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Analysis of the non-Markov parameter in continuous-time signal processing
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The use of statistical complexity metrics has yielded a number of successful methodologies to differentiate and
identify signals from complex systems where the underlying dynamics cannot be calculated. The Mori-Zwanzig
framework from statistical mechanics forms the basis for the generalized non-Markov parameter (NMP). The
NMP has been used to successfully analyze signals in a diverse set of complex systems. In this paper we show
that the Mori-Zwanzig framework masks an elegantly simple closed form of the first NMP, which, for C1 smooth
autocorrelation functions, is solely a function of the second moment (spread) and amplitude envelope of the
measured power spectrum. We then show that the higher-order NMPs can be constructed in closed form in
a modular fashion from the lower-order NMPs. These results provide an alternative, signal processing-based
perspective to analyze the NMP, which does not require an understanding of the Mori-Zwanzig generating
equations. We analyze the parametric sensitivity of the zero-frequency value of the first NMP, which has been
used as a metric to discriminate between states in complex systems. Specifically, we develop closed-form
expressions for three instructive systems: band-limited white noise, the output of white noise input to an idealized
all-pole filter,f and a simple harmonic oscillator driven by white noise. Analysis of these systems shows a
primary sensitivity to the decay rate of the tail of the power spectrum.
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I. INTRODUCTION

Time series analysis is often employed to characterize
systems where the generating physics is either too complex or
involves too many degrees of freedom to be predicted. These
systems frequently arise in financial [1,2] and biological [3–6]
systems. One of the earliest metrics used to characterize a
system is the Shannon information entropy, which ascribes
a numerical score to the system based on the randomness
of the underlying statistics driving the process [7]. This
methodology, originally used in communications theory, was
adapted to nonlinear deterministic dynamical systems with the
use of Kolmogorov-Sinai entropy [8]. While successful for the
analysis of chaotic systems this approach can fail to detect
the statistical simplicity of random behavior [9]. This has
motivated the development of “statistical complexity metrics,”
which measure the correlation structure of an interacting
system and its subsets [10], allowing for the analysis of multi
degree of freedom probabilistic systems.

This methodology has generated a plethora of statistical
complexity metrics, often with ambiguous relationships to
each other, which often do not provide a clear interpretation of
what the metric is actually measuring [10]. The application of
these complexity metrics to time series analysis has thus seen
the emergence of an interesting phenomenon where signals
from complex systems can be successfully differentiated, but
there is little insight into the nature of these differences.

An excellent example of this problem has been the
application of the generalized non-Markov parameter (NMP),
which is effectively a complexity metric developed from the
Mori-Zwanzig theory of nonequilibrium statistical physics
[11]. The NMP has been used in a diverse range of fields
such as geology [12], astrophysics [13], cardiology [5], and
neurophysiology [6]. In these complex systems the NMP
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has been developed as an informational tool to analyze the
degree of randomness or “Markovity” of the system. Particular
attention has been paid to the zero-frequency value of the
first-order NMP (ZF-NMP1) [5,12,14,15], which in a similar
sense to the Shannon information entropy maps the Markovity
of a system interacting with its environment to a scale from
unity for non Markov processes (the transition to the next state
is history dependent) to infinity for purely Markov processes
(the transition to the next state is history independent) [11]. In
specific applications the quantification of this randomness has
proved useful as a metric of discrimination between different
states in complex systems. More recently we have used the
ZF-NMP1 to differentiate states of microelectrode recordings
of the subthalamic nucleus of patients with Parkinson’s disease
during linguistic processing tasks [16].

Previous papers have derived the NMP for measured
systems from discrete time equations to define chaos or a
non-Markov correlation structure between a system and its
environment [11]. This paper will show that for stationary
processes the NMP can be expressed in closed form in terms
of operations on the power spectrum of the measured system.
It is then shown that with the additional constraint of a
smooth autocorrelation function (specifically belonging to
the C1 or higher differentiability class) the first NMP has a
particularly simple structure depending solely on the spread
and amplitude envelope of the measured power spectrum.
These results provide a more conventional signal processing
perspective from which to understand the NMP in terms of the
power spectrum of the measured system. This result is entirely
complementary to the original Mori-Zwanzig framework of
complex interactions between the measured system and its
environment. In essence these results allow the NMP to
be expressed simply without a detailed understanding of
Mori-Zwanzig theory.

We then go on to show that closed-form expressions for the
higher-order NMP can be constructed in a modular fashion by
a set of nonlinear operations on the measured power spectrum.
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We then suggest, but do not prove, that these operations
remove correlation structure from the spectrum and thus there
is limited information about the system in the higher-order
NMP. This analysis is consistent with Ref. [17], which argues
the memory kernels can “veil” the properties of the physical
system. The ZF-NMP1 is then analytically calculated for three
instructive systems: simple harmonic oscillator (SHO) driven
by white noise, band-limited white noise, and white noise
passed through an ideal all pole filter. We show that the
dominant feature of ZF-NMP1 is the slope of the tail of the
measured power spectrum. We lastly show with numerical
simulation that these expressions are also valid for noisy
sampled systems where the power spectrum is not known a
priori.

The work performed in this paper may be considered
an extension to that in Ref. [18]. The work in Ref. [18]
is concerned with developing the zero-frequency NMP for
dynamical systems defined from time propagation operators
with causal correlation functions. This greatly simplifies the
spectral analysis (principally because the Fourier transforms
(FT) can be represented as Laplace transforms rotated by 90◦).
This article, however, is concerned with deriving analytical
expressions for the generalized NMP spectra for measured
systems, that is, with autocorrelation functions defined for
positive and negative lags. Last, this work is concerned with
observing how the NMP varies with the measured power
spectrum, whereas Ref. [18] uses successively higher-order
zero-frequency values of the non-Markov parameters to
explicitly explore the Markovity of specific causal systems.

This paper is organized as follows. Section II gives
an overview of the Mori-Zwanzig kinetic equations from
which the NMP is derived. Section III develops closed-form
expressions for the hierarchy of generalized NMPs and shows
how the zero-frequency value of the NMPs can be simplified.
Section IV uses these simplifications to derive analytical
expressions for the ZF-NMP1 for three stochastic processes.
The analysis of the SHO driven by white noise provides a
conceptual bridge between the analysis of the Markovity of
the physical system and the signal processing interpretation
of the ZF-NMP1 introduced in this paper. The analysis of the
band-limited white noise and the ideal all-pole filter provide
an explicit understanding of how this parameter varies with
spectral properties of corner frequencies and stop band decay
rates. Section V determines the generalized NMP from the
discrete time series data of a model of the SHO driven by
white noise. This highlights that the closed-form expressions
for the generalized NMP are applicable to “real world”
problems where only noisy sampled realizations of a process
are available.

II. MORI-ZWANZIG KINETIC EQUATIONS

Consider a system of interacting objects with defined
observables that completely describe the phase space of the
system of interest. Often we are only concerned with the
evolution of a subset of all the objects in the system. For
example, the voltage contribution to an electrode of the closest
neuron in a highly connected neural network.

The number of observables of interest can be extended to an
arbitrarily high number but for simplification we will consider

the evolution of one observable G(t). The evolution of the
observable of interest is described by a generalized Langevin
equation (GLE) [19]:

Ġ(t) = λ0G(t) − �0

∫ t

0
m1(t − t ′)G(t ′)dt ′ + S(t) t � 0,

(1)

where G(t) and ˙G(t) are the observable of interest and its time
derivative, respectively, t ′ is a dummy variable of integration,
m1(t) is the first memory kernel which introduces history
dependence, S(t) is a stochastic forcing function, and λ0 &
�0 are the zeroth-order relaxation parameters.

The contribution of the neglected variables is accounted for
in the memory (convolution) function and stochastic forcing
terms. The convolution term is a consequence of a general
result that when the evolution of a multi-degree-of-freedom
dynamic system, which is history independent, is described by
a reduced number of degrees of freedom it is transformed to a
history-dependent dynamical system [20]. The presence of the
stochastic forcing term is a consequence of the state vector,
which describes the observables of interest. This resides in a
subspace of the Hilbert space of the full dynamic system at
time zero, rotating as time increases outside of this subspace
into the full Hilbert space. The evolution of this state vector
outside this subspace is modeled as stochastic forces randomly
rotating the state vector [20].

The difficulty with the GLE Eq. (1) is that the presence of
the noise term makes the system a stochastic integrodifferential
equation, which is mathematically difficult to analyze. The
equation can be reduced to a standard integrodifferential by
projecting the observable at time zero G(0) onto the evolution
equation and performing an ensemble average 〈· · · 〉. The noise
terms are constructed such that for all time they stay orthogonal
to the observable at time zero [21], and thus the noise term is
removed. Thus,

〈S(t)G(0)〉 = 0 (2)

〈G(t)G(0)〉 = m0(t), (3)

where m0(t) is the autocorrelation function of the observable
G(t). Applying these operations to Eq. (1) yields an integrod-
ifferential equation for the evolution of the autocorrelation
function, m0(t), of our single observable of interest [20]:

dm0(t)

dt
= λ0m0(t) − �0

∫ t

0
m1(t − t ′)m0(t ′)dt ′ t � 0.

(4)

There is a subtlety regarding the evolution of the autocorrela-
tion function that must be highlighted. The autocorrelation
function by definition is a symmetric function defined for
both negative and positive time; however, the GLE Eq. (1)
is only defined for positive time and thus the evolution of the
autocorrelation function in Eq. (4) is only defined for positive
time. This point will be important when considering the FT of
the memory kernel in this section.

The first memory kernel can be shown by the second
fluctuation dissipation theorem to be the autocorrelation (and
thus symmetric) function of the stochastic forcing function
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[21]:

m1(t) = 〈S(t)S(0)〉
〈G(0)G(0)〉 . (5)

Arbitrarily higher-order equations can be constructed by
interchanging the positions of the autocorrelation function
mn−1(t) with the memory kernel mn(t) and introducing a new
memory kernel mn+1(t) to replace mn(t) into the convolution
term. This is known as the Mori-Zwanzig chain, with the
memory kernel autocorrelation functions acting as the links
of the chain:

dmn(t)

dt
= λnmn(t) − �n

∫ t

0
mn+1(t − t ′)mn(t ′)dt ′ t � 0.

(6)

By convention, all of the considered autocorrelation func-
tions are normalized such that mn(0) = 1 [11]. For the first
autocorrelation function [m0(t)] this can be achieved by
dividing every term in Eq. (4) by an appropriate normalizing
factor. For the remaining memory autocorrelation functions
the normalization is ensured by the form of the �n relaxation
factors.

In this paper we use the following FT convention:

F (ω) = F[f (t)](ω) =
∫ ∞

−∞
f (t)e−iωt dt (7)

f (t) = F−1[F (ω)](t) = 1

(2π )

∫ ∞

−∞
F (ω)eiωt dω. (8)

Notice that an equivalent normalization of unity requirement
on the FT of the nth memory autocorrelation function, which
we refer to as the nth order memory power spectrum, Mn(ω),
can be constructed using the Wiener-Khinchin theorem [22]:∫ +∞

−∞
Mn(ω)dω = 2π. (9)

The form of the λn relaxation parameters can be determined
from manipulation of Eq. (4) as

λn = lim
t→0+

dmn(t)

dt
= 0 ∀ mn(t) ∈ C1. (10)

Notice that because the time correlation function in Eq. (4) is
only defined for positive time, the limit is taken from above.
Due to the symmetry of autocorrelation functions, as long as
there is no breakdown in smoothness of the derivative (that is
it belongs to the C1 or higher set of functions) at the origin,
this parameter must be zero in continuous time. An equivalent
requirement can be constructed in the frequency domain:

λn = lim
h→0+

1

2π

∫ ∞
−∞ Mn(ω)(eiωh − 1)dω

h
. (11)

By the dominated convergence theorem, if P (ω) decays
O(ω−2) or faster, the limit can be brought inside the integral
and the integrand evaluated to yield the indeterminate function
0/0. Applying L’Hôpital’s rule, if P (ω) decays O(ω−3) or
faster, then the limit can again be brought inside the integral
and shown to be zero. Since the power spectrum must be
symmetric, this O(ω−3) decay is not possible. Thus, if P (ω)
decays O(ω−4) or faster, λ is zero. As a counter example,
an autocorrelation function with a c(t) = e−a|t | and P (ω) ≡

O(ω−2) structure, which has a nonzero λ value, was considered
in Ref. [16].

The �n relaxation parameter cannot be defined from Eq. (4)
without the previously stated constraint that Mn+1(0) = 1.
Taking the derivative of Eq. (4), applying the Leibniz rule
for differentiating the convolution term, and taking the limit
as time goes to zero yields

�nMn+1(0) = λn lim
t→0+

mn(t)

dt
− lim

t→0+

d2mn(t)

dt2
. (12)

As discussed previously, if Mn(ω) decays O(ω−4) or faster,
λn will be zero. Enforcing the condition that the memory
kernel Mn+1(t) must be unity at time zero gives the following
expression:

�n = − lim
t→0+

d2mn(t)

dt2
, ∀ mn(t) ∈ C1

= 1

2π

∫ +∞

−∞
ω2Mn(ω)dω. (13)

The second expression has been generated by application
of the Weiner-Khinchin theorem and is in agreement with
that obtained in Refs. [23] (which considered a similar
Mori-Zwanzig kinetic equation with λ set to zero) and [18].
Notice that this expression shows that �n is a measure of the
spread (second central moment) of the Mn(ω) memory power
spectrum.

III. NON-MARKOV PARAMETERS

The non-Markov parameters εn(ω) are defined as the square
root of the ratio of FT of the preceding memory kernel
[Mn−1(ω)] and the memory kernel Mn(ω) [5,11,13]:

εn(ω) =
√

Mn−1(ω)

Mn(ω)
n � 1. (14)

By the Wiener-Khinchin theorem, the M0(ω) term in the
first NMP is immediately recognized as the measured power
spectrum of the signal. The higher-order memory power
spectrum can be evaluated by taking the FT of both sides
of Eq. (4), with a Heaviside distribution included in the
Fourier kernel. The resultant equation in Fourier space can be
algebraically rearranged to yield an expression for the FT of
the memory kernel. The inclusion of the Heaviside distribution
is necessary as the evolution of the autocorrelation function in
Eq. (4) is only valid for positive time, whereas the FT is defined
for all positive and negative time. This function was evaluated
previously in Ref. [16]:

Mn(ω)

= λn−1

2�n−1
+ 4

�n−1

(
Mn−1(ω)

Mn−1(ω)2 + H[M(ω)n−1(ω)]2(ω)

)
.

(15)

Where H[· · · ] = is the Hilbert transform integral, which is
defined in terms of the Cauchy principal value (p.v.):

H[F (ω)](ω) = 1

π
p.v.

∫ +∞

−∞

F (ω′)
ω − ω′ dω′. (16)

022109-3



VARGHESE, BELLETTE, WEEGINK, BRADLEY, AND MEEHAN PHYSICAL REVIEW E 89, 022109 (2014)

Note that care must be taken with sampling continuous time
systems in order for the discrete time form of the memory
kernel to be equivalent to Eq. (15) [17].

The nth memory power spectrum Mn(ω) can be determined
from the previous memory power spectrum. The nth memory
power spectrum can then be constructed in a modular fashion
from the measured power spectrum M0(ω) using Eqs. (10),
(13), and (15). For signals with memory kernel spectrums with
decay rates O(ω−4) or greater, or equivalently with memory
autocorrelation functions belonging to the C1 or greater set
this has a particularly simple form:

Mn(ω) = 4nM0(ω)∏n−1
ı=0 �i{Mi(ω)2 + H[Mi(ω)]2(ω)}2

. (17)

Thus, the FT of the memory kernels are defined in terms of a
product series of nonlinear integral transforms of the measured
power spectrum. The generalized NMP is given in closed form
using Eqs. (14) and (15):

εn(ω) =
√

�n−1

2

√
Mn−1(ω)2 + H[Mn−1(ω)]2

=
√

�n−1|Vn−1(ω)|
2

, (18)

where |Vn(ω)| is the amplitude envelope [7] of the memory
kernel spectrum. Thus, when the conditions of Eq. (10) are
satisfied, the first NMP is solely a function of the spread and
amplitude envelope of the power spectrum. The description
of the memory power spectrum in Eq. (15) as a ratio of the
previous memory power spectrum and its amplitude envelope
suggests two interesting properties of these parameters. First,
the successive memory power spectra will decay at slower
rates than the previous memory power spectra. Second, since
the action of the amplitude envelope is to smooth out the
underlying function, the higher memory power spectra will
become flatter and flatter over the support of the original power
spectrum. We will show this behavior of the higher-order
memory power spectra in the systems we analyze in Secs. IV
and V.

This raises questions about the validity of using the
higher-order NMP to analyze a measured system. First,
in the noise-free case the successive amplitude envelopes
will “smear” out the measured spectrum, thereby losing the
correlation structure. Thus, the higher-order NMP may not
be measuring anything “interesting” about the system. This
interpretation may explain why two of the physical systems
considered in Ref. [18] (ideal gas and an ideal gas with
linear interaction perturbations) had distinct ZF-NMP1 but
identical higher-order zero-frequency NMP values. Second, in
any signal acquisition process, noise will certainly be present.
It can be seen from Eq. (4), with λ = 0, that extracting
the memory kernel is a deconvolution of a Volterra integral
equation of the first kind. These convolution equations are
often ill posed [24]. Thus, it is possible that in any measured
system, interesting structure seen in the higher-order NMP are
actually the manifestation of numerical errors and or noise.

Notice that by the symmetry property of the power spectrum
[Mn(ω′) = Mn(−ω′)] the Hilbert transform of the power

spectrum is zero at zero frequency:

H[Mn(ω)](0) = −1

π
p.v.

∫ +∞

−∞

Mn(ω′)
ω′ dω′ = 0. (19)

Using Eqs. (14), (17), and (19), closed form expressions for
the zero-frequency values of the generalized NMP that solely
depend on the spread and the DC offset of the nth memory
power spectrum can be obtained. These expressions are in
agreement with the calculations in Ref. [18]:

εn(0) =
√

�n

2
Mn(0). (20)

We pay particular attention to the zero-frequency value of the
first NMP (ZF-NMP1):

ε1 = M0(0)

2
√

2π

√∫ ∞

−∞
ω2M0(ω)dω. (21)

The complicated structure of the Mori-Zwanzig chain Eq. (4)
obfuscates the fact that the ZF-NMP1 (and indeed the gen-
eralized NMP) is solely a function of the measured power
spectrum. Indeed the Mori-Zwanzig equations and associated
memory kernels do not even need to explicitly be considered.
These results suggest that signal metrics to differentiate
complex systems can be developed by analyzing different
properties of the measured power spectrum. The previous
success of the NMP [5,6,12,13,16] helps elucidate specifically
what properties (spectral spread and DC offset) should be
explored, but does not necessarily require Mori-Zwanzig
theory to interpret the results.

The dependence of the ZF-NMP1 on the DC offset value of
the spectrum raises an important digital signal processing issue
regarding the use of this parameter for “real-world” measured
systems. Spectrum values determined from nonparametric
estimation methods (e.g., Welch’s method) will be random
variables (typically Chi-squared distributed [25]). Thus, if the
ZF-NMP1 is to be used as a signal metric, it would be advisable
to use a large number of signal samples and appropriate
statistical tests or parametric spectrum estimation techniques
(e.g., Burg’s method) to reduce the variance associated with
this metric [25].

It is interesting to note that the rich class of behavior
generated by Markovian dynamics will all have a common ZF-
NMP1 value of infinity [11]. Thus, in this framework different
purely Markov systems cannot be differentiated, representing
a degeneracy. Methodologies have been developed to explore
and analyze the behavior of these Markov processes given
only measurements of the system. An example of this is
modeling the unknown Markov system as a set of coupled,
Langevein equations (representing the restricted case of Eq. (1)
with the memory kernel term set to zero) and performing an
Eigenanalysis on the diffusion matrix of the corresponding
Fokker-Planck equation [26]. This approach was used to
successfully model the power response curves of wind farm
turbines [27].
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IV. EXPLICIT CALCULATION OF ZF-NMP1

FOR PHYSICAL SYSTEMS

In this section we derive the ZF-NMP1 for three instructive
stochastic processes: simple harmonic oscillation driven by
white noise, band-limited white noise, and the output of white
noise passed through an idealized all-pole filter. We perform
this analysis to understand how sensitive this parameter is to
specific variation in the measured power spectra. This provides
insight into what changes, in terms of spectral properties, the
ZF-NMP1 was detecting in the measured complex systems
analyzed in [5,12,14,15].

A. Simple harmonic oscillation driven by white noise

The SHO driven by white noise provides an excellent
bridge between understanding the (ZF-NMP1) in the original
framework of the Markovity of the system and the signal
processing framework of the structure of the spectrum. This
system also provides one of the few systems where the higher-
order memory power spectra can be analytically calculated.
The difficulty in the general case is due to the evaluation of the
Hilbert transforms. The dynamics of the SHO driven by white
noise are given by

d2x(t)

dt2
+ 2ζω0

dx(t)

dt
+ ω2

0x(t) = W (t), (22)

where ω0 is the angular natural frequency, ζ is the damping
ratio, and W (t) is the white noise stochastic process with
constant amplitude power spectrum.

The normalized power spectrum of this process is given by
[28]

M0(ω) = 4ζω3
0(

ω2
0 − ω2

)2 + 4ζ 2ω2
0ω

2
. (23)

Notice that M0(ω) decays O(ω−4) and thus λ0 = 0. The
contour integrals required to determine the �0 from the
spectral form of Eq. (13) are relatively difficult for arbitrary
ζ , ω0 parameters. Instead, the �0 relaxation parameter will
be determined from the autocorrelation function form for the
different damping regimes: over, under, and critically damped.

The normalized autocorrelation structure of the under-
damped (UD) SHO is given by [29]

m0(t)UD = e−ζω0|t |
[

cos(ω1t) + ζ√
1 − ζ 2

sin(ω1|t |)
]
,

(24)

where ω2
1 = ω2

0(1 − ζ 2) is the damped natural frequency. The
critically damped case is determined in the limit of ω1 →
0. The overdamped case is determined by setting ω1 → iω1,
which transforms the trigonometric functions in Eq. (24) to
hyperbolic trigonometric functions.

The �0 relaxation parameter is given for all three damping
regimes by

�0 = ω2
0. (25)

The ZF-NMP1 of the SHO driven by white noise can now be
written using Eqs. (20), (23), and (25) as

ε1(0) = 2ζ. (26)
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FIG. 1. (Color online) Power spectral density [M0(ω)] for the
SHO for different damping regimes of under (ζ = 0.1), over (ζ =
10), and critically damped (ζ = 1). Notice that as the damping ratio
is increased the spectrum becomes more spread, the zero-frequency
power increases, and the NMP increases. Inset is the low-frequency
behavior of the three oscillators.

Notice that the ZF-NMP1 depends solely on the damping ratio,
which is a measure of the amount of energy dissipation in
the system. Inspection of Fig. 1 shows that as the damping
ratio is increased the measured spectrum M0(ω) becomes more
spread out and the DC offset increases. The sole dependence of
the ZF-NMP1 on this ratio is particularly interesting, because
it explicitly states that the “Markovity” of this system (as
measured by the ZF-NMP1) is directly related to how quickly
the energy is dissipated. If the system is under-damped then
the deterministic free response will dominate the stochastic
forcing by the white noise process. If the system is over-
damped then the predictable free response will quickly die
out and the response will be dominated by the stochastic
white noise process. Thus, the damping is a measure of the
memory of the system. This analysis is entirely consistent
with the original description of the ZF-NMP1 [6] in terms of
the Markovity of a system with respect to its environment.

Notice that in the limit of an infinitely large damping ratio
the NMP approaches infinity. Analyzing the SHO dynamics
in the limit of the β term approaching infinity and recognizing
that the white noise process can informally be written as the
time derivative of a Wiener process, W (t) = dw(t)/dt , the
dynamics of this system in this limit can be written as

dx(t) = −ω0

2ζ
x(t)dt + 1

2mζω0
dw(t). (27)

This is the stochastic differential equation, which describes the
Ornstein-Uhlenbeck process. It is interesting to note that this
is a process that satisfies the conditions of being stationary,
Markov and Gaussian [30]. Thus, the NMP of the Ornstein-
Uhlenbeck process is infinite, which is in agreement with the
original definition of this parameter.

The higher-order memory power spectrum and kernel for
the critically damped SHO (the Hilbert transform being too
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difficult for arbitrary damping ratios) can be analytically
calculated:

|V0(ω)|2 = 4
(
ω2 + 4ω2

0

)
(
ω2 + ω2

0

)2

M1(ω) = 4ω0

ω2 + 4ω2
0

(28)

m1(t) = e−2ω0t . (29)

Notice that M1(ω) decays O(ω−2) and thus λ will be
nonzero. Using Eqs. (10), (12), and (29),

|V1(ω)|2 = 4

ω2 + 4ω2
0

M1(ω)

|V1(ω)|2 = ω0 (30)

λ1 = −2ω0 (31)

�1 = 0. (32)

Thus, the M2(ω) memory power spectrum will be infinite due
to the scaling by the inverse of �1. This shows that the second-
order zero frequency NMP will be zero. Analysis of Eq. (15)
shows the higher-order memory kernels and generalized NMP
will give pathological divide by zero solutions. This result can
be explained as follows: The exponential first-order memory
function satisfies the differential equation:

dm1(t)

dt
= λ1m1(t). (33)

This is exactly the Zwanzig-Mori Eq. (6) for the first memory
kernel m1(t) with the convolution term (and thus �1) equal to
zero. It is interesting to identify the unscaled second memory
power spectrum M2(ω) given by Eqs. (30) and (31) [that is
not obeying the constraint in Eq. (9)] is white noise. This
indicates the second-order memory kernel m2(t) will be a Dirac
δ distribution centered at time zero. This distribution cannot be
scaled such that it satisfies the requirements of Eq. (9), which
also helps explain why �1 is zero.

Figure 2 shows the first three numerically determined
memory kernels for the underdamped harmonic oscillator
(ζ = 0.25, ω0 = 200) using Eqs. (13) and (15) and assuming
Eq. (10) is satisfied. Notice that the M2(ω) term is constructed
assuming λ2 = 0 [thus, �2 is defined from Eq. (13) rather
than Eq. (12)], so that the flat white noise structure can be
identified. Notice that this flattening of the higher-memory
kernels is exactly as was postulated in Sec. II.

B. Band-limited white noise

The normalized power spectrum for the white noise process
banded between (−w0,+w0) is given by

M0(ω) = π

ω0
[θ (ω + ω0) − θ (ω − ω0)], (34)

where θ (· · · ) is the Heaviside distribution. The �0 relax-
ation parameter is given by the spectral form of Eqs. (13)
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FIG. 2. (Color online) Numerically determined first three mem-
ory power spectra for the underdamped SHO. Notice that for the
successively higher-memory power spectra the correlation structure
is lost, the spectra become more flat, and the third-order memory
power spectra M2(ω) appear to be approaching a white noise solution.
The edge effects are numerical issues associated with the numerical
estimate of the Hilbert transform.

and (34):

�0 = 1

2ω0

∫ +ω0

−ω0

ω2dω = ω2
0

3
. (35)

The first memory power spectrum is given by

M1(ω) = 12π [θ (ω + ω0) − θ (ω − ω0)]

ω0
[
π2 + ln

(∣∣ω+ω0
ω−ω0

∣∣)2] . (36)

The ZF-NMP1 is given by Eqs. (20), (34), and (35):

ε1(0) = π

2
√

3
. (37)

This is interesting because it shows that the ZF-NMP1

is independent of the bandwidth of the band-limited white
noise. Mathematically this can be understood to be due to
the normalization requirement, as the noise process occupies
more bandwidth and the spread increases, the amplitude of this
noise decreases and so does the DC offset. These two param-
eters must change such that the ZF-NMP1 remains constant.
We cannot extend our analysis to the infinite bandwidth white
noise process because the correlation structure is a Dirac δ

distribution for which it is not possible to normalize to unity,
nor define its derivatives in the limit of zero time as is required
for the relaxation parameters.

Figure 3 plots the first five numerically determined memory
power spectra of the band-limited white noise (ω0 = 50)
system using Eqs. (13), (17), and (34). Notice that all
the memory power spectra [except for the measured power
spectrum M0(ω)] converge to a common spectral structure,
indicating limited utility of the higher-order NMP. The
higher-order �n relaxation parameters will not equal zero
because the compact support of the band-limited white noise
prevent the memory power spectra from becoming white noise
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FIG. 3. (Color online) Numerically determined first five memory
power spectra for the band-limited white noise case (ω0 = 50). Notice
that the higher-order memory power spectra after the zeroth M0(ω)
term appear to converge to a common spectral structure.

solutions, or equivalently the autocorrelation function from
ever becoming a Dirac δ distribution.

C. Ideal all-pole filter

The ideal all-pole filter refers to a piecewise continuous
spectrum that consists in log-log (base e) space of a straight line
of height h, which goes from 0 to the corner frequency ωc, and
then another straight line that has a negative slope proportional
to the order of m, which goes from the corner frequency ωc to
infinity. The Bode plot of this spectrum is shown in Fig. 4. The
actual value of the height h is determined by the normalization
requirement of Eq. (9). This is an idealized filter because the
cusp (breakdown of the first derivative) at the corner frequency
creates an unphysical “infinite-power” requirement on the filter
[7]. Intuitively we expect the NMP to depend on both the order
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ln[P(ω)] = −2m(ln[ω]− ln[ω
c
]) + h

FIG. 4. (Color online) Bode plot of the ideal all-pole filter spec-
trum with corner frequency ωc and filter order m.

and corner frequency of the filter, but we show that it depends
solely on the slope of the tail (i.e., m) of the power spectrum.

We can mathematically represent the power spectrum of
our idealized all-pole filter in log-log (base e) frequency space
as

ln[Mn(ω)] =
{

h 0 � ln[ω] � ln[ωc]

−2m
(
ln

[
ω
ωc

]) + h ln[ωc] � ln[ω] � ∞.

(38)

We can map this to frequency space by taking the antilog
(in base e) of both sides of Eq. (38). There are two things
to notice: First, the power spectrum is symmetric about the
origin, whereas the log-log (in base e) power spectrum is one
sided. Thus, we make the solution obtained in frequency space
symmetric about the zero-frequency origin. The log-log (in
base e) power spectrum when mapped to the power spectrum
will start at ω = 1 (because e0 = 1 in the bounds for the
constant straight line). We simply extend the bounds of the
power spectrum to ω = 0 in frequency space.

The constant α = eh will be determined such that the
power spectrum has the appropriate normalization required
by Eq. (9):

α = π (2m − 1)

2mωc

. (39)

The power spectrum is given by

M0(ω) =
{

π(2m−1)
2mωc

0 � |ω| � ωc

π(2m−1)
2mωc

(
ω
ωc

)−2m
ωc � |ω| � ∞.

(40)

In order to simplify analysis, we will only consider ideal
all-pole filters of order m of 2 or higher.

The �0 relaxation parameter can be determined from the
spectral form of Eqs. (13) and (40):

�0 = (2m − 1) ω2
c

3 (2m − 3)
. (41)

Using Eqs. (20), (40), and (41), the ZF-NMP1 is given by

ε1(0) = π

m

√
(2m − 1)3

48 (2m − 3)
. (42)

The most interesting result from Eq. (42) is that, similar to
the band-limited white noise case, the ZF-NMP1 for the ideal
all-pass filter is independent of the corner frequency. The ZF-
NMP1 is sensitive to the order of the filter. Figure 5 shows
an inverse relationship between the decay rate of the tail of
the power spectrum and the ZF-NMP1 value. Similar to the
SHO, the more spread out the power spectrum, the larger the
ZF-NMP1. An obvious difference between these two systems
is that the ZF-NMP1 for the SHO is unbounded, whereas (at
least for m � 2) the ZF-NMP1 of the ideal all-pole filter is
approximately bounded between 1.17 (m = 2) and 0.9 (m →
∞). Notice that while the ZF-NMP1 does depend on the tail
of this spectrum, it is not particularly sensitive to it.

It can be seen that the ZF-NMP1 value for the ideal all-
pole filter converges to the band-limited white noise case for
sufficiently large slope order (m ≈ 10 or higher). This result is
to be expected, because as the slope of the ideal all-pole filter

022109-7



VARGHESE, BELLETTE, WEEGINK, BRADLEY, AND MEEHAN PHYSICAL REVIEW E 89, 022109 (2014)

10 10 10

10

10

10

10

10

10

10

Ideal All Pole Filter of Order m vs. ZF−NMP
1

 lo
g 10

 o
f ε

1(0
)

Filter Order m

FIG. 5. (Color online) Plot of ZF-NMP1 of the output of white
noise fed into the ideal all pole filter vs. slope order (m). Notice that for
sufficiently large slope order the NMP converges to the band-limited
white noise solution.)

increases, the spectrum will converge to the band-limited white
noise spectrum. It is trivial to formally show that the NMP of
this idealized all-pole filter converges to the band-limited white
noise process in the limit of infinite filter order:

lim
m→∞ ε1(0) = lim

m→∞ π

√
(2m)3

48m2 (2m)
= π

2
√

3
. (43)

Figure 6 plots the first five numerically determined memory
power spectra of the ideal all-pole filter (m = 4, ω0 = 50)
using Eqs. (13), (17), and (40). Notice that (similar to the
critically damped simple harmonic oscillator shown in Fig. 2)
the higher-order memory power spectra are flatter and lose the
correlation structure present in the measured M0(ω) spectrum.
This further validates the flattening of the higher memory
kernels as postulated previously in Sec. II. Again, this raises
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FIG. 6. (Color online) Numerically determined memory power
spectra for the ideal all-pole filter (m = 4, ω0 = 50). Notice that the
higher-order memory power spectra get considerably flatter.

questions about the utility of the higher-order NMP as system
metrics.

V. NUMERICAL DETERMINATION OF NMP FROM
SAMPLED TIME SERIES

We finish by determining the memory power spectra and
ZF-NMP1, using the closed form Eqs. (17)–(20), from what
can be considered as a model of the sampled time series of the
displacement of the SHO driven by white noise. We model the
system as a second-order auto regressive [AR(2)] process:

x[n] = φ1x[n − 1] + φ2x[n − 2] + εn,
(44)

where (φ1 = 0.9,φ2 = −0.8), εn ∼ N (0,1).

The choice of AR coefficients in Eq. (44) can be considered
related to the under-damped SHO driven by white noise [31].
We simulate 1000 data points of this process to generate a
discrete time series. We determine the memory power spectra
and ZF-NMP1 using solely this time series with no a priori
information about the AR coefficients or innovations, εn,
which define the process. A realization of this process (and
thus time series to be analyzed) is shown in Fig. 7.

The power spectrum of this process is determined from the
time series using the ARMAsel parametric spectrum estimator.
The technical details of this estimator are provided in Ref. [32]
but as an overview it fits the data to an optimal order (p) auto
regressive, order (q) moving average, or order (r, r-1) auto re-
gressive moving average model determined by an information
criteria. This criteria effectively provides a balance between
rewarding the reduction in residual variance and punishing the
increase in model order complexity. The parametric model
that gives the smallest estimate of the prediction error is
then selected and the estimated power spectrum is calculated
using the fast Fourier transform. Once the power spectrum
estimate is obtained, the higher-order memory power spectra
and generalized NMP can be determined using Eqs. (13), (17),
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FIG. 7. (Color online) Sample path realization of the AR(2)
process [φ1 = 0.9,φ2 = −0.8,εn ∼ N (0,1)] generated from Eq. (44).
This discrete time series is used to generate the memory power
spectra.
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FIG. 8. (Color online) First five numerical memory power spec-
tra estimates of the AR(2) process defined in Eq. (44). Notice that for
the successively higher-order memory power spectra the correlation
structure observable in the power spectral density is smeared out.
Also notice the spectrum is defined over the normalised frequency
range of (−π,π ).

and (18). The estimated memory power spectra are shown in
Fig. 8. Notice that similar to systems with a continuous power
spectrum analyzed in Sec. IV, the higher-order memory power
spectra appear to smear out the correlation structure observable
in the power spectrum.

An estimate of the ZF-NMP1 of this AR process can be
obtained from the time series by estimating the power spectrum
with the ARMAsel algorithm and using Eqs. (13) and (20).
This estimate (mean ± standard error) is averaged over 20
realizations (each 1000 data points) of the AR process to give

ε̂1(0) = 0.368 ± 0.0119. (45)

This solution can be compared to the true ZF-NMP1. The
unnormalized power spectrum of this process is given by [33]

M0(ω) = σ 2

1 + φ2
1 + φ2

2 − 2φ1(1 − φ2)cos(ω) − 2φ2cos(2ω)
,

(46)

where σ 2 is the variance of the innovations. Using Eqs. (13),
(20), and (46) the ZF-NMP1 of this process can be calculated
by numerical integration to be

ε1(0) = 0.359. (47)

Therefore, it can be seen that with appropriate statistical
averages (which are necessary given finite-time recordings
of stochastic processes) the ZF-NMP1 can be accurately
estimated from the time series data alone.

This example highlights several key points that are not
immediately clear in the analysis of the physically motivated
systems considered in Sec. IV. First, this time series could be
acquired without any knowledge of the underlying physics
driving this system. This would make the Mori-Zwanzig

interpretation of the non-Markovity (which requires parti-
tioning the dynamical system into subsets of observables of
interest and an interacting environment) extremely difficult to
perform. This is in contrast to the signal processing approach
introduced in this paper which interprets the non-Markovity
spectrum in the concrete terms of operations on the measured
power spectra. Second, this example provides a “real world”
application of estimating the non-Markovity spectra where the
underlying continuous power spectra is unknown and only
discrete samples of the measured time series corrupted with
noise are available. Problems of this nature are commonplace
in signals analysis and thus it is important to identify that the
closed form Eqs. (17) and (18) for the memory power spectra
and generalized NMP are applicable to this class of problem.
We refer the reader to Ref. [17] for a detailed description
regarding the issues associated with interpreting the underlying
continuous memory kernel from its discrete time estimate.

VI. CONCLUSIONS

The generalized non-Markov parameters have been used to
successfully differentiate states (as defined by the degree of
chaosisity and randomness) of complex interacting systems.
In this paper we have shown these parameters can be
understood as a set of closed-form expressions that only
depend on a nonlinear set of integral transform operations
on the measured signal’s power spectrum. We have argued
that the operations yielding the higher-order memory power
spectra and generalized NMP veil the underlying correlation
structure of the measured system in agreement with Ref. [17].
We have supported this argument with numerical simulation
of four instructive stochastic processes: a SHO driven by white
noise, band-limited white noise, the output of white noise
fed into an ideal all pole filter and an AR(2) process with
Gaussian innovations. These results suggest a sensitivity of
the ZF-NMP1 to the decay rate of the tail of the spectrum.

Last, we have shown that under the appropriate condition of
C1 or higher smoothness of the autocorrelation [or equivalently
O(ω−4) or faster decay rates of the tail of the spectral function],
the closed form expression for the ZF-NMP1 can be reduced
to depending solely on the spread and DC offset of the
measured power spectrum. These results provide an alternative
interpretation of the generalized NMP, which only depends
on the measured signal and does not require knowledge
of Mori-Zwanzig theory, nor interpretation of a complex
relationship between a measured system and its environment.
We have shown that these equations for the memory power
spectra and generalized NMP can readily be applied to systems
where only noisy discrete time samples are available. These
simplified expressions of the NMP in light of its previous
success in the analysis of complex systems provides insight
into what properties of the spectrum could be used in future
signal analysis of complex systems.
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