
PHYSICAL REVIEW E 89, 022113 (2014)
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We systematically test and compare different reinforcement learning schemes in a complementarity game
[J. Jost and W. Li, Physica A 345, 245 (2005)] played between members of two populations. More precisely,
we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of
Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare
these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue
of quick adaptation as opposed to systematic exploration or the role of learning rates.
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I. INTRODUCTION

Reinforcement learning is a well-established and rather
ubiquitous learning scheme. Its aim is to select and reinforce
those actions that lead to high rewards and to avoid the others.
It is especially powerful in solving problems in the fields of
robotics, optimal control, and artificial intelligence. Unlike
standard supervised learning [1], reinforcement learning is
a goal-directed learning scheme. It depends on the agent’s
interaction with the environment, including other agents [2].
In reinforcement learning, learners are not told in advance
which action to choose but rather have to try to maximize
their rewards (mostly delayed and stochastic) by trial-and-
error or more elaborate learning schemes. Reinforcement
learning features on-line performance, which involves finding
a good balance between exploration and exploitation. There are
basically two problems in reinforcement learning, a statistical
problem and a decision problem. The statistical problem is con-
cerned with modeling the environment. The decision problem
is about converting the reward expectation into an action.

Since its inception, many different schemes have been
introduced in order to implement the idea of reinforcement
learning. In the setting that we are going to model, players can
choose among several strategies, labeled k. As a normalization,
at time t = 0, none of the players has any experience, and
each player n has nonzero propensity Qnk(0) to play the k-th
strategy. A reinforcement learning rule then prescribes how
a player should update his or her propensity in subsequent
rounds depending on the reward his or her actions yielded
in previous rounds. One of the most successful versions of
reinforcement learning is Roth and Erev learning (RE) [3],
which goes as follows: If at time t player n plays strategy k and
gets a payoff Rnk(t), then the propensity to play k is updated
to be Qnk(t + 1) = Qnk(t) + Rnk(t). For all other strategies i,
Qni(t + 1) = Qni(t). So the probability Pnk(t + 1) for player
n to play strategy k at time t + 1 is

Pnk(t + 1) = Qnk(t + 1)/
∑
i∈S

Qni(t + 1), (1)

where the sum is taken over all strategies in the set S that are
available to player n. So strategies which have proved to be
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more successful tend to be played with greater frequency than
those which have been less successful. In RE, the learning can
be fast initially but then it slows down. In this simple model
the players are not allowed to observe the full strategies of
other players or to make calculations based on other players’
payoffs. So it can be applied to the kinds of game in which
players only observe one another’s choices. In addition to
the basic model, there were some modifications [4] which
allow one to introduce some additional parameters. The first
parameter is a “cutoff” parameter which prevents events with
negligibly small probabilities from influencing the outcome.
The second parameter prevents the probability of a strategy
from approaching zero if it is in the vicinity of a successful
strategy. The third parameter prevents the sum of any player’s
propensities from going to infinity. All three parameters are
usually given quite small values.

Bush and Mosteller (BM) [5] introduced a rather different
version of reinforcement learning in which the past payoffs
are completely forgotten. What is relevant is the payoff
immediately prior to the current action and not the payoffs
of all earlier periods. In BM reinforcement, the probability of
choosing a rewarded act is incremented by adding some frac-
tion, the product of the reward and some learning parameter r

(0 � r � 1), of the distance between the original probability
and 1. Whereas the alternative actions’ probabilities are
decremented correspondingly so the sum of all probabilities
is always 1. Hence, at time t + 1 the probability of player
n choosing action k, and the sum of probabilities of him
choosing actions other than k are given, respectively, by

Pnk(t + 1) = Pnk(t) + [1 − Pnk(t)]rnk(t)r (2)

and

Pni(t + 1) = Pni(t)[1 − rnk(t)r],i �= k, (3)

where the sum is taken over all actions other than k, and rnk(t)
is the rescaled value of the actual reward Rnk(t) of choosing
action k for player n at time t . If Rmax is the maximum reward of
all possible actions, then rnk(t) = Rnk(t)/Rmax. If the learning
parameter r is small, then the learning is slow, and if it is large,
then the learning is fast. Hence, in BM, the learning never slows
down, unless one changes the value of r during the process.

Another well-known reinforcement learning scheme is
the so-called SoftMax (SM) reinforcement in which the
probabilities for players to choose certain actions are taken
from a Gibbs-Boltzmann distribution [2]. Thus, the probability
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of player n for action k at time t is

Pnk(t) = eλAn
k (t)∑

i∈S eλAn
i (t)

, (4)

where S is the set of all strategies available to the player
and An

k (t) is the expected value, or propensity, for player n

to choose k ∈ S at time t . If the “inverse temperature” (in
the jargon of statistical physics) λ is infinite, we get greedy
learning, in which only the action with the highest propensity
is taken. This is called exploitation. If λ is zero then all actions
have equal probability, which is then termed exploration. The
key then is to find a value of λ that achieves a reasonable
trade-off between exploitation and exploration.

Reinforcement learning has been extensively studied in
dealing with various tasks, both simple and complex. For
instance, Trevisan et al. [6] studied the dynamics of learning
in coupled oscillators with delayed reinforcement. Xie et al.
[7] used reinforcement of irregular spiking of neurons to study
the learning in neural networks. Potapov et al. [8] investigated
the convergence rate of reinforcement learning algorithms and
found that the choices of parameters such as learning steps,
discount rate, and exploration degree may drastically influence
the convergence of the techniques of reinforcement learning.
Yuzuru et al. [9] used a group of reinforcement-learning
agents to derive coupled replicator equations that describe the
dynamics of collective learning in multiagent systems. More
literature regarding the use of reinforcement learning can be
found in Refs. [10–14].

The purpose of the present paper is to compare different
reinforcement learning schemes in a dynamic setting in which
also other players are learning and thereby continually shifting
the payoffs of each player. Therefore, learning players need to
adapt to the results of the learning of others. We shall utilize the
complementarity game introduced in Ref. [15] so each player
on one hand plays against other players from an opposing
population and on the other hand has its payoffs compared with
other players from his or her own population. Members of both
populations may learn, by reinforcement or other schemes,
and by equipping the two opposing populations with different
schemes, we can then systematically compare which scheme
performs better. We can also compare individual learning with
evolutionary schemes where only the population as a whole
learns across generations because its members reproduce based
on their accumulated payoffs.

II. A ROTH-EREV TYPE SCHEME

Let us introduce our game. We have two populations simply
called buyers and sellers. At each round, a buyer i is randomly
paired to a seller j . The seller asks an amount kj , and the buyer
offers ki , with both (integer-valued) bids ranging between 0
and some large integer K . If ki is larger than, or at least equal
to, kj , then a deal concludes and the buyer wins K − ki , and
the seller kj . Otherwise, the interaction fails and both gain
nothing. Thus, the buyer is interested in making the offer as
small as possible so the deal is just concluded but not smaller.
The seller faces the reverse situation. Therefore, both players
wish to drive as hard a bargain as possible, but if they push
too hard, then the transaction will fail and both lose. Any
value between 0 and K is a Nash equilibrium for the mutual

offers. At K/2, the situation is symmetric in the sense that
both players receive the same payoff. When players can learn
from their experience in previous rounds and adapt, the actions
should converge to some equilibrium value. As an alternative to
individual learning or in addition to such learning, we can also
insert this game into an evolutionary framework. The fitness
of players is then measured by their accumulated payoffs over
a fixed number of rounds and the players reproduce according
to their fitness to generate the next generation. Again, the
game then can be expected to settle at some Nash equilibrium,
and as long as the setting is kept symmetric between the two
populations, that equilibrium value should be around K/2. The
speed of convergence towards that equilibrium will naturally
depend on the strategies available to the players, in particular
how and to what degree they are allowed to learn or coordinate.
Our key point then is to break the intrinsic symmetry between
the two populations by giving them different strategic options.
We can then see which type of strategy is better in the sense
that it leads to a more favorable equilibrium value for the
corresponding population. If that value is larger than K/2, then
the sellers do better, otherwise it is the buyers who do better.
In general, we find that simpler and more flexible strategies
lead to superior results at the population level because they can
process the information in a more efficient way, which speeds
up the convergence rate [16].

We shall now utilize this method to compare different
reinforcement learning schemes. The two populations each
have N players. Choosing any integer k ∈ {0,1,2, . . . ,K}
is called an action k. Besides standard Roth-Erev, Bush-
Mosteller, and SoftMax reinforcement learning, we shall
also evaluate a modified Roth-Erev scheme. In this modified
Roth-Erev-type learning, the propensity of player n to choose
action k at time t + 1 is of the form

Qnk(t + 1) = Qnk(0) + Snk(t),t � 1, (5)

where Qnk(0) is the initial propensity of player n to choose
action k and Snk(t) is the sum of rescaled payoffs, proportional
to the cumulated payoff Tnk(t) she (he) has received from
the periods up to time t in which she (he) has chosen action
k. In the most basic case Qnk(0) is the same for all actions.
The order of magnitude of Qnk(0), however, has to be set
carefully as this will have a long-term effect on the learning
process. The key issue here is the formula for Snk(t) as this
will determine the speed of learning. In RE reinforcement,
Snk(t) = Tnk(t) = Ank(t)Cnk(t), where Ank(t) and Cnk(t) are
the average payoff and the number of times that player n

chooses action k in the periods up to time t , respectively. For
our purposes, we adopt the more general definition

Snk(t) =
Cnk(t)∑
t ′=1

[Rnk(t ′)]τ , (6)

where Rnk(t ′) is the payoff to player n for choosing action k

at time step t ′ (0 � t ′ � t) and τ is some non-negative real
number. The probability Pnk(t + 1) for player n to choose k in
the new scheme then is

Pnk(t + 1) =
∑Cnk(t)

t ′=1 [Rnk(t ′)]τ∑K
i=0

∑Cni (t)
t ′=1 [Rni(t ′)]τ

. (7)
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FIG. 1. (Color online) The comparison of convergence curves for power-formed Roth-Erev reinforcement learning with different exponents.
Here the exponent τ takes 1.0, 1.2, 1.5, 1.8, and 2.0, respectively. τ = 1.5 curve does not converge in the fastest way until nearly after 300
generations. Here one generation consist of 1000 time steps. (a) τ = 1.5 vs τ = 1.0; (b) τ = 1.5 vs τ = 1.2; (c) τ = 1.5 vs τ = 1.8; (d) τ = 1.5
vs τ = 2.0.

If τ = 1, then Snk(t) = ∑Cnk(t)
t ′=1 Rnk(t ′) = Ank(t)Cnk(t), and the

standard RE scheme is restored.
The order of magnitude of τ determines the learning speed.

If τ = 0, then the players are always exploring; if τ = ∞, then
a sole action will be taken. Here, we wish to find the optimal
value of τ for our game. One way of determining the exact
value of the optimal τ is by comparing the convergence of
different power-formed RE learning. Namely all the members
of the two populations will choose the same power-formed RE
learning strategy, i.e., the one with the same given τ . Then
the difference of the offers between buyers and sellers will be
tracked. As known, in equilibrium, the difference is zero under
symmetric situations. Hence, by varying the value of τ , one
could obtain different curves of convergence towards equilib-
rium. As shown in Fig. 1, the τ = 1.5 RE is not the best in
the beginning stage. But after nearly 300 generations (here one
generation consists of 1000 rounds of interactions), it becomes
the best by beating the rest four RE’s with τ either above or
below 1.5. Extensive simulations also indicate an optimal value
of τ = 1.5, which, in fact, agrees with the finding in Ref. [4].
This observation also tells us clearly that the convergence
speed shall not be too fast or too slow. A moderate convergence
rate is more suitable in most cases. From now on we call this
new reinforcement scheme NRE and fix the value of τ at 1.5
in the following simulations without further mention.

III. EQUATIONS FOR REINFORCEMENT LEARNING

A. Roth-Erev reinforcement learning

We first consider the RE reinforcement learning in our
model. The technique can be readily applied to new Roth-Erev

(NRE) and SoftMax (SM) learning schemes. Assume that both
buyers and sellers can choose offers between 0 to K (arbitrarily
large integer). At any given time step t , a buyer who chooses
action i, namely offering i (0 � i � K), meets a seller who
chooses action j (0 � j � K), namely asking for j . If i � j ,
then the payoff is K − i for the buyer and j for the seller.
Otherwise both receive 0 as payoffs. Denote Bi(t) and Sj (t)
the cumulated reinforcements to the actions of i and j for
buyers and sellers at time t , respectively. Here Bi(t) and Sj (t)
are defined analogously to Tnk(t) in the previous section. The
probability that action i (j ) is chosen for buyer (seller) is
simply

Pb,i(t + 1) = Bi(t)

B(t)
,i = 0,1, . . . ,K, (8)

Ps,j (t + 1) = Si(t)

S(t)
,j = 0,1, . . . ,K, (9)

where B(t) = ∑K
i=0 Bi(t) and S(t) = ∑K

j=0 Sj (t), respec-
tively. To avoid the nonzero denominator, both Bi(0) and Sj (0)
are taken to be positive for all i’s and j ’s.

We now focus attention on the long-run behavior of
average reinforcements. Consider the time averages of the
reinforcements for both buyers and sellers. Namely

bi(t) = Bi(t)

t
,i = 0,1, . . . ,K, (10)

sj (t) = Sj (t)

t
,j = 0,1, . . . ,K. (11)

We also have b(t) = ∑K
i=0 bi(t) and s(t) = ∑K

j=0 sj (t).
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It has been proven [17] that the mean-field version of
Roth-Erev learning is similar to Maynard Smith’s replicator
dynamics [18]. Imitating the replicator dynamics [18], one
can write down the following equations for RE reinforcement
learning in our model,

dPb,i(t)

dt
= Pb,i(t)[Eb,i(t) − Eb(t)]

b(t)
,i = 0,1, . . . ,K, (12)

dPs,j (t)

dt
= Ps,j (t)[Es,j (t) − Es(t)]

s(t)
,j = 0,1, . . . ,K, (13)

where Eb,i(t) = (K − i)
∑i

j ′=0 Ps,j ′ (t) and Es,j (t) =
j

∑K
i ′=j Pb,i ′ (t) are expected payoffs to buyer action i

and seller action j at time t , respectively. Furthermore,
Eb(t) = ∑K

i=0 Pb,i(t)Eb,i(t) and Es(t) = ∑K
j=0 Ps,j (t)Es,j (t)

are expected payoffs of buyers and sellers at time t ,
respectively. The terms b(t) and s(t) here are no longer
constants as in Maynard Smith’s replicator dynamics in
which reinforcements are always equal to current payoffs.
In RE learning, the reinforcements approach current payoffs
in a steady way. Therefore, it is reasonable to assume that
in the continuous limit the change rate of reinforcements
with respect to time is only related to the difference between
reinforcements and current payoffs. That is,

db(t)

dt
= cb[Eb(t) − b(t)], (14)

ds(t)

dt
= cs[Es(t) − s(t)], (15)

where cb and cs are constants independent of time. Combin-
ing Pb,i(t) = bi(t)/b(t) and Ps,j (t) = sj (t)/s(t), as well as
Eqs. (12), (13), (14), and (15), we obtain cb = cs = 1 and

dbi(t)

dt
= −bi(t) + Pb,i(t)Eb,i(t),i = 0,1, . . . ,K, (16)

dsj (t)

dt
= −sj (t) + Ps,j (t)Es,j (t),j = 0,1, . . . ,K. (17)

Since K is relatively large, we shall utilize a continuum ap-
proximation. Thus, the offers now vary continuously between
0 and 1 (by rescaling from [0,K] to the unit interval [0,1]).
The set of equations for RE learning now can be approximated
as, after some simple algebra,

Ṗb,i(t) = Pb,i(t)

b(t)

[ ∫ 1

0
i ′Pb,i ′ (t)di ′

∫ i ′

0
Ps,j (t)dj

− i

∫ i

0
Ps,j (t)dj

]
,i ∈ [0,1],

ḃ(t) = −b(t) +
∫ 1

0
(1 − i)Pb,i(t)di

∫ i

0
Ps,j (t)dj,

Ṗs,j (t) = Ps,j (t)

s(t)

[
j

∫ 1

j

Pb,i(t)di −
∫ 1

0
j ′Ps,j ′ (t)dj ′

×
∫ 1

j ′
Pb,i(t)di

]
,j ∈ [0,1],

ṡ(t) = −s(t) +
∫ 1

0
jPs,j (t)dj

∫ 1

j

Pb,i(t)di. (18)

Now we consider a special case in which the buyers
always offer m (0 � m � K), namely Pb,i(t) = δ(i − m),i =
0,1, . . . ,K . We want to see how the sellers will respond. The
equations for the seller choice probability are now

Ṗs,j (t) = −Ps,j (t)

s(t)

m∑
j=0

Ps,j ′ (t)j ′dj ′,m < j � K, (19)

Ṗs,j (t) = Ps,j (t)

s(t)

[
j −

m∑
j=0

Ps,j ′ (t)j ′dj ′
]
,0 � j � m. (20)

Equation (19) tells that the probability for the sellers to ask
for higher than m tends to decrease, which is very natural
as buyers are all offering m. Denote m′ = ∑m

0 Ps,j (t)jdj .
The maximum value of m′ is m, which is achieved when
Ps,j = δ(j − m). This is exactly the solution of the stability
condition of Eq. (20), namely Ṗs,j (t) = 0,0 � j � m. Hence,
at the equilibrium, the sellers all have to only ask for m.

B. Other reinforcement learning schemes

The equations for NRE reinforcement learning schemes are
nearly the same as those for RE reinforcement learning, except
for the forms of Eb,i(t), Es,j (t), Eb(t), and Es(t). In NRE, the
reinforcements gained at each round are no longer directly
payoffs but some functions of the payoffs. Therefore, Eb,i(t)
and Es,j (t) no longer represent expected payoffs but expected
reinforcements instead for buyers and sellers, respectively.
Hence for NRE, we have

Eb,i(t) = (K − i)τ
i∑

j ′=0

Ps,j ′ (t),i = 0,1, . . . ,K, (21)

Es,j (t) = j τ

K∑
i ′=j

Pb,i ′ (t),j = 0,1, . . . ,K, (22)

where τ (τ > 0) is the exponent of the power form of NRE
reinforcement learning. Of course, the form of Eb(t) (Es(t))
changes according to Eb,i(t) (Es,j (t)).

For SM reinforcement learning, Eqs. (14) and (15) remain,
but Eqs. (12) and (13) need to be revised based on the
nature of SM learning scheme. In SM, the evolution of choice
probability distributions can be written as

Ṗb,i(t) = λ(Ėb,i(t) − ÊB(t))Pb,i(t),i = 0,1, . . . ,K, (23)

Ṗs,j (t) = λ(Ės,j (t) − ÊS(t))Ps,j (t),j = 0,1, . . . ,K, (24)

where ÊB(t) =
∑K

i=0 Ėb,i (t)e
λEb,i (t)∑K

i=0 eλEb,i (t) and ÊS(t) =
∑K

i=0 Ės,j (t)eλEs,j (t)∑K
j=0 e

λEs,j (t) .

Here λ is the parameter for SM, which has been given when
SM was first introduced.

BM reinforcement learning cannot be placed into the above
framework. It has been pointed out [19], however, that the
mean-field version of BM is also a replicator dynamics.
We define �Pb,i(t) = Pb,i(t + 1) − Pb,i(t) and �Ps,j (t) =
Ps,j (t + 1) − Ps,j (t). If both buyers and sellers use BM, the
movement of state can be learned by studying the expectations
of �Pb,i(t) and �Ps,j (t) conditional on the action probability
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FIG. 2. (Color online) Numerical solutions of differential equations for reinforcement learning comparison. (a) Roth-Erev (RE) vs new
Roth-Erev (NRE); (b) new Roth-Erev vs Bush-Mosteller (BM); (c) new Roth-Erev vs SoftMax (SM); (d) success rate for the case in (a).

distributions at time t , say, P (t). Therefore, we have

E(�Pb,i(t)|P (t)) = Pb,i(t)[Eb,i(t) − Eb(t)]r/K,

i = 0,1, . . . ,K, (25)

E(�Ps,j (t)|P (t)) = Ps,j (t)[Es,j (t) − Es(t)]r/K,

j = 0,1, . . . ,K, (26)

where r (0 < r < 1) is the learning rate, and E(�Pb,i(t)|P (t))
and E(�Ps,j (t)|P (t)) are expectations of of �Pb,i(t) and
�Ps,j (t) conditional on P (t), respectively.

C. Numerical study of equations for reinforcement learning

For certain two-player game like the one in our model, the
differential equations for reinforcement learning are strongly
coupled, and, hence, no explicit solutions are available.
Therefore we study those equations numerically. To compare
the numerical results to the Monte Carlo simulations presented
afterward, we need to introduce some quantities. Those
are average successful offer (denoted by OAS) and success
rate (denoted by RS), whose definitions have been given in
Ref. [15]. Of course, all the quantities at time t are expectations
conditional on the probability distributions P (t). We have

RS(t) =
K∑

i=0

Pb,i(t)
i∑

j=0

Ps,j (t) (27)

or, equivalently,

RS(t) =
K∑

j=0

Ps,j (t)
K∑

i=j

Pb,i(t). (28)

For the buyer,

OAS(t) =
∑K

i=0 iPb,i(t)
∑i

j=0 Ps,j (t)∑K
i=0 Pb,i(t)

∑i
j=0 Ps,j (t)

, (29)

and for the seller,

OAS(t) =
∑K

j=0 jPs,j (t)
∑K

i=j Pb,i(t)∑K
i=0 Ps,j (t)

∑K
i=j Pb,i(t)

. (30)

As we can see from Eqs. (29) and (30), the overall performance
of a population is determined not only by its own players but
also by the players of the opposite population. After these
preparations, we can then compare NRE to the other learning
schemes. The numerical results are shown in Fig. 2. Here
K = 20. We see that NRE beats RE and the equilibrium is 9
(11). NRE defeats BM by setting the equilibrium at 7 (13).
NRE is also much better than SM by setting the equilibrium
at 6 (14). In the next section, we will see that these numerical
studies conform to the simulations by evolutionary updates. In
contrast to the evolutionary updates which are subject to noise,
the numerical solutions are exact within the error bounds of
the numerical scheme employed. Nevertheless, if we want, we
can also perturb the differential equations by noise. This will
be investigated in more detail elsewhere.

IV. SIMULATIONS

A. Reinforcement versus reinforcement learning

We first compare the efficiency of the four different
reinforcement learning schemes in our game, i.e., RE, BM,
SM, and NRE, at the population level. We simply equip the
members of one population with one learning strategy and the
members of the opposite one with another strategy and check
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FIG. 3. (Color online) The time-varying success rates for the four
different reinforcement learning schemes: RE, BM, SM, and NRE.
The parameters are as follows: RE: initial inclination, 12, forgetting
rate, 0.01; BM: learning rate, 0.0005; SM: λ = 3.5; NRE: initial
inclination, 50, power exponent, 1.5, forgetting rate, 0.01.

for which the equilibrium value eventually reached is more
favorable. Analogously, we can also equip both populations
with the same type of strategy, but with different parameter
values, in order to find the optimal value of that parameter.
In order to see the basic picture, with issues like speed of
convergence, however, we first equip both populations with
the same strategies and the same parameters before we move
to the comparison of different parameters or strategies.

In the simulations, we take N = 1000 and K = 20. The
success rate is simply defined as the ratio of the number
of successful deals to the number of pairs (that is, N , the
population size).

As indicated in Fig. 3, BM learns quite slowly. The optimal
learning rate is found to be around 0.0005 for BM in our
setting. With a higher learning rate, the system gets stuck in
some suboptimal equilibrium. This optimal value does not
depend on the system size, which is shown in Fig. 4. Here the
convergence towards equilibrium is studied via tracking the
difference of offers between the buyers and the sellers, who all
choose the BM with the same given learning rate. When the

FIG. 4. (Color online) Size effects on convergence to equilibrium
for BM reinforcement learning. All curves with sizes equaling 100,
200, 400, 800, and 1600, respectively, collapse onto each other. In
all sizes, the learning rate is taken to be 0.0005. Therefore, there is
almost no dependence of learning rate on system size.

system sizes take 100, 200, 400, 800, and 1600, respectively,
all the curves of convergence collapse onto each other. Of
course, the optimal value of the learning rate might depend on
the complexity of the task in models other than ours. But in the
setting of our study there is no such dependence. SM learns
very quickly, which only leads to a suboptimal equilibrium as
seen from the low success rate eventually reached (around
0.9). This is so because some potentially effective actions
may have been eliminated at rather early stages. RE and NRE
learn much better than both BM and SM do as the learning
rates are moderate and so achieve a good balance between
exploration and exploitation. Interestingly, in the beginning
NRE lags behind RE by learning relatively slowly but later
NRE can achieve more favorable equilibrium values than RE.

FIG. 5. (Color online) Top: NRE reinforcement gains advantage
over RE reinforcement when both choose optimal parameters as
indicated in Fig. 3. When the buyers take RE and the sellers NRE,
the eventual equilibrium is 11, which is greater than 10. Bottom:
NRE reinforcement gains advantage over BM reinforcement when
both choose optimal parameters. When the buyers take NRE and the
sellers BM, the eventual equilibrium is 7, which is much less than 10.
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FIG. 6. (Color online) NRE reinforcement (buyer) defeats SM
reinforcement (seller). The convergence takes a long time. The
numerical study indicates the final equilibrium is 6. Parameters are
the same as in Fig. 3.

As we see from the plots, NRE can surpass RE after around
10 000 time steps.

We now describe simulations of round-robin comparisons
among the four different strategies. If we assign the buyers
NRE and the sellers RE, the eventual equilibrium value is 9,
which means the buyers are more favored (Fig. 5, top panel).
If the buyers choose RE and the sellers choose NRE, then, by
symmetry, the equilibrium value becomes 11, which is better
for the sellers. Comparison between NRE and BM yields an
equilibrium value of 7 (13) when the buyers (sellers) take NRE,
and the other side takes BM (see Fig. 5, bottom panel). NRE is
also superior to SM, see Fig. 6. It takes very long to approach
the equilibrium, which is 6 here, as predicted by the numerical
solution. Apparently, the Monte Carlo simulations conform
to the numerical solutions of the differential equations in the
previous section.

B. Learning speed

We now turn to an estimate of the learning speed for RE and
NRE. Let us start from RE. Denote by Pb,i(t) the probability
of choosing action i at time t for buyers and by Ps,j (t) the
probability of choosing action kj at time t for sellers. We then
have

Pb,i(t + 1) =
∑i

j=0 Pb,i(t)Ps,j (t)(K − i)∑K
i=0

∑i
j=0 Pb,i(t)Ps,j (t)(K − i)

(31)

and

Ps,j (t + 1) =
∑K

i=j Pb,i(t)Ps,j (t)j∑K
j=0

∑K
i=j Pb,i(t)Ps,j (t)j

. (32)

For convenience of computation, in Eqs. (31) and (32)
we have assumed that the initial inclination of each action
is infinitely small and can be treated as zero (this claim
is reasonable as K goes to ∞). The initial conditions are
Pb,i(0) = Ps,j (0) = 1/(K + 1),i,j = 0,1,2 . . . ,K . The prob-
abilities as Eqs. (31) and (32) are coupled, but after some
algebra we obtain Pb,K/2(1) = 1.5/(K + 1). As Pb,K/2(0) =
1/(K + 1), hence, the probability of choosing K/2 for the
buyers is increased by 0.5/(K + 1) after the first learning

FIG. 7. (Color online) Top: NRE reinforcement gains advantage
over the one-round opponent strategy when both choose optimal
parameters. When the buyers take NRE strategy and the sellers
the one-round opponent strategy, the eventual equilibrium is 8,
which is less than 10. Bottom: NRE reinforcement gains advantage
over average-previous-opponent strategy when both choose optimal
parameters. When the buyers take the NRE strategy and the sellers
the average-previous-opponent strategy, the eventual equilibrium is
8, which is less than 10.

step. Therefore the learning speed for RE is proportional to
1/(K + 1) at the start. When K is large, the learning time
should be proportional to K , though the learning speed in RE
is not constant. A rather similar calculation can be applied to
NRE to obtain Pb,K/2(1) = 1.5K/(K + 1)2. Thus, the increase
of the probability of choosing action K/2 for the buyers is less
than 0.5/(K + 1), the counterpart for RE reinforcement. This
simple calculation confirms the simulation results in Fig. 3
where NRE learns more slowly than RE does in the beginning.

We now briefly analyze why BM and SM reinforcement
learning do not perform well in our game. First, in BM the
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FIG. 8. (Color online) The time-varying distributions of offers for (a) buyers who take the NRE strategy and (b) sellers who the take
one-round opponent strategy. The buyers’ actions are more heterogeneous, whereas the sellers’ actions are more homogeneous.

learning never slows down. This means that if a worse action
is chosen, then there is no way to change. So for BM to fit
into our game, the learning rate r has to be set very carefully.
If r is too high, then the learning is very fast and it is very
likely that an unfavored equilibrium will be reached. If r is
low, then the learning takes very long, which will constitute
a disadvantage when confronted with a quicker learner. This
is indeed the dilemma between high and low learning rates.
Our extensive simulations suggest that the learning rate should
not be greater than 0.001 so the fair equilibrium, with value
K/2, can be attained. But we already know from previous
study that simpler and flexible strategies are more favored.
Hence, when faced with other well-performing strategies, be
they reinforcement learning or evolutionary schemes, BM will
lose out as its convergence speed is very small at its optimal
performance (r = 0.0005). A higher learning rate of BM will
be even worse in the competition with other learning schemes.
The process of exploration dominates the learning of BM when
the learning rate is small.

SM reinforcement learning is another story. In SM, the
probability of choosing action k is based on the average or
expected reward (payoff), not on the total reward. Suppose
we use E(k) to denote the expectation reward of choosing
action k. If the players are always exploring without learning,
then E(k) = (k + 1)(K − k)/(K + 1) for buyers and k(K +
1 − k)/(K + 1) for sellers. If K is an odd integer, then
we have E(K/2 − 1/2) = E(K/2 + 1/2); if K is an even
integer then we have E(K/2 − 1) = E(K/2 + 1) for both
buyers and sellers. That is, there may exist two peaks in
the action probability distribution which we wish to train.
It is not easy to separate the double peaks so a single peak
will remain. As in the beginning the players are always
exploring, the consequence of the double peaks is that the
optimal action cannot emerge as the two major remaining
actions will coexist. If a greedy learning method is taken (by
having a high “temperature,” namely a large λ) at an early
stage, then the good actions may get eliminated first, which
is even worse. Whereas RE and NRE are situated between a
slow-learning BM and a fast-learning SM and therefore behave
more effectively. Efficient learning should be neither too hot
(exploration) nor too cold (exploitation) [20].

C. Reinforcement versus evolutionary learning

We now widen the perspective and compare NRE reinforce-
ment to other evolutionary schemes that we have studied before
[15,16]. First, we introduce the following parameters for the
evolutionary scheme of replacing a population of players by a
new one composed of possibly mutated members of the present
one with a fitness based selection:

(1) generation length (time): the number of rounds (time
steps) played between two consecutive selections (if applica-
ble);

(2) selection percentage: the percentage of the players who
will be chosen as parents to generate the offspring during the
evolutionary process;

(3) mutation rate: the rate of random mutation during the
evolutionary process.
In the selection process, the fitness for a certain player is
simply the payoffs he or she accumulate during the interactions
between two consecutive selections. All the payoffs will then
be compared and ranked among the members within the same
population. In our setting, the top 50% fittest players will be
kept as parents to produce the next generation. The whole
selection process is implemented in the form of a genetic
algorithm.

Next we list the five strategies in the pool, classified on the
basis of the types of information they use as follows:

(1) average-previous-opponent: the average of one’s oppo-
nents’ offers in the previous, say, m (limited and usually much
smaller than the generation length), rounds;

(2) for m = 1, that strategy is called one-round opponent:
Each player utilizes the offer of his or her opponent in the most
recent round;

(3) average-friend-opponent: the average of one’s friends’
opponents’ offers in the most recent round [here each player
has a certain number of friends (usually small in comparison
with the population size) within his or her own population];

(4) average-all-friend: the average of one’s friends’ offers
in the most recent round (thus, here, in contrast to the previous
strategies, no information about the other population is used
during each generation); and

(5) average-successful-friend: the average of one’s friends’
successful offers in the most recent round (here information
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from the other population is used indirectly, but selectively,
because their offers decide which of the friends are successful).

Each strategy can have two variants, either directly employ-
ing the value computed according to the chosen strategy as the
next own offer or using that value as the input in a look-up
table whose output then is that next offer. The look-up table
then is itself an object of evolution. Hence, the evolutionary
scheme refers to replacing a population with current look-up
tables by a new one with evolved look-up tables. During the
whole evolutionary process, the strategy that each population
has chosen in the beginning will be always kept. In fact, since
the look-up table has K input entries and has to provide an
output for each of them, evolution will take quite some time
to test it out thoroughly. To distinguish these two variants, we
can simply put “simple” in front of the strategy that is not
using look-up tables. For the one-round opponent strategy, the
only efficient variant is the one with evolving look-up tables
[16]. For the strategies that involve friends, we will introduce
friendship networks of different topologies, with the average
degree of each being fixed to, say, 5.

To have a stable setting, in our major simulations with
evolving look-up tables, the generation length, the selection
percentage and the mutation rate are 500, 0.5, and 0.01,
respectively. In this paper, for the “simple” strategies without
evolving look-up tables, the generation length has been taken
to be 1, 4, or even larger in various simulations.

As we can see in Fig. 7 (top panel), when the buyers
choose NRE reinforcement learning and the sellers choose
the one-round opponent evolutionary strategy, the buyers gain
an advantage by offering 8 eventually. Here evolution proceeds
much faster than NRE reinforcement: 8 has been reached for
the sellers after around 10 000 time steps, but the buyers are
still offering 9. But the sellers cannot utilize this advantage by
demanding amounts higher than 8 and have to wait until the
buyers converge to 8 at approximately time step 100 000. Note
that by taking the one-round opponent strategy, the sellers are
not directly copying 9, the most-recent offer of the opponents,
namely buyers, as their offers. Rather, they use 9 as an input
into their own evolved look-up tables for an output for their
next-round offers. This is exactly why their offers are 8 instead.
We also notice that in NRE reinforcement the learning is
very fast in the beginning but then gets flatter, as in the “law
of practice” in psychology. In Fig. 8 we tracked the time-
dependent distributions of offers for both buyers and sellers
during the same time period. The heterogeneity of buyers’
actions is very significant as buyers’ offers are distributed
between 7 and 11. For the same time period as given for the
buyers, the sellers who take the one-round opponent strategy
are more homogeneous as their offers are only distributed
between 7 and 9. The centralized (most-frequent) offer for the
sellers is nearly approaching the eventual equilibrium value,
which is 8 in our setting. It is exactly the heterogeneity that
helps NRE win. NRE reinforcement learning can also defeat
average-previous-opponent strategy when m is larger, say, 5
(Fig. 7, bottom panel). When faced with a simple average-
previous-opponent strategy (m = 5), however, NRE has no
chance, as the former converges speedily to equilibrium after
nearly 100 time steps. We already learned from Ref. [16] that
averaging is a good strategy that can dampen the fluctuations
in actions and therefore speed up the convergence. Simple

FIG. 9. (Color online) Top: NRE reinforcement loses advantage
to the simple average-friend-opponent strategy when both choose
optimal parameters. When the buyers take the NRE strategy and the
sellers take the simple average-friend-opponent strategy, the eventual
equilibrium is 14, which is much greater than 10. Bottom: NRE
reinforcement loses advantage to the single-number strategy when
both choose optimal parameters. When the buyers take the NRE
strategy and the sellers the single-number strategy, the eventual
equilibrium is 13, which is much greater than 10.

averaging without look-up tables is even better than the one
that evolves the look-up tables as the complicated evolutionary
schemes need extra time for elaboration.

NRE reinforcement learning wins against the average-
friend-opponent strategy (the average number of friends per
player is 5) but will lose when confronted with the simple
average-friend-opponent strategy (Fig. 9, top panel). The
reason is as before that simple averaging is more able to
adapt when dealing with simpler tasks. But this does not
mean that the simple averaging strategy will also win in more
sophisticated environments or given more complicated tasks.
The reason is that in such cases, more feedback or information
needs to be collected in order to deal with the higher com-
plexity of the systems. In those occasions powerful strategies
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FIG. 10. (Color online) Distributions of offers for buyers who take Opp1 and for sellers who take NRE after (a) 3 generations,
(b) 5 generations, (c) 10 generations, and (d) 50 generations. Here one generation consists of 500 time steps. Note the heterogeneity of
distributions of offers for NRE players.

might not be very simple. Unlike the direct information in
the average-previous-opponent strategy, in the average-friend-
opponent strategy indirect information from friends is used.
NRE reinforcement learning can beat the average-all-friend
strategy as well since the latter uses no information from the
other population. NRE reinforcement learning ties the simple
average-all-friend strategy, with both reaching K/2, the sym-
metrical equilibrium value. This happens simply because the
simple average-all-friend strategy converges quickly to K/2,
which NRE then has to follow. NRE reinforcement learning
can beat average-successful-friend strategy, whether simple or
not. The reason is that following the successful experience will
make the players’ offers more timid, which is not good against
a population that can try more ambitious offers.

In fact, the simplest is also the most successful strategy,
the single-number strategy: players use no direct information
at all; each player chooses a fixed random offer that will be
updated through the selection based on fitness [16]. The more
successful offer will be played with higher frequency and
is more likely to spread within the population. Eventually
a given offer might be chosen by all the members of the
same population if the stochastic effects wash out. For the
single-number strategy, it turns out that the minimal generation
length, 1, is optimal. The population can then evolve most
quickly. Here when we compare NRE reinforcement learning
to the single-number strategy when both employ optimal
parameters, the latter wins by converging very quickly after
nearly a few hundred time steps (Fig. 9, bottom panel). Again,
the superiority of simpler strategies may not extend to more
complex environments. The advantage may only reflect the
adaptability of simpler strategies in simple settings.

We have also compared RE reinforcement learning with
all the evolutionary strategies we have devised, with similar,
but somewhat less significant, results as for NRE. For
example, the equilibrium value of the competition between RE
reinforcement learning and the one-round opponent strategy
is 9 (11), 1 less than 8 (12). This is consistent as we have
found that the advantage of NRE reinforcement over RE
reinforcement is just 1 in our game. Our simulations indicate
that in most cases this advantage is transitive but there are
a few exceptions. For instance, NRE wins 2, and RE wins
1, over the average-friend-opponent strategy, and transitivity
holds among the three. But NRE loses 4, and RE also loses
4, to the simple average-successful-friend strategy, and the
transitivity fails here. The reason might be that in these two

FIG. 11. (Color online) Comparison of learning rates for the
three different reinforcement learning schemes, RE, NRE, and SM.
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FIG. 12. (Color online) Distributions of offers for buyers who take the NRE scheme and for sellers who take the BM scheme after
(a) 3 generations, (b) 5 generations, (c) 10 generations, and (d) 50 generations. Here one generation consists of 500 time steps. Most of the
time BM players learn more slowly than NRE players.

cases the simple average-successful-friend strategy dominates
the interactions so reinforcement learning schemes have to
adapt to the same level of equilibrium.

BM reinforcement learning is found to be equal to the one-
round- and two-round opponent strategies, the average-friend-
opponent strategy, and the average-all-friend strategy. BM can
defeat the average-successful-friend strategy, with or without
the look-up tables. But BM loses to the remaining simple
strategies in which no look-up table is included. Again here we
find that, with certain exceptions, the transitivity of advantage
holds. For instance, RE wins 1 over BM, and BM is equal
to the one-round opponent strategy and there is transitivity
between these three. But there is no transitivity among the
BM, one-round opponent, and two-round opponent strategies

FIG. 13. (Color online) A modified Bush-Mosteller (MBM) in
which the learning rate is changing with respect to the time t as t−0.8

performs as well as RE. In both schemes the optimized parameters
are taken.

because we found already that one-round opponent strategy
can defeat the two-round opponent strategy.

We now try to understand why NRE performs better than
either the one-round opponent strategy or other reinforcement
learning schemes within the framework of our model. In gen-
eral, there are two main aspects that may affect the comparison
of the performance of strategies. First, the power of a strategy
is related to its ability to deal with various tasks, be they simple
or difficult. Second, the flexibility of a strategy is related to its
ability to adapt to changing circumstances. Although the rules
of our model are extremely simple, the action takes place at
three different levels. The first level is information evaluation
and learning for individuals. The second level is adaptation and
evolution between individuals inside a population. The third
level is competition between strategy spaces at the population
level. In the present setting, our game focuses more on the
adaptive ability of the strategies than on their power. But still
the collective dynamics at the population level is a combination
of adaptation, learning, and evolution.

We first compare NRE reinforcement learning with the
one-round opponent strategy (abbreviated as Opp1 hereafter).
As already seen in Fig. 8, the superiority of the NRE results
from the heterogeneity of the distribution of its players’
offers. To better display this feature of NRE, we tracked the
distributions of both NRE and Opp1 players’ offers from the
beginning until the stage of equilibrium. Such distributions
for four different stages are shown in Fig. 10 in which the
buyers take Opp1 and the sellers take NRE. Each generation
consists of 500 time steps. Figures 10(a), 10(b), 10(c), and
10(d) display the distributions of offers for both populations
after 3, 5, 10, and 50 generations, respectively. We clearly
see the diversity of offers for NRE at all times, although, of
course, learning eventually also narrows down the distribution
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FIG. 14. (Color online) Distributions of offers for buyers who take NRE and for sellers who take SM after (a) 1 generation, (b) 5 generations,
(c) 20 generations, and (d) 40 generations. Here one generation consists of 500 time steps. SM players learn faster than NRE players. NRE
pushes SM by gradually shifting the highest peak, where the most frequent offer locates, towards its own favorable value.

of offers. In contrast, Opp1 players quickly concentrate at the
single offer value 12. The heterogeneity of offers is crucial for
learning because it allows enough time for testing all possible
values. Without this feature some potentially good values
might get eliminated at rather early stages.

Of course, the fact that NRE is on-line learning also
contributes to its better performance over Opp1 where analogs
of learning effects only occur at the transition between
generations. NRE can also take a subtle advantage of the fact
that Opp1 tests the entries of look-up tables.

The performance comparison between NRE and other
reinforcement learning schemes is related to the learning rate.
Our model confirms the well-known fact that learning needs
to balance exploration and exploitation. If the learning rate is
too large, then the system may easily get stuck in suboptimal
states. If the rate is too small, the system is always exploring
with little exploiting. Moreover, the learning rate should be
adaptive and decrease with time. We have already seen that
the constant-learning BM and the fast-learning SM do not
fit our model well. Of course, the choice of learning rates is
problem specific [8,21–24]. An effective varying learning rate
r(t) usually should satisfy the following two constraints:

∞∑
t=1

r(t) = ∞,

∞∑
t=1

r2(t) < ∞. (33)

Hence, r(t) shall be of the “1/tα” type, with 1/2 < α � 1.
In the RE, NRE, and SM schemes, the learning rate is not
explicitly given, but we can employ the definition of Sutton [2].
So the probability of a rewarded action k is updated according
to

Pnk(t + 1) = Pnk(t) + [1 − Pnk(t)]rk(t). (34)

Considering Eqs. (8) and (9) and Eq. (34), one can define the
action k-related learning rate rk(t) for RE and NRE schemes

simply as

rk(t) = Eb,k(t)

B(t)
(35)

or, equivalently,

rk(t) = Es,k(t)

S(t)
, (36)

where Eb,k(t) and Es,k(t) are the expected reinforcements to
action k chosen by a buyer and a seller, respectively. Equations
(35) and (36) are equivalent so we only need to focus on one
of them, say, the former. Combining Eqs. (14) and (35), one
can obtain, after some algebra,

ḃ(t) = B(t)

(
r(t) − 1

t

)
, (37)

where r(t) = ∑K
0 ri(t)Pb,i(t) is the mean learning rate for all

possible actions at t . Hence, we notice that at the equilibrium
r(t) is exactly 1/t . In the regimes (other than the equilibrium)
where ḃ(t) > 0, r(t) converges faster than 1/t .

Using Eq. (34) we measured the numerical values of the
learning rates for RE, NRE, and SM; these are displayed
in Fig. 11. Most noticeably we find SM learns much faster
than both RE and NRE before t = 5000. In the beginning
the learning rate for SM is nearly two orders of magnitude
greater than those of RE and NRE. We notice that there exist
regimes of plateaus for both RE and NRE due to the effects
of initial inclinations, primarily before t = 100, where RE
learns slightly faster than NRE. But after crossing the t = 100
point, NRE learns a little faster than RE. In the intermediate
stage, for RE, r(t) ∼ t−0.8, and for NRE, r(t) ∼ t−0.79. These
learning rates are consistent with the results from Eq. (37)
when noise is taken into account. For SM, the dependence
of the learning rate on t is complicated. At the start, r(t)
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FIG. 15. (Color online) Distributions of offers for buyers who take RE and for sellers who take NRE after (a) 1 generation, (b) 5 generations,
(c) 10 generations, and (d) 30 generations. Here one generation consists of 500 time steps. Most of the time RE players learn slightly more
slowly than NRE players.

decreases almost linearly with respect to t , so the large learning
rate is maintained for a long time. In the middle period r(t)
scales as t−0.9 and at the latter stage t−1.1. Therefore, SM
is not an effective scheme for our game because learning is
too fast.

The effects of learning rates can also be demonstrated
through the time-varying distributions of players’ offers. In
Fig. 12 we compare the distributions of offers for NRE and
BM players. In Fig. 12(a) we see that after three generations,
the distribution for NRE players is approaching a Gaussian
whereas the counterpart for BM players is still more or less
a uniform distribution. After five generations [Fig. 12(b)] the
distribution for BM players starts to look like a Gaussian. But
still BM players are learning more slowly than NRE players,
so the most frequent offer, 7, is more advantageous to the
latter as buyers. In Fig. 12(c) and Fig. 12(d) the gap between
the performance of the two strategies is shortened as for BM
the learning is constant and for NRE the learning slows down
gradually. So the main reason that NRE beats BM is that, when
both take optimized parameters, the latter learns too slowly in
the beginning. With this insight, it is then natural to consider
a modified BM with a varying learning rate of t−0.8 type. This
modified BM can perform as well as RE, see Fig. 13. In another
direction, NRE beats SM because the latter learns too fast in the
beginning when both strategies are optimized. Figures 14(a),
14(b), 14(c), and 14(d) demonstrate this over time. NRE is
better than RE because it uses its information somewhat faster
(Fig. 15). The exponent τ might be considered as the strength

parameter of payoff. As seen in Fig. 1, τ = 1.5 leads to optimal
convergence towards equilibrium.

V. CONCLUSION

We have identified in this paper an efficient reinforcement
learning scheme within the framework of our game. This
so-called NRE reinforcement learning performs better than
the RE, BM, and SM reinforcement learning schemes. NRE
reinforcement learning also beats most evolutionary strategies
with evolving look-up tables but loses to the simple version of
those strategies without look-up tables.

We have analyzed the learning rates of the various strategies
in order to explain their different performances. Powerful
strategies may not be adaptive and vice versa. The effective
learning scheme found in here could be very specific to the
setting of our game and may not be very powerful in other
more complicated settings. It remains to evaluate the perfor-
mance of this NRE reinforcement learning in other learning
tasks.
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