolation model presented in this
paper. To our knowledge there has not be a study of loopless
trapping invasion percolation (LTIP).

While our model has been introduced previously [14,15],
there has not been very much work to quantify the model.
In particular, the associated fractal dimensions of the growing
cluster have not been determined. These values are necessary to
test the hypothesis that this model (LNTIP), NTIP, RP, and LRP
all belong to the same universality class [14]. Additionally, the
statistics of the bursts and the statistics of cluster structures
have not been considered. These will be a focus of this paper.

We have carried out extensive numerical simulations of
our 2D invasion percolation model. The evolution of a typical
cluster is shown in Fig. 3; three times during the growth of
the cluster are shown. There are many interior regions with no
occupied sites. The boundaries of these regions have relatively
strong bonds (high s), which prevent further invasion but are
not explicitly trapped. Within these cutoff regions, bonds with
low values of s are present, but they are not accessible.

III. STATISTICS OF GROWN CLUSTERS

At each time step the weakest bond to a adjacent empty
site breaks and the adjacent site fills with fluid. The invading
cluster grows outward as illustrated in Fig. 3. It is clear from
this figure that the boundary of the growing cluster is complex
with fingers of occupied sites extending in all directions. It is
of interest to study the distribution of strengths s of the bonds
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FIG. 4. (Color online) Frequency density of open bonds f (s) is
given as a function of bond strength s in blue (dark gray). The data
are from a cluster with 100 million occupied sites. The green (light
grey) region adds the unopened bonds that have been removed [i.e.,
bond (0,0)–(0,1)] in Fig. 1(d). The inset gives the frequency density
in the vicinity of the cutoff near s = 0.5. The cutoff is very sharp at
about s = 0.4999 for our cluster of 100 million occupied sites (open
bonds). The small number of strengths greater than this cutoff are
part of an initial transient occurring while the cluster is smaller than
m = 200,000.

that have opened. In Fig. 4 the frequency density of open bond
strengths f (s) = dn

ds
is given as a function of s in blue. The

data are from a cluster with m = 100 million occupied sites.
The green region adds the strengths of unopened bonds that
have been removed [i.e., bond (0,0)–(0,1)] in Fig. 1(d). The
blue and green region is the frequency density of both the
open and removed bonds. The rollover of open bond data is
attributed to the systematic removal of relatively strong bonds.
This data are characterized by the very strong cutoff. In order
to study the nature of the strong cutoff, we give in Fig. 4 the
frequency density of open bond strengths as a function of s

in the vicinity of the cutoff. The cutoff is very sharp at about
s = 0.4999 for this cluster of m = 100 million occupied sites
(open bonds). The small number of strengths greater than this
cutoff are part of an initial transient occurring while the cluster
is smaller than m = 200 000.

As we have noted, our problem is basically bond percolation
because we utilize a statistical distribution of bond strengths
in our model. It is important to note that the critical probability
for the creation of a spanning cluster in bond percolation is
pc = 0.5 [3]. Our invasion percolation model also creates a
spanning cluster so that it is not surprising that this requires
the breaking of bonds weaker than s = 0.5.

To characterize clusters grown using our model and to allow
comparisons with other growth models, we utilize the approach
given by Bunde and Havlin [20] and determine the fractal
and chemical dimensions of clusters grown using our model.
The fractal dimension df is associated with a power-law
dependence of the number of occupied sites M contained
within a circle of radius r centered on the injection site on
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FIG. 5. (Color online) (a) Dependence of the number of occupied
sites M contained within a circle of radius r centered on the injection
site on the radius r. The data are averages for 1000 realizations of
clusters of mass m = 108. The best fit of Eq. (1) to the data gives
a fractal dimension df = 1.8769. (b) Dependence of the number of
occupied sites M with a chemical distance from the origin less than
or equal to l on the chemical distance l. The data are averages for
1000 realizations of clusters of mass m = 108. The best fit of Eq. (2)
to the data gives a chemical dimension dl = 1.54628.

the radius r:

M (r) ∼ rdf . (1)

We plot the number of occupied sites M as a function of r

over several orders of magnitude. The fractal dimension of the
cluster is the slope of the straight line through the data on a
log-log plot. We have obtained the mass data as a function of
r for 1000 realizations with m = 100 million occupied sites
each. The average values obtained for these realizations are
shown in Fig. 5(a). For small values of r , the data contains
artifacts that arise from the discrete nature of the lattice. For
large values of r , nearly the entire cluster is contained within
a radius r , and the slope flattens out as the radius approaches
the cluster size and the cluster begins to appear pointlike. We
chose a region for determining a linear fit of the log-log data
that excludes both of these artifacts. Using the aggregated
log-log data we do a least squares fit to Eq. (1) as shown in
Fig. 5(a). The fit gives a fractal dimension of df = 1.8769.
Because we performed the fit over an arbitrary region, the
error shown in Fig. 5(a) represents the uncertainty in the fit
and not necessarily the uncertainty in the fractal dimension.

We next turn out attention to the chemical dimension dl of
our clusters. We define the chemical distance l as the number
of bonds between two sites along the cluster. The chemical
dimension is of particular interest in polymer science and is
associated with a power-law dependence of the number of
occupied sites M with a chemical distance from the origin less
than or equal to l on the chemical distance l:

M ∼ ldl . (2)

We have also determined the chemical dimension of clusters
grown using our model. We do so by keeping track of the
chemical level of the bonds as they are added. Bonds connected
to the origin are in the first chemical level (l = 1). As bonds
become available they belong to the next chemical level (2).
The cluster is grown to a specified size m, and the number
of bonds in each chemical level is determined. We plot the
number of occupied sites M as a function of l over several
orders of magnitude. The chemical dimension of the cluster is

the slope of a straight line through the data on a log-log plot.
The mass data as a function of chemical level l were obtained
for the same 1000 realizations used for the fractal dimension.
The average values obtained for these realizations are shown
in Fig. 5(b). We did a least squares fit of the aggregated log-log
data as shown in Fig. 5(b). This fit gives a chemical dimension
of dl = 1.54628. We note that the error shown in Fig. 5(b)
represents the uncertainty in the fit and not necessarily the
uncertainty in the chemical dimension. We note that for small
chemical levels, the average cluster size deviates from a power
law due to the fixed coordination number of the square lattice.

Our demonstration of the validity Eqs. (1) and (2) for our
clusters implies a power-law scaling between l and r that
defines a fractal dimension dmin:

l ∼ rdmin , (3)

the three fractal dimensions discussed above are related by

M ∼ (rdmin )dl ⇒ M ∼ rdmindl ⇒ dmin = df

dl

. (4)

Taking df = 1.8769 and dl = 1.54628 we find that dmin =
1.2138.

We now compare the fractal dimension df , chemical
dimension dl , and dmin for our model (LNTIP) to the
dimensions for RP, LRP, site NTIP, and bond TIP on a
square lattice. Because our model is inherently a growth
model and because we make other comparisons later, we feel
it appropriate to also compare our model to DLA. For RP
in two dimensions df = 91/48 ≈ 1.896, dl = 1.678 ± 0.005,
and dmin = 1.13 ± 0.004 [20]. For the LRP df = 1.90 ± 0.04,
dl = 1.68 ± 0.02, and dmin = 1.13 ± 0.03 [19]. For site NTIP
df = 1.8959 ± 0.0001, dl = 1.6767 ± 0.0006, and dmin =
1.1307 ± 0.0004 [4]. We note that these values are consistent
with the belief that NTIP is identical to RP. For bond TIP
on a square lattice df = 1.822 ± 0.008, dl = 1.5001 ± 0.007,
and dmin = 1.214 ± 0.002 [4]. As larger DLA clusters have
been studied, it has been shown that DLA clusters on a
square lattice are not self-similar [21]. However, we give
results that are useful for comparison and are valid for small
(N < 104) DLA clusters. For square lattice DLA simulations
in two dimensions df = 1.69 ± 0.24, dl = 1.69 ± 0.05, and
dmin = 1.0 ± 0.02 [22]. These values are compared with our
values given previously in Table I.

The fractal dimension df for LNTIP is slightly lower than
RP, LRP, and NTIP. This is likely due to the systematic removal
of bonds making our clusters less space filling and lowering
the fractal dimension. However, the fractal dimension df for
LNTIP is higher than that of bond TIP on a square lattice,
suggesting that the systematic removal of bonds in LNTIP
is less extensive than the removal of bonds in TIP. While
all of the cluster models except TIP have similar chemical
dimensions (≈1.68), the chemical dimension of LNTIP is
significantly lower leading to a higher dmin. This means that
on average the shortest distance between two points along
the cluster is longer for LNTIP than for all other models
considered, except in the case of TIP. In this case, the fractal
dimention dmin for LNTIP is consistent with that of bond
TIP. This is in agreement with the previous results of Porto
et al. [23]. While the differences in fractal dimensions between
LNTIP and the other models considered might make little
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TABLE I. Comparison of three different fractal dimensions for loopless nontrapping invasion percolation (this paper), with random
percolation (RP), loopless random percolation (LRP), site nontrapping invasion percolation (NTIP), bond trapping invasion percolation (TIP)
on a square lattice, and DLA. The relationship between the fractal dimensions is given by Eq. (4).

df dl dmin

LNTIP (this paper) 1.8769 1.54628 1.2138
RP [20] 91/48 ≈ 1.896 1.678 ± 0.005 1.13 ± 0.004
LRP[19] 1.90 ± 0.04 1.68 ± 0.02 1.13 ± 0.03
Site NTIP [4] 1.8959 ± 0.0001 1.6767 ± 0.0006 1.1307 ± 0.0004
Bond TIP (square lattice) [4] 1.822 ± 0.008 1.5001 ± 0.007 1.214 ± 0.002
DLA [22] 1.69 ± 0.24 1.69 ± 0.05 1.0 ± 0.02

difference in practice, LNTIP is significantly different from
the other percolation models considered and is not part of
the same universality class. The hypothesis that LNTIP, RP,
LRP, and NTIP all belong to the same universality class is
based on the assumption that the removal process is local
and thus after a small renormalization, the removed bonds
vanish. The assumption that the removed bonds vanish under
renormalization is not true if the removed bonds are fractal
and thus exist in some sense at all scales as was the case with
loopless percolation [19]. We find that the removed bonds in
our model are fractal with a fractal dimension of ≈1.877 and
thus never vanish after renormalization at any scale.

We argue that our model belongs to a distinct class from
other percolations models; however, we do not claim that
it belongs to a new universality class for the following
reason. Universality in a very general sense is the notion that
many systems have similar properties (scaling exponents, etc.)
despite differences in the details of those systems (lattice type,
etc.). A more restrictive, but very common, requirement for a
universality class is that the different systems possess the same
set of scaling exponents. This definition is derived from the
theory of renormalization where a universality class is associ-
ated with a single fixed point of the renormalization group
and the critical exponents are associated with the relevant
observables of that fixed point. A more complete description of
the relationship between renormalization, critical exponents,
and universality can be found in Ref. [24]. The fact that LNTIP
and TIP share a fractal dimension is evidence that our model
is in fact nonuniversal. TIP has been shown to be nonuniversal
with fractal dimensions that depend on the lattice type [4].
This suggests that our model might depend on the details of
the lattice and thus our model is not universal. While our model
belongs to a distinct class from other percolation models,
more simulations using different lattice types are required to
determine whether that class is universal.

IV. BURSTS

We now turn our attention to “bursts” in our model. A
burst is the breaking of a strong bond with a high strength s

followed by the breaking of a sequence of weak bonds with
small strengths s. We associate “bursts” in our model with
the small seismic events that occur in fracking. Alternative
definitions have been proposed for what constitutes a burst.
Roux and Guyon [9] defined a burst to start when si+1 < si in
the sequence of breaking bonds. The burst sequence continued

until si+n > si , the length of the burst is n. Maslov [7] and
Paczuski et al. [8] utilized this definition. This definition results
in a hierarchy of bursts within bursts. Bursts have also been
observed in more realistic invasion models [25].

In this paper we propose an alternative definition of a
burst that removes the hierarchical structure. Our definition
is illustrated in Fig. 6. A typical sequence of 25 open bond
strengths s is given. This sequence was extracted after a run
of 17 910 open bonds. The plot gives the values of pc − s

with pc = 0.5. We introduce a burst threshold strength sb. For
the example given in Fig. 6 we take sb = 0.49. A burst begins
when an opened bond strength s is smaller than sb and ends
when an opened bond strength is higher than sb. The bursts
associated with the values of s given in Fig. 6 are shown. The
number of opened bonds or filled sites in a burst is mb. For the
example illustrated mb = 4, 1, and 13.

We now turn to the frequency size statistics of bursts. Our
data are aggregated from 1000 realizations with 100 million
time steps each (m = t = 1 × 108) and sb = 0.49995. In Fig. 7
we give the aggregate number of bursts Nb with mass mb. For
1 � mb � 3000 we show the unit data (i.e., mb = 1,2,3, . . . )

0 5 10 15 20 25

m

10−3

10−2

10−1

100

p c
−

s

mb = 4 mb = 1 mb = 13

sb = 0.49

FIG. 6. (Color online) Illustration of our definition of a burst. A
typical sequence of 25 opened bond strengths s is given. The values
of pc − s (pc = 0.5) are shown as a function of time in dashed blue.
We introduce a burst threshold sb = 0.49 (pc − s = 0.01). A burst
begins when an opened bond strength s is smaller than sb and ends
when an opened bond strength is greater than sb. Three bursts with
masses mb = 4, 1, and 13 are illustrated in solid red.

022119-6



LOOPLESS NONTRAPPING INVASION-PERCOLATION . . . PHYSICAL REVIEW E 89, 022119 (2014)

100 101 102 103 104 105 106 107 108

mb

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

107

N
b

Observed data

Data used for fit

Fit

Nb ∼ m−1.534±0.001
b

FIG. 7. (Color online) The dependence of the number of bursts
Nb with mass mb on mb aggregated from 1000 runs with m = 100
million each. For 1 � mb � 200 we have Nb > 10 for all values of
mb, the data are shown as blue dots. For mb > 3000 the observed
data are shown as red crosses. The data are sparse with Nb = 0 and
1 for many values of mB . We bin these data, and the binned data are
shown as blue dots. The solid line is the least squared fit to the blue
data as given in Eq. (5). The error estimate given is the error estimate
of the fit. Because the fit depends on the choice of binning, the error
estimate of the fit does not necessarily represent the uncertainty in
the scaling exponent.

in blue. For mb > 2000 we show these data in red. In this
range the data are sparse and Nb = 0 for many values of mb.
The standard treatment of this type of sparse data is to bin the
available data [26]. Our binned data in this range are shown
in blue. We have an excellent correlation of the blue data with
the noncumulative distribution

Nb ∼ m−1.534±0.001
b (5)

over seven orders of magnitude of cluster area mb.
The cutoff value sb = 0.49995 that we have used is certainly

arbitrary. However, we note that the value of cutoff used is very
close to the critical probability for bond percolation on a square
lattice pc = 0.5. For smaller simulations (m ≈ 1 million), we
have determined the frequency-mass statistics for other cutoff
values in the range 0.45 � sb � 0.498, and we find good
power-law data in all cases with the same slope ≈1.53. For
comparison, the power-law slope in 2D nontrapping invasion
peroclation was found to be ≈1.60 [7], and for the more
realistic invasion model the slope was found to be ≈1.35 [25].
It should be noted that in both cases the definition of a burst is
different from what is presented in this paper.

We find that as simulations become larger and larger, a value
of sb closer and closer to pc = 0.5 has to be used to produce
good power-law data. We have also performed simulations on
a triangular lattice (not given in this paper) and have found
that using a cutoff close to the critical probability of pc =
0.34729 also produces good power-law data. This suggests
a relationship between the bursts and an underlying cluster
structure of traditional percolation. In traditional percolation,
the number of clusters of size ns is related to the size of a

FIG. 8. (Color online) An example of burst structure for a sim-
ulation with mass m = 50 000. The four largest bursts are shown in
color. Smaller bursts and nonburst-occupied sites are shown in black.
The initiation site for the cluster is shown as a star.

cluster s near the critical point by the scaling relation

ns ∼ sτ . (6)

The exponent τ is the Fisher exponent and τ = 187
91 ≈ 2.05 for

traditional 2D percolation [3]. We note the similarity between
Eqs. (5) and (6). Allthough there is a similarity between the
distribution of static clusters in percolation and our bursts, the
different growth procedure clearly leads to a different scaling
exponent.

It has been noted that in finite lattices an effective critical
occupation probability slightly less than the true critical occu-
pation probability is required to obtain the proper critical point
scalings [3]. This suggests a reason why a cutoff just below the
critical occupation probability is required to produce a power-
law burst distribution. In the limit that simulations become
very large, the cutoff required to produce a power-law burst
distribution will become the critical occupation probability for
traditional percolation.

Bursts have spacial structures that resembles traditional
percolation clusters. An example of burst structures is given
in Fig. 8. The four largest bursts in a cluster with mass m =
50 000 are shown in color. The smaller bursts and nonburst
points are shown in black.

Gutenberg-Richter scaling for earthquakes gives a power-
law dependence of the number earthquakes Ne on the rupture
areas greater than Ar [27]:

Ne = CA−b
r , (7)

where b has a universal value near unity. It is important to note
that the data given in Fig. 7 and the scaling given in Eq. (5) are
noncumulative whereas Eq. (7) is cumulative. Maxwell [11]
determined the frequency magnitude scaling of the microseis-
mic events associated with fracking and found that b ≈ 2.
More recent measurements of microseismicity generated
during cold water injection into a geothermal reservoir found
b ≈ 1.4 [28]. The distribution of microseismicity associated
with fracking as given by Maxwell [11] and the observed
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(a) (b)

FIG. 9. (Color online) Illustration of branch ordering statistics
for a simple deterministic cluster. (a) Horton-Strahler definition of
branch ordering. (b) Tokunaga definition of branch ordering taking
account of side branching.

power-law scaling indicates that the bursts statistics of our
idealized invasion percolation model qualitatively represents
the fluid migration in a fracking injection.

V. BRANCHING STATISTICS

The network of fractures generated by a fracking injection
is effective in extracting large quantities of oil and gas. In order
to study the extraction associated with our invasion percolation
model, we now consider the branching statistics of our clusters.

Because the growing bond cluster forms a tree graph
(contains no internal loops), it can be analyzed using the branch
ordering statistics introduced by Horton [29] and Strahler [30]
for river networks. This ordering is illustrated in Fig. 9(a). Tip
branches (bonds) are defined to be first order (i = 1). When
two first-order branches combine, they form a second-order
branch (i = 2), and so forth. The bifurcation ratio Rb is defined
by

Rb = Ni

Ni+1
, (8)

where Ni is the number of branches of order i. The length-order
ratio Rr is defined by

Rr = ri+1

ri

, (9)

where ri is the mean length of branches of order i. For a
self-similar branching cluster the Rb and Rr are constant
independent of i. In this case the fractal dimension of the
cluster is given by

D = ln Rb

ln Rr

. (10)

Many natural phenomena are well approximated by self-
similar branching statistics [27], one example is river networks.

We have obtained the Horton-Strahler branching statistics
for a typical numerical simulation of our invasion percolation
model. The branch-order statistics for a m = 10 million cluster
are given in Fig. 10. This is a n = 11 order cluster and the Ni

0 2 4 6 8 10 12

i

100

101

102

103

104

105

106

r i

10−1

100

101

102

103

104

105

106

107

108

N
i

ri = 1.970 × 2.658i

Ni = 1.246 × 107 × 4.581−i

FIG. 10. (Color online) As blue squares, the mean length ri of
branches of order i is given as a function of i for a cluster of mass
10 million. The blue squares are the data, and the line is the best least
squares fit to a linear correlation; from Eq. (9) we have a length-order
ratio Rr = 2.658. As red triangles, the number Ni of branches of
order i is given as a function of i for a cluster of mass 10 million. The
red triangles are the data and the line is the least squares fit to a linear
correlation; from Eq. (8) we have the branching ratio Rb = 4.581.

are given as a function of i. An excellent correlation with

Ni = 1.246 × 107 × 4.581−i (11)

is found. Thus the bifurcation ratio is nearly constant with a
value Rb = 4.581. The length-order statistics for this cluster
are given in Fig. 10, the mean lengths ri of branches of order
i are given as a function of i. An excellent correlation with

ri = 1.970 × 2.658i (12)

is found. Thus the length-order ratio is nearly constant with
a value Rr = 2.658. Our invasion percolation cluster exhibits
fractal behavior, and the fractal dimension from Eq. (10) is
D = 1.557

An improved branch-ordering classification was introduced
by Tokunaga [31,32]. This ordering takes into account side
branching and is illustrated in Fig. 9(b). A first-order branch
that joins another first-order branch is denoted 1:1, a first-order
branch that joins a second-order branch is denoted 1:2, and
so forth; Nij is the number of branches of order i that join
branches of order j . The total number of branches of order i,
Ni , is related to the Nij by

Ni =
n∑

i=1

Nij , (13)

where n is the branch order of the cluster.

TABLE II. (a) Branch-number matrix and (b) the branching ratio
matrix for the cluster illustrated in Fig. 9(b).

N1:1 = 6 N1:2 = 3 N1:3 = 2 N1 = 11
T1:2 = 1 T1:3 = 2

N2:2 = 2 N2:3 = 1 N2 = 3
T2:3 = 1

N3:3 = 1 N3 = 1
(a) (b)
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TABLE III. Branch-number matrix for a cluster of mass 10 million. Values of Nij are given for this 11th (n = 11) -order network; the
values of Ni are also given.

j = 1 2 3 4 5 6 7 8 9 10 11 Ni

i = 1 1 190 268 767 355 417 458 243 197 139 578 85 601 49 716 24 880 25 414 7441 7287 2 958 195
2 0 257 348 139 793 81 452 47 524 29 333 16 963 8627 8878 2662 2554 595 134
3 0 0 56 716 29 436 17 124 10 799 6253 3178 3296 932 940 128 674
4 0 0 0 12 519 6224 3997 2421 1246 1223 362 366 28 358
5 0 0 0 0 2710 1438 886 428 502 157 138 6259
6 0 0 0 0 0 582 336 172 176 45 44 1355
7 0 0 0 0 0 0 122 60 69 71 23 291
8 0 0 0 0 0 0 0 30 19 7 5 61
9 0 0 0 0 0 0 0 0 6 5 4 15

10 0 0 0 0 0 0 0 0 0 2 1 3
11 0 0 0 0 0 0 0 0 0 0 1 1

The branch numbers Nij constitute a square upper triangular
matrix. The n = 3 branch-number matrix for the cluster
illustrated in Fig. 9(b) is given in Table II(a). The structure
of branching clusters can be further classified in terms of
branching ratios T ij . These are the average number of
branches of order i that join a branch of order j and are
defined by

Tij = Nij

Nj

. (14)

Again the branching ratios define a square, upper triangular
matrix. The branching ratio matrix for the cluster illustrated in
Fig. 9(b) is given in Table II(b). Tokunaga [31,32] defined
a restricted class of self-similar branching networks by
introducing the branching ratio Tk = Ti,i+k and requiring that

Tk = ack−1, (15)

where a and c are constants. The example given in Fig. 9(b)
and Table II(b) satisfies this condition since T1 = 1, T2 = 2,
a = 1, and c = 2. This class of branching networks is known
as Tokunaga networks.

We now give the Tokunaga branching statistics for the mass
m = 10 million cluster considered above. The branch-number
matrix is given in Table III. Values of Nij are given for this
n = 11 network as well as values of Ni . The branching-ratio
matrix is given in Table IV, values of Tij are given. In order to
test whether this is a Tokunaga network we determine mean

values of Tk using the relation

Tk = 1

n − k

n−k∑

j=1

Ti,j+k. (16)

The dependence of the mean branching ratios Tk on k is given in
Fig. 11. An excellent correlation with Eq. (15) is found taking
a = 1.193 and c = 2.642, our invasion percolation cluster is a
Tokunaga network to a good approximation.

As noted previously it has been shown that river drainage
networks are well approximated by Tokunaga branching
statistics. We now compare our branching statistics for the
percolation cluster with branching statistics for two river
networks. Peckham [33] has determined branching statistics
for the Kentucky River basin in Kentucky and the Powder River
basin in Wyoming. Both of these river networks are eighth
order (n = 8). For the Kentucky River basin, the bifurcation
ratio is Rb = 4.6, the length-order ratio is Rr = 2.5, the fractal
dimension is D = 1.67 and the Tokunaga branching constant
is c = 2.5. For the Powder River basin the bifurcation ratio
is Rb = 4.7, the length-order ratio is Rr = 2.4, the fractal
dimension is D = 1.77, and the Tokunaga branching constant
is c = 2.5. For comparison, the values we obtained for our
percolation cluster were Rb = 4.581, Rr = 2.658, D = 1.557,
and c = 2.642. These values are summarized in Table V.
Tokunaga self-similar branching networks are universally
accepted as the extraction mechanism for water in drainage

TABLE IV. Branching-ratio matrix for a cluster of mass 10 million. Values of Tij are for this 11th (n = 11) -order network.

j = 2 3 4 5 6 7 8 9 10 11

i = 1 1.29 3.24 8.58 22.30 63.17 170.85 407.87 1,694.27 2480.33 7287
2 0 1.09 2.87 7.59 21.65 58.29 141.43 591.87 887.33 2554
3 0 0 1.04 2.74 7.97 21.49 52.10 219.73 310.67 940
4 0 0 0 0.99 2.95 8.32 20.43 81.53 120.67 366
5 0 0 0 0 1.06 3.04 7.02 33.47 52.33 138
6 0 0 0 0 0 1.15 2.82 11.73 15.00 44
7 0 0 0 0 0 0 0.98 4.60 5.67 23
8 0 0 0 0 0 0 0 1.27 2.33 5
9 0 0 0 0 0 0 0 0 1.67 4

10 0 0 0 0 0 0 0 0 0 1
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Tk = 1.193 × 2.642k−1

FIG. 11. (Color online) Dependence of the mean branching ra-
tios Tk for a cluster of mass m = 10 million. The blue dots are the
data, and the black line is the fit.

networks. It has been argued that these networks provide
optimum removal of water in landscapes [34]. We argue that
Tokunaga scaling of our invasion percolation network provides
an explanation for the efficient extraction of tight shale oil and
gas in a high-volume fracking injection.

The concept of Tokunaga self-similar side branching
was independently introduced into the physics literature by
Vannimenus and Viennot [35]. Using their approach Ossad-
nik [36] studied the branching statistics of diffusion-limited
aggregation (DLA) clusters. We note that Ossadnik used a
slightly different branch labeling scheme. Average statistics
were obtained for 47 DLA clusters each with 106 particles.
On average the clusters were 11th order (n = 11) fractal
trees. The average bifurcation ratio was Rb = 5.15, and the
average length-order ratio was Rr = 2.86. From Eq. (10) the
corresponding fractal dimension is D = 1.56. An excellent
correlation with Tokunaga network statistics was also found
using Eq. (15) with c = 2.7. These values are compared with
our values given above in Table V. Clearly the branching
statistics for our invasion percolation cluster are quite similar
to the branching statistics of DLA clusters. It is interesting to
note that alternative invasion percolation [37] and DLA [38]

TABLE V. Comparison of branching statistics for our invasion
percolation cluster (this paper), with branching statistics for two river
networks [33], and with branching statistics for DLA clusters [36].
The network order n, branching ration Rb, length-order ratio Rr ,
fractal dimension D, and Tokunaga branching constant c defined in
Eq. (15) are given.

n Rb Rr D c

Invasion percolation (this paper) 11 4.581 2.658 1.557 2.642
Kentucky River Basin [33] 8 4.6 2.5 1.67 2.5
Powder River Basin [33] 8 4.7 2.4 1.77 2.5
DLA [36] 11 5.15 2.86 1.56 2.70

models have been published to explain the Tokunaga statistics
of drainage networks.

VI. DISCUSSION

It should be emphasized that our planar 2D invasion
percolation model does not include many of the known
features of actual reservoirs (three dimensions, anisotropic
nonhomogeneous stress fields, natural fractures, joint sets,
faults, etc.); however, it does provide a simple framework
in which these features can incorporated. We will give just
a few of the ways these features can be incorporated. The
procedure illustrated in Fig. 1 can easily be extended to a
cubic lattice to allow for simulation of three dimensional.
Microseismic activity associated with high-volume fracking
tends to be confined to a horizontal layer, which is attributed
to the vertical stress being the maximum compressive stress.
This anisotropic stress can be built into the random numbers
by choosing random numbers in the range 0 to 1 for the
vertical direction and random numbers in a smaller range,
e.g., 0 to 0.25 for the horizontal direction so that fractures are
four times more likely to propagate in the horizontal direction
than the vertical direction. Additionally, if the local stresses
within the reservoir are known, the random numbers could be
modulated based upon the local stress. Natural fractures, joint
sets and faults can be included by introducing regions with
lower random numbers. In the case of a faults, all the bonds
lying in a plane could have their strength values reduced by a
factor of 10 so that once the growing fracture network reaches
the fault, fracture growth is likely to be confined to the fault
plane. These and other additions will be the subject of future
work.

One of the basic assumptions in most percolation papers
is that the bond strengths are assigned independently so
that the strengths are uncorrelated. However, the granular
permeability of sandstones has been shown to have long-range
correlations [27]. Prakash et al. [39] solved an invasion perco-
lation problem with spatially correlated occupancy variables.
The correlations were obtained using fractional Brownian
motion. These studies showed that scaling exponents depend
on the Hurst exponent of the assumed correlation. Herrmann
and Sahimi [40] studied invasion percolation with radially
dependent occupancy variables.

It is clearly desirable in future studies of invasion perco-
lation associated with fracking to include spatially correlated
bond strengths. However, the applicable correlation laws ap-
plicable to super-fracking are far from clear. The permeability
in tight shales is associated with natural fractures generated
by oil and gas generation. Studies of the statistics of natural
fractures [10] indicate that they are quasiperiodic with spacings
of 0.1 to 1.0 m. The deposition of carbonates in the natural
fractures generates the tight shales subjected to super-fracking.
The spatial correlation of the resistance to opening of the sealed
fractures by high-pressure fluid injection is not established.

Before considering the many possible additions to this
model, we felt it valuable to first characterize the simplest
version of the model. This allowed us to determine that this
model is indeed unique from other percolation models and
determine some of the qualitative aspects of this model that
are relevant for fracking.
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We have shown in Fig. 7 the power-law scaling of the
bursts of cluster growth in our model. We believe this
provides an explanation for the power-law scaling of the
microseismic fractures observed in high-volume fracking.
However, we would expect different power-law exponents due
to the geometrical limitations of our 2D model. The network
of propagating fractures as indicated by microseismicity [11]
certainly resembles our expanding percolating cluster.

We have also quantified the branching statistics of our
evolving percolation cluster. Specifically, we obtain excellent
Tokunaga self-similar scaling as shown in Fig. 11. This scaling
is quantitatively similar to the scaling of river networks.
These networks are recognized as an optimal geometry for
extracting the water from rainfall in a river basin. The
landscape associated with a drainage topography is similar
to the distribution of fracture permeabilities associated with a

tight-shale reservoir. We argue that the Tokunaga scaling of
our invasion percolation network provides an explanation for
the efficient extraction of oil and gas by the fracture network
generated in a high-volume fracking injection.
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