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Zero-range process with finite compartments: Gentile’s statistics and glassiness

Artem Ryabov*

Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2,
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We discuss statics and dynamics of condensation in a zero-range process with compartments of limited sizes.
For the symmetric dynamics the stationary state has a factorized form. For the asymmetric dynamics the steady
state factorizes only for special hopping rules which allow for overjumps of fully occupied compartments. In
the limit of large system size the grand canonical analysis is exact also in a condensed phase, and for a broader
class of hopping rates as compared to the previously studied systems with infinite compartments. The dynamics
of condensation exhibits dynamical self-blocking, which significantly prolongs relaxation times. These general
features are illustrated with a concrete example: an inhomogeneous system with hopping rates that result in
Bose-Einstein-like condensations.
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I. INTRODUCTION

One of the most intriguing abilities of statistical physics is to
explain phase transitions of macroscopic systems starting from
microscopic local dynamical rules. While for systems in ther-
mal equilibrium the equilibrium statistical mechanics provides
a satisfactory insight, for far-from-equilibrium systems we
still lack a unifying theory. Consequently the nonequilibrium
systems must be studied one by one with only a few rare
examples known to be analytically tractable.

One such exception is a zero-range process (ZRP), a
stochastic interacting-particle model defined on a lattice. The
basic feature of ZRP is that the hopping rates of particles
depend only on the departure site. ZRP was introduced
by Spitzer [1] in 1970; however, recently it has attracted
considerable attention of the statistical physics community.
The interest in the model stems from its numerous applications,
e.g., to clustering in shaken granular gases, traffic flow,
condensation on networks, and macroeconomies (for a review
see Refs. [2–4]). From the fundamental viewpoint the model
allows for rigorous study of different types of condensation
transitions including, e.g., the effects of disorder (for a review
see Ref. [5]).

In the present paper we add a new element into the dynamics
of ZRP: we assume that each lattice site (or compartment)
has a finite capacity, i.e., it can hold only a finite number of
particles. The finite site capacity implies that (a) in the limit
of large system size the grand canonical analysis becomes
exact for any density of particles (in contrast to the infinite-
capacity ZRP where the grand-canonical ensemble often fails
to describe the condensed phase [6,7]), (b) we are able to
treat analytically a broader class of hopping rates (than in
the infinite-capacity case), and (c) the dynamics of condensate
growth exhibits a dynamical self-blocking, which significantly
prolongs relaxation times (the entropic effect known from
models of glasses [8–15]).

We proceed as follows. In Sec. II the steady state for the
symmetric dynamics is discussed. Asymmetric jumping rules
for which the steady state has a factorized form are defined in
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Sec. III. Equivalence of ensembles is proved in Sec. IV. As a
particular example, we consider statics and dynamics of ZRP
with the hopping rates that lead to Bose-Einstein condensation
in infinite-capacity ZRP [16,17] in Sec. V.

II. SYMMETRIC DYNAMICS

For simplicity we consider a one-dimensional lattice con-
taining L sites labeled i = 1, . . . ,L, with periodic boundary
conditions, and we assume nearest-neighbor particle hopping.
The number of particles at the site i, ni , is integer, and it is
bounded by

0 � ni � Ci, i = 1, . . . ,L, (1)

where the integer Ci equals the capacity of the ith site. Particle
hopping is symmetric. The rates with which a single particle
leaves the ith site and arrives at the site (i − 1) [WL

i (ni)] or at
the site (i + 1) [WR

i (ni)] are given by

WL
i (ni) = ui(ni) θ (Ci−1 − ni−1), (2)

WR
i (ni) = ui(ni) θ (Ci+1 − ni+1), (3)

where the unit step theta functions prevent the particle from
hopping on the fully occupied site. Probability Pt (n) of finding
the system in a configuration n = (n1, . . . ,nL) satisfies the
master equation

dPt (n)

dt
=

L∑
i=1

θ (ni)
{
WR

i−1(ni−1 + 1)Pt (ni−1,i)

+ WL
i+1(ni+1 + 1)Pt (ni+1,i) − [

WL
i (ni) + WR

i (ni)
]
Pt (n)

}
,

(4)

where the configuration ni−1,i (ni+1,i) is identical to
the configuration n except for the exchange of a sin-
gle particle between the sites (i − 1) and i ((i + 1)
and i), namely, ni−1,i = (. . . ,ni−1 + 1,ni − 1, . . .), ni+1,i =
(. . . ,ni − 1,ni+1 + 1, . . .). The equilibrium solution of the
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master equation (4) is found in the product form

P (n) = 1

ZL,N

L∏
i=1

fi(ni), (5)

where the single-site statistical weights fi(ni) are expressed in
terms of hopping rates:

fi(ni) =
ni∏

n=1

1

ui(n)
, fi(0) = 1. (6)

The normalization ZL,N is computed by summing the product∏L
i=1 fi(ni) over all configurations n compatible with two

constraints: the first is expressed in (1), and the second is the
conservation of the total number of particles N , N = ∑L

i=1 ni .
It is straightforward to verify that, for any site capacities

Ci , i = 1, . . . ,L, the above equilibrium distribution cancels
individually each summand on the right-hand side of the
master equation (4). Symmetry of the dynamics is necessary
for this cancellation. Furthermore, provided that the dynamics
is symmetric, the above equilibrium distribution solves the
stationary master equation on an arbitrary lattice.

III. ASYMMETRIC DYNAMICS

In contrast to the symmetric dynamics studied in Sec. II,
ZRP with asymmetric dynamics (e.g., frequently studied
totally asymmetric case) and with nearest-neighbor particle
hopping does not seem to possess a factorized steady state
when finite site capacities are assumed. However, if we relax
the assumption of the nearest-neighbor hopping, the factorized
steady state can be recovered even for asymmetric dynamics.

In the following we consider the totally asymmetric
dynamics on a one-dimensional lattice of L sites with periodic
boundary conditions. The sites are labeled from left to right.
The number of particles at the site i, ni , is bounded by the
maximum site capacity Ci in accordance with (1). A single
particle departs from the site i with the rate ui(ni), and it
hops to the right. The arrival site is not necessarily the site
number (i + 1); instead it is chosen according to the following
jump-over policy. The arrival site is the closest site to the right
of i that is not fully occupied by particles.

Let λ(i) be the label of the closest site to the left of i that is
not fully occupied by particles (nλ(i) < Cλ(i)). Then the master
equation for the probability that, at the time t , the system is in
the configuration n reads

dPt (n)

dt
=

L∑
i=1

θ (ni) [uλ(i)(nλ(i) + 1)Pt (nλ(i),i) − ui(ni)Pt (n)].

(7)

On the right-hand side of Eq. (7), each summand accounts
for one gain and for one loss term. The gain term is
due to a possible particle jump from a uniquely cho-
sen site λ(i). The jump changes the system configuration
nλ(i),i = (. . . ,nλ(i) + 1, . . . ,ni − 1, . . .) to the configuration
n = (. . . ,nλ(i), . . . ,ni, . . .). The loss term is due to the possible
particle hopping from the site i on a uniquely chosen arrival site

to the right of i.1 The master equation (7) has the above form for
any system configuration n where i �= λ(i) for i = 1, . . . ,L.
If there exists i such that i = λ(i), then we assume that the
ith summand in (7) is identically equal to zero. This ensures
that the arrival site is always different from the departure site
[notice that for i = λ(i) the only site that is not fully occupied
is the ith one].

The factorized form (5) with statistical weights (6) cancels
individually each summand on the right-hand side of the
master equation (7). Hence Eqs. (5) and (6) gives us the
steady state probability distribution also for the present totally
asymmetric model.

IV. GRAND CANONICAL ANALYSIS

In order to derive any quantity of interest using the joint
distribution (5) it is convenient to work within the grand
canonical ensemble (see Refs. [2–4]). That is, instead of the
total number of particles N , N = ∑L

i=1 ni , we fix a fugacity z.
The fugacity determines the particle density ρ = N/L through

ρ(z) = 1

L

L∑
i=1

〈ni〉, (8)

where the average is taken with respect to the grand canonical
probability distribution:

PGC(n) =
L∏

i=1

fi(ni)zni

qi(z)
, qi(z) =

Ci∑
n=0

fi(n)zn. (9)

The canonical and the grand canonical ensembles are equiv-
alent in the thermodynamic limit: L → ∞,N → ∞, ρ fixed.
The equivalence is proved in Sec. IV of Ref. [2]. Since, in
the present case, the grand canonical partition function of
the whole system, Q(z) = ∏L

i=1 qi(z), is a polynomial of a
finite degree (

∑L
i=1 Ci), the saddle point approximation [2] is

valid for any particle density ρ, ρ ∈ (0,
∑L

i=1 Ci/L), and for
arbitrary hopping rates ui(n).

An important consequence emerges: If the hopping rates
are such that the system can exist in different phases, then (in
the limit of large system size, and provided that all Ci are finite)
the equivalence of ensembles holds in all phases. Hence the
finite site capacities regularize the grand canonical ensemble
which otherwise frequently fails to describe the condensed
phase in infinite-capacity ZRP.

V. EXAMPLE

A. Statics

As the simplest nontrivial example let us now study the
steady state of the inhomogeneous system corresponding to

1The fact that the both sites are uniquely defined for any i ensures
that the detailed balance holds. In order to extend the present
asymmetric model to a more general lattice we would have to define
a proper jump-over policy on the corresponding graph.
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hopping rates

ui(n) =
{

u(n), for i ∈ [1,L1],

1, for i ∈ [L1 + 1,L].
(10)

We assume that the capacities of all sites are equal to C. The
particle-dependent rate u(n) equals u, for n ∈ [1,M], and it
equals q, for n ∈ [M + 1,C]. Further we always assume that
q < 1, u < 1. In other words, the lattice (the ring) consists of
two homogeneous domains: “the slow domain” [sites labeled
by i = 1, . . . ,L1 with the particle hopping rate u(n), u(n) < 1]
and “the fast domain” (sites i = L1 + 1, . . . ,L, the hopping
rate equals 1). In all illustrations we take L1/L = 1/4.

Interestingly enough, in the infinite-capacity ZRP, the
hopping rates (10) lead to the phase transition analogous to
Bose-Einstein condensation of an ideal Bose gas [2,3,16–19].
The formal equivalence with the grand canonical equilibrium
quantum statistics is achieved by setting z/ui(n) = e−β(ε(i)−μ).
For a finite C [and for the hopping rates (10)] this substitution
maps the probabilities (9) onto the equilibrium grand canonical
distribution for particles obeying intermediate statistics, which
was introduced by Gentile in 1940 [20]. The intermediate
statistics interpolates between the Fermi-Dirac (C = 1) and
the Bose-Einstein (C = ∞) cases (see also Refs. [21] for
an overview, [22,23] for criticism, [24] for occurrence in
urn models, and [25,26] for thermodynamic properties of
“paragas”).

For the hopping rates (10), the density of particles ρ and
the fugacity z are related through

ρ(z) =
(

L1

L

)∑M
n=0 n

(
z
u

)n + (
q

u

)M ∑C
n=M+1 n

(
z
q

)n

∑M
n=0

(
z
u

)n + (
q

u

)M ∑C
n=M+1

(
z
q

)n

+
(

1 − L1

L

)∑C
n=0 nzn∑C
n=0 zn

. (11)

Relation (11) is shown in Fig. 1. Depending on the value of
q/u, we distinguish three qualitatively different scenarios.

When q > u we observe three continuous transitions
between plateaus of ρ(z)/C, which sharpen as C is increased.
The first transition occurs (approximately) at zc1 = u. The
height of the transition on the ρ(z)/C axis is proportional
to the ratio (L1M)/(CL). As the fugacity increases through
zc1 = u, the condensate forms on all sites of the slow domain,
and, at the same time, the mean occupancy of the fast domain
saturates (see Fig. 2). The second transition takes place around
zc2 = q [its height is proportional to (L1/L)(1 − M/C)]. After
this transition the mean occupation of the fast domain slightly
increases [Fig. 2(d)] while the condensate still growths on slow
sites. Further increase of z through zc3 = 1 forces particles to
fill up also the fast domain, whereas the average occupation of
the slow sites saturates. All three transitions are of the same
type as the Bose-Einstein condensation in the infinite-capacity
ZRP. The transitions at zc1, zc2 correspond ot the Bose-Einstein
condensation of particles on the slow sites. Around zc3 = 1,
we observe the condensation of vacancies at fast sites. Notice
that the dynamics of vacancies is dual to that of the particles
in the sense that the hopping rate of a vacancy depends on the
occupation of the arrival site. The model with such hopping
rules (dual to ZRP) and with infinite capacities of sites was
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FIG. 1. (Color online) The scaled density of particles versus the
fugacity z as obtained from Eq. (11) for u = 0.3, C = 200, M = 60,
L1/L = 1/4 and for three different values of q: q = u/2 (the dashed
line), q = u (the dot-dashed line), and q = 2u (the solid line).

studied in Ref. [27]. See also Ref. [28] where, similarly to the
present case (but in a different model), an extensive number of
microscopic condensates was observed.

The second scenario, when q = u, is marginal (the dot-
dashed line in Figs. 1–3). It can be understood as q → u

limit of the above case. Now only two continuous transitions
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FIG. 2. (Color online) The scaled mean occupancies of a slow
site, 〈ns〉/C [(a), (b)], and the scaled mean occupancies of a fast
site 〈nf 〉/C [(c), (d)] as the functions of the particle density for
u = 0.3, C = 200, M = 60, L1/L = 1/4 and for three different
values of q: q = u/2 (the dashed line), q = u (the dot-dashed line),
q = 2u (the solid line). Panels (b) and (d) show enlargements of
regions near phase transitions. In panels (a) and (c) all three curves
nearly coincide. Averages are calculated analytically using the grand
canonical distribution. The fugacity-density relation, z = z(ρ), is
obtained by a numerical inversion of (11).
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FIG. 3. (Color online) Scaled variances of the occupation num-
ber of a single slow site (a) and of a single fast site (b) vs the scaled
particle density for u = 0.3, C = 200, M = 60, L1/L = 1/4, and
for three different values of q: q = u/2 (the dashed line), q = u (the
dot-dashed line), q = 2u (the solid line). In panel (b) all three curves
coincide. The averages are calculated as described in the caption of
Fig. 2.

occur when the fugacity increases through the values u, 1,
respectively.

When q < u, a qualitatively different phase transition
occurs at zc2 = q. The phase transition becomes discontinuous
in the limit of both large C and large M , M/C fixed. In this
limit the transition corresponds to the spontaneous breaking
of translation symmetry within the slow domain. This is also
illustrated by relatively strong fluctuations of ns depicted in
Fig. 3(a). The number of single-site condensates formed on the
slow domain increases as we increase the fugacity within the
interval z ∈ (q,1). For z > 1, the average occupation of each
slow site is very close to C [see the dashed line in Fig. 2(b)].
On the other hand, when C is large but M is small, M ∼ O(1),
the transition at zc2 = q remains continuous in C → ∞ limit.

Strictly speaking, sharp phase transitions occur only in
C → ∞ limit. This limit, however, should be understood as
follows. The site capacities C can be made arbitrarily large
but not infinite. Otherwise, i.e., by taking the C → ∞ limit in
Eq. (11), we would never reach the phases corresponding to
values of z larger than min(q,u). This stems from the fact that
the C → ∞ limit of the right-hand side of Eq. (11) is finite
only for 0 < z < min(q,u).

B. Dynamical self-blocking during condensate growth

The hard constraints (1) on capacities of individual sites
lead to a kinetic jamming during the nonequilibrium con-
densate growth. Let us now illustrate this phenomenon for
symmetric particle hopping with rates (10) and for the case
q < u < 1 (for previous studies of the dynamics of ZRP see,
e.g., Refs. [29–33]).

At the initial time, t = 0, the lattice is half-filled by the
particles with N0 = 50 being the initial number of particles at
any site (C = 100). We are interested in the evolution of the
mean condensate size, Ncond(t), defined as the average total
number of particles located on the slow sites:

Ncond(t) =
L1∑
i=1

〈ni(t)〉. (12)

The function Ncond(t) obtained from kinetic Monte Carlo
simulations is shown in Fig. 4.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

t

N
co

nd
(t

)−
L

1N
0

simulation
2(1 − u)t
D t +B

0 300 600 900 1200 1500

50

100

150

t

N
co

nd
(t

)−
L

1N
0

simulation
2(1 − u)t
vt + A

FIG. 4. (Color online) Growth of the mean condensate size for
C = 100, M = 99, L1 = 20, L = 80, N0 = 50, u = 0.3, q = u/10.
The fitting parameters are D ≈ 3.12, B ≈ 47.52, v ≈ 0.05, A ≈
95.58. Numerical data are averaged over 1000 Monte Carlo runs.

The condensate growth starts at the boundary sites and
proceeds inwards the slow domain. At small times, primarily
the particles initially located at the boundary sites of the fast
domain contribute to the condensate growth. On average, (1 −
u) particles hops from the site L to the site 1 per unit time,
the same holds true for the sites L1 + 1 and L1, and hence we
observe the linear growth:

Ncond(t) ≈ N0L1 + 2(1 − u)t. (13)

A typical system configuration within this regime is shown in
Fig. 5(a). When the boundary sites of the slow domain are fully
occupied, the condensate growth considerably slows down. On
intermediate time scales the simulated time dependence can
be fitted by the linear formula

Ncond(t) ≈ N0L1 + A + vt, (14)

with v 
 2(1 − u) (cf. the lower panel in Fig. 4 and the
plateau-like part in the upper panel). Within this regime the
slow domain is separated from the fast domain by single-site
condensates formed at the boundary sites [Fig. 5(b)]. As the
particles leak through theses blockages, additional “layers”
of condensate grow on the boundaries of the slow domain
[Fig. 5(c)], which eventually yields the slower diffusion-
limited growth:

Ncond(t) ≈ N0L1 + B + D
√

t . (15)

In this regime, the vacancies diffuse out of the slow domain
and the particles join the condensate by the diffusion from the
inner sites of the fast domain. After that the condensate size
saturates at its equilibrium value and the equilibration of the
fast domain follows Fig. 5(d)].

When q � u, the observed dynamical self-blocking is
suppressed, the intermediate regime (14) is no longer observed,
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FIG. 5. (Color online) Typical system configurations within four
dynamical regimes (a) t = 55, (b) t = 400, (c) t = 2 × 104, (d) t =
105, for C = 100, M = 99, L1 = 20, L = 80, N0 = 50, u = 0.3, q =
u/10. The red dashed line shows initial homogeneous distribution of
particles.

and the relaxation time is much shorter (not shown). On the
other hand, if we decrease M (for a given q, q < u), the
self-blocking becomes more pronounced.

VI. CONCLUDING REMARKS

Let us now summarize the main points in which the
present paper goes beyond the previous studies. As for the

steady state, (a) we have shown that ZRP with finite site
capacities has factorized steady state provided the symmetric
particle hopping is assumed. For asymmetric dynamics the
steady state factorizes if we relax the assumption of the
nearest neighbor particle hopping and we allow the particles
to overjump jammed sites. (b) For finite site capacities, in
the limit of large system size the equivalence of ensembles
holds in all phases. Thus finite site capacities regularize the
grand canonical ensemble, which, frequently fails to describe
the condensed phase in infinite-capacity ZRP. (c) On the
particular model [hopping rates (10)] we have demonstrated
that the system with arbitrary large but finite site capacities
possesses a richer phase structure than its counterpart with
a priori infinite capacities of sites. As for the dynamics of
condensation, the finite site capacities lead to a dynamical
self-blocking during the condensate growth. Detailed analysis
of individual dynamical regimes for the model with rates (10)
is given. All these findings suggest several courses of action.
In particular it would be interesting to study physical effects
induced by the finite site capacities in the realm of more general
transport models with factorized steady states [3,34–36].
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