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Kardar-Parisi-Zhang equation with spatially correlated noise: A unified picture
from nonperturbative renormalization group
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We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially
correlated noise with power-law decay D(p) ∼ p−2ρ in Fourier space, using a nonperturbative renormalization
group approach. We determine the full phase diagram of the system as a function of ρ and the dimension d .
In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47,
14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and
long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above,
we show that, for all values of ρ, there exists a unique strong-coupling SR fixed point that can be continuously
followed as a function of d . We show in particular that the existence and the behavior of the LR fixed point do
not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise.
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I. INTRODUCTION

To describe interface roughening and its dynamical scal-
ing, Kardar, Parisi, and Zhang (KPZ) proposed a nonlinear
Langevin equation, which has now emerged as a fundamental
model to study nonequilibrium phase transitions and scaling
phenomena [1–4]. The KPZ equation [1] is written as follows:

∂h(t,�x)

∂t
= ν ∇2h(t,�x) + λ

2
(∇h(t,�x))2 + η(t,�x), (1)

where h(t,�x) is a single valued height profile which depends
on the d-dimensional spatial coordinate �x of the substrate and
on time t , ν is the surface tension, and η(t,�x) represents a
Gaussian noise with zero mean 〈η(t,�x)〉 = 0 and variance

〈η(t,�x)η(t ′,�x ′)〉 = 2D(�x − �x ′) δ(t − t ′). (2)

The nonlinear term proportional to λ is the essential ingredient
to capture the dynamical roughening of the interface [2–4].

The original KPZ equation is formulated with a purely
local noise of amplitude D, that is, D(�x − �x ′) = Dδd (�x − �x ′).
This equation encompasses the following behavior. It always
generates scaling in the stationary regime, characterized by
the dynamical z and the roughness χ critical exponents. For
dimensions d � 2, the interface always roughens, whereas
for d > 2, a nonequilibrium phase transition occurs for
a critical value λc of the nonlinearity, which separates a
strong-coupling (λ > λc) rough phase from a weak-coupling
(λ < λc) smooth phase corresponding to the linear Edwards
Wilkinson (EW) regime, with exponents z = 2 and χ =
(d − 2)/2. The ubiquity of the KPZ universality class has led
to considerable efforts over the past decades to understand
its statistical properties [2,3]. We do not review here all the
corresponding literature but only mention the most recent
contributions. For one-dimensional interfaces, an impressive
breakthrough has been achieved during the past few years both
theoretically [5–10] (and for a review, see, e.g., Ref. [11]) and
experimentally [12–14]. For higher-dimensional interfaces,

recent large-scale numerical simulations were launched to
refine the estimates of critical exponents and probability
distributions [15–19]. However, the progress is much slower,
leaving still unsettled debates such as the existence of an upper
critical dimension for this model.

Recently, we proposed a nonperturbative renormalization
group (NPRG) approach for the KPZ equation [20–22], which
successfully yielded the fully attractive [short-range (SR)]
strong-coupling fixed point describing the rough phase in all
dimensions. The associated exponents are in close (respec-
tively, reasonable) agreement in d = 2 (respectively, d = 3)
with the estimates from numerical simulations [15,16,23–28].
The finding of the fully attractive strong-coupling fixed point
allows one to show the emergence of generic scaling for the
two-point correlation and response functions. The resulting
scaling functions in d = 1 compare remarkably well with the
exact results [5,21]. These calculations have been extended in
any dimensions, giving in particular the two-point correlation
and response functions in d = 2 and d = 3 [22]. The ensuing
predictions for the associated universal amplitude ratios in
d = 2 have been recently accurately confirmed in lattice
simulations [18].

We here address the issue of the presence of long-range
(LR) correlated noise in the KPZ equation. Some experimental
realizations (such as wetting in porous media [29,30]) have
suggested that spatial correlations may exist at the microscopic
level, in the noise or in the hydrodynamical interactions [2–4].
This has triggered the study of the relevance of this type
of microscopic correlation, with regard to its impact on the
critical exponents and on the phase diagram. Several numerical
and theoretical studies have shown that spatial [31–43] and/or
temporal [44–47] noise correlations indeed lead to new phases
with modified exponents. Following Refs. [38–40,44], we
consider, in addition to the local δ-correlated SR noise, a
spatially correlated noise of the form

DLR(�x − �x ′) ∼ |�x − �x ′|2ρ−d , ρ � d/2. (3)
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More precisely, the full noise term in Fourier space is written
as follows:

D( �p) = D(1 + wp−2ρ), (4)

where p = | �p| and w is the relative amplitude of the LR noise.
The early dynamical renormalization group (DRG) analysis

by Medina et al. [44] predicted the existence of a rough
LR-dominated phase above a threshold value of the decay
exponent ρ of the LR noise, with associated ρ-dependent
critical exponents χ = (2 − d + 2ρ)/3 and z = 2 − χ . This
prediction was confirmed by a functional RG calulcation for
directed polymers [48]. Yet some other theoretical approaches,
based on a replica scaling analysis [49] or on a scaling
analysis in open dissipative systems [32], yielded alternative
predictions for the critical exponents and the threshold value of
ρ. As early numerical simulations, mainly in one dimension,
were not in accordance, the situation was unclear. However,
later simulations [50] of the Burgers equation in d = 1
clearly confirmed the original DRG results, which were
then also supported by a mode-coupling calculation [51], a
self-consistent expansion [40,43] (at least in d = 1), and exact
results from a DRG calculation using a stochastic Cole-Hopf
transformation by Janssen, Frey, and Täuber (JFT) [38,39].
We present below the findings of JFT, which will serve as a
reference for later comparison with our work.

JFT have shown that, in the presence of LR noise, new LR-
dominated weak-coupling phases exist. They also suggested
the existence of a LR-dominated strong-coupling phase even
if the perturbative analysis cannot find the associated fixed
point. Furthermore, they derived exact (i.e., valid to all orders
in perturbation theory) expressions for the corresponding
ρ-dependent exponents, including the LR-dominated strong-
coupling phase (under the assumption that the associated fixed-
point exists), which coincide with the DRG one-loop result.
The physical picture emerging from their work is as follows.
Below a lower critical dimension dc(ρ) = 2(1 + ρ), no smooth
phase is stable, that is, the interface is always rough and
the LR noise is either irrelevant at moderate ρ [ρ < ρSR(d)]
or dominates at larger ρ [ρ > ρSR(d)]. The computation of
ρSR(d) is not accessible perturbatively but is approximated
by JFT by a linear interpolation between the exact result
(ρ,d) = (1/4,1) and the point (ρ,d) = (1,4), deduced from
a mapping to the Burgers equation with nonconserved noise
(however, see below). Above dc(ρ), the two phases, smooth
and rough, exist and JFT find that the LR noise is always
relevant in the smooth phase while it is always irrelevant in
the rough phase. From their results, they infer that the upper
critical dimensions of the roughening transition and of the SR
rough phase below dc(ρ) are d = 4. JFT also conjecture that
the SR rough phases above and below dc(ρ) may be of two
different natures (called SR-I and SR-II in their paper), with
possibly different upper critical dimensions [38,39].

In the present paper, we revisit the work by JFT using
the NPRG approach, successfully developed for the (SR
noise) KPZ equation [20–22] and here generalized to include
Gaussian LR correlated noise. We derive the corresponding
NPRG flow equations at the next-to-leading order (NLO)
approximation of Ref. [22] and solve them to determine the
full phase diagram of the system for various values of ρ

and d. Our results are in close agreement with the results

of JFT in the weak-coupling sector. We recover in particular
the smooth LR phases predicted above dc(ρ) with their
exact critical exponents and correction-to-scaling exponents.
Furthermore, we find the two stable fixed-point solutions in the
strong-coupling regime (in their respective existence domain),
describing the SR and the LR rough phases, with the exact LR
exponents, and we compute the stability boundary line ρSR(d).
The obtention of the complete phase diagram of the system in
the (ρ,d) plane with all the expected fixed points constitutes
our main result. In particular, we find that there exists a unique
strong-coupling fixed point describing the SR rough phase in
all dimensions, which is not consistent with the conjecture by
JFT of the existence of two different rough phases SR-I and
SR-II above and below dc(ρ). Furthermore, we investigate the
phase diagram in the strong-coupling regime around d = 4,
at least qualitatively since the NLO approximation is no
longer accurate in this regime for d � 3.5. Combining our
findings and critical exponents from numerical simulations
[16,24–26,52], we argue that d = 4 may not necessarily be
the upper critical dimension of the SR rough phase. However,
as the value of the SR roughness exponent in d = 4 cannot be
reliably determined at this level of approximation, we cannot
conclude yet about the actual value of dc within NPRG, which
requires a higher-order approximation and is left for future
investigation.

The remainder of the paper is organized as follows. In
Sec. II, we briefly present the NPRG formalism for the
KPZ equation, including LR-correlated Gaussian noise and
the approximations used. We then derive the corresponding
flow equations. These equations are numerically integrated in
Sec. III, and the full phase diagram of the system is determined
and presented, including a discussion about the upper critical
dimension.

II. NONPERTURBATIVE RENORMALIZATION GROUP

A. KPZ field theory and symmetries

The field theory associated with the KPZ equation (1) with
both SR noise and Gaussian LR-correlated noise is derived in
Ref. [38], following the Janssen-de Dominicis procedure [53].
The KPZ dynamic generating functional is given by

Z[j,j̃ ] =
∫

D[h,ih̃] exp

(
−S[h,h̃] +

∫
x
{jh + j̃ h̃}

)
,

(5a)

S[h,h̃] =
∫

x

{
h̃(x)

(
∂th(x) − ν ∇2h(x) − λ

2
(∇h(x))2

)}

−
∫

q
{D h̃(−q)(1 + wq−2ρ)h̃(q)}, (5b)

where h̃ is the Martin-Siggia-Rose response field [54], j and
j̃ are sources, and the notation x ≡ (t,�x), q ≡ (ω,�q) was
introduced.

The symmetries of the KPZ action with correlated noise
are twofold: (i) the h-shift symmetry and (ii) the Galilean
symmetry. The additional discrete time-reversal symmetry of
the one-dimensional SR KPZ equation is no longer realized in
the presence of correlated noise. Moreover, as in the SR KPZ
case, the symmetries (i) and (ii) are gauged in time [21,55] and
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correspond to the following infinitesimal field transformations:

(i)

{
h′(t,�x) = �x · ∂t �v(t) + h(t,�x + λ�v(t))
h̃′(t,�x) = h̃(t,�x + λ�v(t))

, (6a)

(ii) h′(t,�x) = h(t,�x) + c(t). (6b)

where c(t) and �v(t) are arbitrary infinitesimal time-dependent
quantities. The variations of the KPZ action (5b) under these
time-gauged transformations are linear in the fields and thus
entail simple Ward identities, with a stronger content than
the usual nongauged ones [21]. The detailed analysis of these
symmetries is at the heart of the construction of the NPRG
approximation scheme, derived in Ref. [21].

B. NPRG formalism

The general NPRG formalism for nonequilibrium systems
is presented in Refs. [56–58], and its specific application to
the KPZ equation in Ref. [21]. We only recall here the main
elements, following Ref. [21]. In the spirit of Wilson’s RG
ideas, the NPRG formalism consists in building a sequence
of scale-dependent effective models such that fluctuations are
smoothly averaged as the (momentum) scale κ is lowered
from the microscopic scale �, where no fluctuations are yet
included, to the macroscopic scale κ = 0, where they are all
summed over [59,60]. For classical nonequilibrium problems,
one formally proceeds as in equilibrium, but with the presence
of the response field, and additional requirements stemming
from Itō’s discretization and causality issues [56,61].

To achieve the separation of fluctuation modes within
the NPRG procedure, one adds to the original action S a
momentum and scale-dependent masslike term as follows:

�Sκ = 1

2

∫
q
hi(−q) [Rκ (q)]ij hj (q), (7)

where the indices i,j ∈ {1,2} label the field and response field,
respectively h1 = h,h2 = h̃, and summation over repeated
indices is implicit. The matrix elements [Rκ (q)]ij are pro-
portional to a cutoff function r(q2/κ2), with q = |�q|, which
ensures the selection of fluctuation modes: r(x) is required
to almost vanish for x � 1 such that the fluctuation modes
hi(q � κ) are unaffected by �Sκ , and to be large when x � 1
such that the other modes (hi(q � κ)) are essentially frozen.
Furthermore, �Sκ must preserve all the symmetries of the
problem and causality properties. As advocated in Ref. [21],
an appropriate choice is

Rκ (ω,�q) ≡ Rκ (�q) = r

(
q2

κ2

) (
0 νκq

2

νκq
2 −2Dκ

)
, (8)

where the running coefficients νκ and Dκ , defined later
[Eq. (17)], are introduced in the regulator for convenience [20].
Here we choose the cutoff function

r(x) = α/(exp(x) − 1). (9)

The dependence of our results on the parameter α is discussed
in Appendix B.

In the presence of the mass term �Sκ , the generating
functional (5a) becomes scale dependent,

Zκ [j,j̃ ] =
∫

D[h,ih̃] exp

(
−S − �Sκ +

∫
x
{jh + j̃ h̃}

)
.

(10)

Field expectation values in the presence of the external sources
j and j̃ are obtained from the functional Wκ = logZκ as

ϕ(x) = 〈h(x)〉 = δWκ

δj (x)
, ϕ̃(x) = 〈h̃(x)〉 = δWκ

δj̃ (x)
. (11)

The effective action �κ [ϕ,ϕ̃] is defined as the Legendre
transform of Wκ (up to a term proportional to Rκ ) as
follows [56,59,62]:

�κ [ϕ,ϕ̃] + Wκ [j,j̃ ] =
∫

jiϕi − 1

2

∫
ϕi [Rκ ]ij ϕj . (12)

The exact flow for �κ [ϕ,ϕ̃] is given by Wetterich’s equation,
which in Fourier space is written as follows [59,63]:

∂κ�κ = 1

2
Tr

∫
q
∂κRκGκ, (13)

where

Gκ = [
�(2)

κ + Rκ

]−1
(14)

is the full, that is, field-dependent, renormalized propagator of
the theory. When κ is lowered from � to 0, �κ interpolates
between the microscopic model �κ=� = S and the full
effective action �κ=0 that encompasses all the macroscopic
properties of the system [56]. Of course, Eq. (13) cannot
be solved exactly, and one has to resort to an appropriate
approximation scheme, adapted to the specific model under
study and in particular to its symmetries.

C. Approximations

1. Next-to-leading order (NLO) approximation

In Ref. [21], inspired by the previous work in equilibrium
statistical mechanics of Refs. [64–66], an approximation
scheme is devised, which consists in building an ansatz for
�κ explicitly preserving the gauged shift (6b) and gauged
Galilean (6a) symmetries. The building blocks are the Galilean
invariants ϕ̃, ∇2ϕ, the covariant time derivative Dtϕ ≡ ∂tϕ −
(∇ϕ)2/2, combined with the operators D̃t ≡ ∂t − ∇ϕ · ∇ and
∇2. We work here in the rescaled theory, where ν = D = 1
and λ → √

gb = λD1/2/ν3/2. Within this scheme, the “second
order” (SO) ansatz for �κ writes

�κ [ϕ,ϕ̃] =
∫

x

{
ϕ̃f λ

κ

(−D̃2
t ,−∇2

)
Dtϕ − ϕ̃f D

κ

(−D̃2
t ,−∇2

)
ϕ̃

− 1

2

[∇2ϕf ν
κ

(−D̃2
t ,−∇2

)
ϕ̃

+ ϕ̃f ν
κ

(−D̃2
t ,−∇2

)∇2ϕ
]}

, (15)

where f X
κ , X ∈ {ν,D,λ} are three running functions. It is a

truncation at quadratic order in the response field ϕ̃, while the
complete momentum and frequency dependence of the two-
point functions is preserved. Note that infinite powers of the
field itself are included through the covariant time derivatives
D̃t . At the bare level κ = �, and for purely local noise, one
has f λ

� = f ν
� = f D

� = 1,
The SO flow equations for the functions f X

κ , derived in
Ref. [21], were integrated in the simpler one-dimensional
case, where the additional time-reversal symmetry imposes
that there remains only one independent running function.
The scaling functions associated with the two-point correlation

022108-3



KLOSS, CANET, DELAMOTTE, AND WSCHEBOR PHYSICAL REVIEW E 89, 022108 (2014)

function were computed and showed an impressive agreement
with the exact results [5,21]. However, the integration of the SO
flow equations in generic dimensions appears rather involved,
and a further simplification was proposed in Ref. [22]. This
approximation, referred to as NLO, consists in neglecting
the frequency dependence of the three flowing functions
f X

κ (ω, �p) → f X
κ ( �p) within the loop integrals, that is, the

right-hand side of the flow equations. The NLO flow equations
can be found in Ref. [22], where they were integrated in
d = 2 and d = 3 and the scaling functions associated with the
two-point correlation and response functions were computed.
The related prediction for a universal amplitude ratio in d = 2
was very recently confirmed with great accuracy in lattice
simulations [18].

In the present paper, we work with LR noise at the
NLO approximation. Moreover, we focus on zero external
frequency, since we are merely interested in the phase diagram
and in the critical exponents and not in the full scaling
functions. The zero-frequency sector is decoupled from the
nonvanishing frequency sector within the NLO approximation,
and we denote f X

κ (ω = 0, �p) ≡ f X
κ ( �p) for simplicity. The

inclusion of the noise Eq. (4) then simply amounts to the
substitution

f D
κ ( �p) → Dκ ( �p) = f D

κ ( �p) + wκp
−2ρ (16)

(with bare condition w� = w) in the NLO ansatz. The first
term f D

κ ( �p) corresponds to the renormalized SR contribution
at scale κ and the second term to the LR one. This separation
in terms of a regular (f D

κ ( �p)) and a nonanalytic (wκp
−2ρ)

part holds for all κ because, as the flow is regularized in
the IR and finite in the UV, it cannot generate nonanalytic
contributions. Correspondingly, the nonanalytic part is not
renormalized (∂κwκ = 0) and the coupling wκ remains equal
to its bare value. Thus, in the presence of LR noise, the NLO
flow equations for the three functions f X

κ are identical to those
for the local SR case up to the substitution (16).

The gauged shift symmetry implies the nonrenormalization
of f λ

κ (0) that therefore remains equal to unity for all κ . More-
over, the Galilean symmetry implies the nonrenormalization of
the nonlinear coupling λ. We hence define two scale-dependent
parameters Dκ and νκ as follows:

Dκ ≡ f D
κ (0), νκ ≡ f ν

κ (0). (17)

These two running coefficients yield two running anomalous
dimensions, defined according to

ηD
κ = −κ∂κ ln Dκ and ην

κ = −κ∂κ ln νκ, (18)

which fixed-point values, indexed by *, are related to the
physical critical exponents by

z = 2 − ην
∗, χ = (2 − d + ηD

∗ − ην
∗)/2. (19)

In order to study fixed-point properties, we introduce
dimensionless quantities. The dimensionless couplings are

ŵκ = wκ D−1
κ κ−2ρ, (20a)

ĝκ = gb κd−2 Dκ/ν
3
κ , (20b)

and their flow equations, due to the nonrenormalization of
wκ and λ, are, hence, reduced to their dimensional parts as

follows:

∂sŵκ = ŵκ

(
ηD

κ − 2ρ
)
, (21a)

∂sĝκ = ĝκ

(
d − 2 + 3ην

κ − ηD
κ

)
, (21b)

with ∂s ≡ κ∂κ . The dimensionless running functions are
defined by

f̂ X
κ (p̂) = f X

κ (p)/Xκ (22)

for X ∈ {D,ν,λ} and Xκ ∈ {Dκ,νκ,1}, and their flows write

∂sf̂
X
κ (p̂) = ηX

κ f̂ X
κ (p̂) + p̂ ∂p̂f̂ X

κ (p̂) + Î X
κ (p̂), (23)

with p̂ = p/κ , ηX
κ ∈ {ηD

κ ,ην
κ ,0}, and the ÎX

κ (p̂) are the loop
integrals, which explicit expressions are given in Ref. [22] up
to the substitution (16).

The five flow equations [(21) and (23)] are solved numeri-
cally with Euler time stepping and �s = −4 × 10−4 in the RG
“time” s. The three flowing functions f̂ X

κ are set to unity at the
initial scale s = 0. We observe that the flow always converges
to a stable fixed point, which nature depends on the initial
conditions for ĝ� = gb and ŵ�. From these flows, one then
deduces the phase diagram in the (ĝ,ŵ) plane for each value
of the parameters (ρ,d), which is discussed in Sec. III.

2. Local potential approximation

As studied in detail in Ref. [22], the NLO approximation
gives a reliable quantitative description of the SR fixed point up
to d  3.5. However, the numerical cost to solve the coupled
NPRG flow equations is high, especially as the flow, in the
vicinity of unstable fixed points, slows down to an impractical
time scale. To fully explore the phase diagram, it is therefore
convenient to sometimes resort to an additional approximation,
usually referred to as the local potential approximation prime
(LPA′) [62], where only field-independent renormalization
coefficients are kept. It thus consists in the following sim-
plification:

f̂ X
κ (p̂) → f̂ X

κ (0) ≡ 1. (24)

The LPA′ was shown to capture the qualitative structure of
the phase diagram in the pure SR case, although the estimate
for the critical exponents rapidly deteriorates as the dimension
grows [67]. This approximation will be used to determine the
weak-coupling part of the phase diagram. The complete NLO
approximation is, however, necessary to study the boundary
between the SR- and LR-dominated rough phases in d = 2
and 3. It indeed turns out that the value of the roughness
exponent χ is overestimated at the LPA′, such that the stability
change of the SR and LR fixed points is shifted to unphysical
values where ρ > d/2 in this approximation, see Eq. (3). In
the following, we will indicate whether the NLO or the LPA′
is used.

D. Change of variables

As found by JFT, the LR weak-coupling fixed points
(EWLR1 and EWLR2, see below) describing the smooth phase
when it exists have an infinite noise amplitude coordinate
ŵ∗ = ∞. It is therefore convenient to change variables such
that the fixed-point coordinates remain finite. We choose the
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FIG. 1. (Color online) RG trajectories in the (ŷ ′,x̂) plane in d = 2
for (a) ρ = 0.3 and (b) ρ = 0.7 obtained with the LPA′. Increasing
ρ, the LR fixed point moves from the unphysical quadrant x̂ < 0 [not
shown in panel (a)] to the physical one [panel (b)] through crossing
the SR fixed point that thus simultaneously changes stability in the ŷ ′

direction.

same variables as JFT [38,39], namely

x̂κ = ŵκ

1 + ŵκ

, ŷκ = 1

4ρ
(1 + ŵκ )2ĝκ , (25)

to simplify the comparison.

FIG. 2. (Color online) RG trajectories in the (ŷ ′,x̂) plane in d = 3
for increasing values of ρ: (a) ρ = 0.24, (b) ρ = 0.3, (c) ρ = 0.4,
(d) ρ = 0.52, (e) ρ = 0.9, obtained with the LPA′ for (a) to (d) and
NLO for (e). Panels (a) and (b): The EWLR2 fixed point enters into
the physical quadrant ŷ ′ > 0 and EWLR1 changes its stability. Panel
(c): The TLR fixed point enters into the physical quadrant x̂ > 0
and T changes stability. Panel (d): The TLR fixed point merges with
EWLR2 that changes stability. Panel (e): The LR fixed point enters
into the physical quadrant x̂ > 0 and the SR fixed point changes
stability.

FIG. 3. (Color online) RG trajectories in the (ŷ ′,x̂) plane in d = 3
and for increasing values of ρ: (a) ρ = 0.24, (b) ρ = 0.3, (c) ρ = 0.5,
and (d) ρ = 0.52, obtained with the perturbative flow equations (A1).
The rapid move of TLR in Fig. 2 is replaced by a fixed line joining
T and EWLR2 displayed in (c), the rest of the (weak-coupling part
of the) flow diagrams being very similar to the nonperturbative ones.
(Note the difference of the ŷ ′ scale.)

In terms of the new couplings x̂ and ŷ, the flow
equations (21) become

∂sx̂κ = x̂κ (1 − x̂κ )
(
ηD

κ − 2ρ
)
, (26a)

∂sŷκ = ŷκ

(
2x̂κ

(
ηD

κ − 2ρ
) + d − 2 + 3ην

κ − ηD
κ

)
, (26b)

where we have implicitly assumed that the anomalous dimen-
sions ηX

κ , which depend on ĝκ and ŵκ , are now expressed in
terms of x̂κ and ŷκ .

Let us finally define the variable ŷ ′
κ = vd ŷκ/4, where v−1

d =
2d−1πd/2�(d/2) is related to integration volume, which is used
for graphical convenience in all the representations of flow
diagrams, Figs. 1–4.

III. RESULTS

A. Fixed points

We study in the following the existence and stability of the
fixed-point solutions of the NPRG flow equations (26) and (23)

FIG. 4. (Color online) RG trajectories in the (ŷ ′, x̂) plane in
d = 4 for (a) ρ = 1.125 and (b) ρ = 1.25 obtained with NLO. The
LR fixed point lies away from the Gaussian fixed point and is fully
attractive for ρ � 1.14.
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as functions of d and ρ. Three fixed points correspond to a
vanishing ĝ∗ and are thus referred to as Edwards-Wilkinson
fixed points. One (denoted EW) is at (x̂∗ = 0,ŷ∗ = 0) while
two others (EWLR1 and EWLR2) correspond to infinite ŵ∗,
that is, x̂∗ = 1. Another fixed point, denoted T (for transition),
exists at x̂∗ = 0 and ŷ∗ > 0 (for d > 2) and separates at
vanishing LR noise amplitude the smooth and rough phases.
All these four fixed points were found perturbatively and their
coordinates, stability, and associated exponents were obtained
exactly in the Cole-Hopf representation of the theory [38].
Besides these fixed points, we find three others. Two, denoted
SR and LR, describe the rough phase, respectively, when
the LR noise is irrelevant and relevant. These fixed points
are genuinely nonperturbative, that is, are not accessible at
any order of the perturbative expansion. The last fixed point,
denoted TLR (for transition in the presence of LR noise), exists
in a (narrow) band of the (ρ,d) plane that separates, above
the band, a region where there exists a transition between
the smooth and rough phases, and below the band, a region
where there is no stable smooth phase and where the long-
distance physics is described by either SR or LR (when,
initially, the amplitude of the noise is nonvanishing).

1. Edwards-Wilkinson fixed point

The EW fixed point corresponds to (x̂∗,ŷ∗) = (0,0), which
implies ηD

∗ = ην
∗ = 0 and χEW = (2 − d)/2, zEW = 2. This

fixed point is always unstable with respect to LR noise, i.e., in
the x̂ direction. It is repulsive (respectively, attractive) in the ĝ

(or ŷ) direction for d � 2 (respectively, d > 2).

2. EWLR1 fixed point

This fixed point is located at (x̂∗,ŷ∗) = (1,0). It is always
attractive in the x̂ direction while it is attractive (respectively,
repulsive) for d > dEWLR(ρ) = 2(1 + 2ρ) (respectively, for
d < dEWLR(ρ)) in the ŷ direction; see Appendix A. At this
fixed point, ην

∗ = ηD
∗ = 0, and the exponents are χEWLR =

(2 − d + 2ρ)/2 and zEWLR = 2. The associated correction-
to-scaling exponents are ω1 = 2ρ and ω2 = d − 2 − 4ρ; see
Appendix A.

3. EWLR2 fixed point

The EWLR2 fixed point exists for d � dEWLR(ρ) [it
coincides with EWLR1 at d = dEWLR(ρ)] and is located at
x̂∗ = 1 and ŷ∗ � 0; see Eq. (A14). It is always attractive in
the ŷ direction, while its stability in the x̂ direction changes at
d = dc(ρ) = 2(1 + ρ), from unstable for d < dc(ρ) to stable
for d > dc(ρ). The critical exponents χEWLR and zEWLR are
identical in the two LR smooth phases. However, as already
emphasized by JFT, they differ by their correction-to-scaling
exponents, which are for EWLR2 ω1 = d − 2 − 2ρ and ω2 =
4ρ − (d − 2); see Appendix A.

4. Transition fixed point

The transition fixed point T exists for d � 2 at x̂∗ = 0 and
ŷ∗ � 0 (it coincides with EW in d = 2). It is always unstable
in the ŷ direction. In the Cole-Hopf representation, the change
of stability of T in the x̂ direction occurs exactly at d = dc(ρ)
[or, equivalently, at ρc(d) = (d − 2)/2], simultaneously with

the change of stability of EWLR2, via the appearance of a line
of fixed points joining the two fixed points [38]. Within our
approximations, we find, at fixed d, that T is stable in the x̂

direction at small ρ and that its stability changes at ρT
c (d) =

(d − 2 + 3χT)/2 � ρc(d) [or, equivalently, at dT
c (ρ)] since the

exact value for the critical exponent at the transition χT = 0
is only recovered approximately within our approximations.
(Given that NLO and LPA′ are exact at one loop, we find, as
expected, χT = O(ε2). However, when d grows, it becomes
slightly negative rather than strictly vanishing).

5. TLR fixed point

This fixed point is found for ρT
c (d) < ρ < ρc(d) [equiv-

alently, for dT
c (ρ) > d > dc(ρ)] and has coordinates x̂∗ > 0

and ŷ∗ > 0. It is unstable in the ŷ direction and drives the
transition between SR and EWLR2. As explained above, in the
Cole-Hopf representation, the stabilities of the two fixed points
T and EWLR2 are switched together through the appearance
at ρ = ρc(d) of a fixed line joining them. This feature is not
preserved by our approximation. We find instead that at fixed
d and upon increasing ρ, the TLR fixed point first crosses T
at ρT

c (d) and then travels up the entire plane 0 < x̂ < 1 before
eventually crossing EWLR2 at ρc(d). The line of fixed points
is thus replaced by the TLR fixed point which moves very
rapidly between T and EWLR2 as ρ is increased. This feature
is probably an artifact of our approximations (if the line of fixed
points is an exact result, valid beyond perturbation theory).
However, the flow is modified only in a narrow band between
ρT

c (d) and ρc(d), and the physically observable phases remain
unaffected, controlled by the fully attractive EWLR2 or SR
fixed point (compare Figs. 2 and 3).

6. Short-range fixed point

The SR fixed point is located at x̂∗ = 0 and ŷ∗ > 0. It exists
in all dimensions and describes the rough (strong-coupling)
phase of the KPZ equation without LR noise. Within all our
approximations (except the LPA′), the associated exponents
are in good agreement with the numerical ones in d = 2 and
d = 3 [20–22]. The quality of our approximations deteriorates
with increasing dimension and none of them yields reliable
quantitative results above typically d = 3.5. In all dimensions
we find that SR is stable in the ŷ direction. Its stability in the
noise direction can be inferred from Eqs. (19) and (26), that is,

∂sx̂κ = x̂κ (1 − x̂κ )(d − 2 + 3χSR − 2ρ). (27)

The sign change of the β function in the x̂ direction hence
occurs at

dSR = 2 + 2ρ − 3χSR. (28)

At fixed d, the SR fixed point is attractive in the noise direction
for ρ < ρSR(d) = (d − 2 + 3χSR)/2 and becomes repulsive
beyond this value.

7. Long-range fixed point

The LR fixed point has coordinates x̂∗ > 0 and ŷ∗ > 0
and describes a strong-coupling rough, LR-dominated phase.
At fixed d, it exists for ρ > ρSR(d) [it coincides with SR
at ρ = ρSR(d)] and is attractive in all directions. Under the
assumption that it indeed exists, the associated exponents have
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TABLE I. Location of the boundary line ρSR(d) between the SR
and LR phases as a function of the dimension d from JFT [38], NLO
(this work, α = 4, see Appendix B), and numerical simulations (mean
values from Refs. [15,16,23–28]).

d 1 2 3 4

ρJFT
SR 1/4 1/2 3/4 1

ρNLO
SR 1/4 0.57 0.79 –

ρnum.
SR 0.25 0.57 0.95 1.37

been determined exactly in the Cole-Hopf representation [38],

χLR = (2 − d + 2ρ)/3, zLR = (4 + d − 2ρ)/3, (29)

and are also obtained exactly from the NPRG Eqs. (19)
and (21) at any nontrivial fixed point with nonvanishing
LR noise. Let us notice that the LPA′ is not sufficient to
find with a reasonable accuracy the value of ρSR(d), where
SR and LR exchange their stability and we resorted to
the complete NLO approximation to get it. We compare in
Table I the location of the boundary line ρSR(d) between the
SR and LR phases obtained with different approaches. The
JFT result corresponds to a linear interpolation ρSR(d) = d/4
proposed by these authors [38]. The NLO and the numerical
results correspond to the value of ρ verifying χLR = χSR,
that is, ρSR(d) = (3χSR + d − 2)/2, where the values for χSR

are obtained respectively from the NLO approximation or
numerical simulations [15,16,23–28].

B. Discussion of the phase diagram

After having characterized all the fixed-point solutions
of the NPRG flow equations, we now provide a complete
picture of the phase diagram (see Fig. 5). There are two
distinct situations depending on the dimension. First, we
confirm the general picture found by JFT. That is, for d <

dc(ρ), the interface is always rough, with a phase boundary
ρSR(d) separating the usual strong-coupling SR phase for
ρ < ρSR(d) and a LR-dominated phase with ρ-dependent
critical exponents for ρ > ρSR(d). Above dc(ρ), the T fixed
point drives a transition between a smooth LR phase and a
rough SR phase. In the following, we discuss the details of the
phase diagram, reasoning rather at fixed d and for varying ρ,
which is closer in spirit to what can be observed in simulations.

For d � 2, the system is always in a rough phase and for
ρ � ρSR(d) the flow is driven to the SR fixed point whatever the
initial condition is, provided the nonlinearity is nonvanishing
(λ > 0); see Fig. 1(a). In this case, the presence of the LR
noise does not change the long distance physics of the KPZ
equation. At ρ = ρSR(d), the LR fixed point crosses SR and
enters the physical quadrant x̂ > 0 for ρ > ρSR(d). It is then
fully attractive and drives the long-distance physics of any
model showing nonvanishing LR noise; see Fig. 1(b).

For d > 2, the situation is more complex. At vanishing
LR noise amplitude (w� = 0), the fixed point T separates a
smooth (at small g�) and a rough (at large g�) phase. The
smooth phase is described by the usual EW fixed point and the
rough phase by the SR fixed point. For ρ < ρc(d) = (d − 2)/2
and nonvanishing noise amplitudes, there exists a critical line

FIG. 5. Phase diagram of the KPZ equation with spatially LR-
correlated noise in the (ρ,d) plane. Bounds between the regions,
which are indicated by black lines, are given by dEWLR(ρ) =
2(1 + 2ρ), dc(ρ) = 2(1 + ρ) and dSR(ρ) defined by (28) where
averaged values for χSR are taken from numerical simulations (mean
values from Refs. [15,16,23–28]). LR is the unique fully attractive
fixed point in the dark gray region. In the other regions there is either
a phase transition between a smooth and a rough phase where the LR
noise is irrelevant or, below dc(ρ), only a rough phase described by
SR. The TLR fixed point exists in the gray region between the lines
dT

c and dc; see Sec. III A 4.

(highlighted in blue in Figs. 2 and 3) ending at T also separating
a smooth and a rough phase. This line is nontrivial as can be
seen in Figs. 2(a)–2(c). Depending on ρ, the flow in the smooth
phase is either driven, for ρ < (d − 2)/4 to EWLR1 [Fig. 2(a)]
or for (d − 2)/2 > ρ > (d − 2)/4 to EWLR2 [Fig. 2(b)]. In
the rough phase, the flow is driven to SR for ρ < ρSR(d)
[Figs. 2(a)–2(d)], which becomes fully attractive in the entire
(ŷ ′,x̂) plane for ρc(d) < ρ < ρSR(d) [Figs. 2(d)]. In this case,
the LR noise is irrelevant and the LR fixed point lies in the
unphysical quadrant x̂ < 0. For ρ > ρSR(d), the LR fixed
point crosses SR and appears in the physical quadrant x̂ > 0
becoming the dominant, fully attractive fixed point [Fig. 2(e)].
For ρ > ρc(d) and d > 2, the flow is thus very similar to what
is found in d � 2: Either ρ < ρSR(d) and SR is fully attractive
or ρ > ρSR(d) and LR is fully attractive and governs the rough
phase. Let us emphasize that we can follow continuously all
these fixed points in the (ρ,d) plane and that there are no
two distinct SR phases contrary to what was conjectured in
Ref. [38].

As already mentioned, if no approximations were per-
formed and if one worked in the perturbative Cole-Hopf
approach, a fixed line joining T to EWLR2 would appear
exactly at ρ = ρc(d) and for ρ > ρc(d) both fixed points
would become unstable; see Fig. 3. Instead, within our
approximations and upon increasing ρ at fixed d, the unstable
fixed point TLR crosses T for ρ = ρT

c (d), moves very rapidly
towards EWLR2, and, finally, crosses this fixed point at
ρ = ρc(d) [Figs. 2(c) and 2(d)], changing the stability of
these fixed points upon crossing them. However, this little
discrepancy does not modify qualitatively the rest of the phase
diagram and the physically observable phases are unaffected
(compare Figs. 2 and 3).
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C. Discussion about the upper critical dimension

We have followed the LR fixed point up to dimension
4 for ρ  1 [68]. We observed that it does not lie close
to the Gaussian fixed point near ρ = 1 and d = 4 − ε. In
fact, within the NLO approximation, we find in d = 4 that
a transition between the SR- and LR-dominated phases occurs
at ρSR(4)  1.14, such that the LR fixed point becomes the
stable fixed point for ρ > ρSR(4) with a finite value of ŷ∗,
see Fig. 4. We recall that our results in the strong-coupling
phase show a large dependence on the choice of regulators for
dimensions larger than typically 3.5, which strongly suggests
that our approximations are not accurate in this case; see
Appendix B. However, there is no doubt that the LR fixed
point cannot become Gaussian in d = 4 and ρ = 1. As a
matter of fact, if it were Gaussian, it would exist as a solution
of the perturbative expansion of our NPRG equations since
our approximations, either the LPA′ or NLO, are exact at
one-loop order by construction. There is no such a solution.
To put it differently, while the strong-coupling regime of the
problem becomes out of reach of our approximations in large
dimensions, the weak-coupling regime remains under control.
In the NPRG calculations, the case d = 4 and ρ = 1 does
not map onto the Burgers equation with nonconserved noise
(i.e., model B of Forster et al. [69] applied to the Burgers
equation). In the latter, only a LR noise is present and it does
not include a SR part, such that nothing can be inferred from
this model about the stability of the LR fixed point against
a SR component. The reason for the discrepancy with JFT
who advocated this mapping is that, in the RG approach, the
SR noise is generated by the flow even if it is not present
initially and it cannot be neglected. The full complexity of the
KPZ equation with both types of noise, and their competition,
cannot be avoided to determine their respective relevance. As a
result, the usual power counting argument performed in model
B (for LR ρ = 1 without a SR component) leading to an upper
critical dimension of 4 for LR cannot be applied here.

Within the NPRG framework, as already mentioned, the
NLO approximation is not accurate above d  3.5. However,
the qualitative structure of the obtained phase diagram in d = 4
in the strong-coupling sector (Fig. 4), together with some
inputs from numerical simulations for the critical exponent,
open up another possibility, which we now stress. The stability
exchange between SR and LR proceeds when LR comes across
SR from below, which occurs for χSR = χLR. Thus, if χSR > 0
in d = 4, as suggested by numerical simulations, SR appears
as the stable fixed point for ρ = 1, dominating over LR, which
has χLR = 0 and still lies in the unphysical quadrant x̂ < 0
of the coupling constant space (see Fig. 5). From simulation
results for χSR, the SR stability change in d = 4 occurs around
ρSR  1.38, and thus SR is still fully attractive at ρ = 1
[16,24–26,52].

Let us summarize the previous discussions of the phase
diagram and of d = 4. We emphasized that the existence of
two different types of SR phases above and below dc(ρ) with
different upper critical dimensions is not consistent with our
finding of a unique SR fixed point. However, we proposed
an alternative scenario which could reconcile numerical
simulations and RG analysis, namely that the LR fixed point
is unstable against SR at d = 4 and ρ = 1. Let us emphasize

once more that we cannot settle yet whether this scenario is
realized within NPRG, i.e., whether χSR is vanishing in d = 4.
Doing so requires a higher-order approximation, and this issue
will be addressed in future work.

IV. CONCLUSION

In the present work, we investigated, using NPRG, the phase
diagram of the KPZ equation with Gaussian LR correlated
noise with power-law decaying correlator D(p) = D(1 +
wp−2ρ) in Fourier space. We generalized the NPRG flow
equations in the NLO approximation to include LR noise. We
then integrated them numerically to determine the complete
phase diagram of this model as a function of d and ρ and
confronted it with the results obtained by JFT, which are valid
to all orders in perturbation theory.

In the weak-coupling sector, the two approaches are in
close agreement. We recover in particular that above dc(ρ) =
2(1 + ρ), the smooth phase is LR dominated and is controlled
by one of the two weak-coupling LR fixed points EWLR1 or
EWLR2, with their exact critical exponents and correction-
to-scaling exponents. One difference appears between the two
approaches: the line of fixed point joining T and EWLR2 at
exactly ρc(d) = (d − 2)/2 is replaced in the NPRG approach
at NLO by an unstable fixed point TLR rapidly moving from
T to EWLR2 as ρ is increased in the vicinity of ρc. This
difference may originate in the fact that the transition fixed
point T is only approximately described within the NLO
approximation. It has, however, a negligible impact on the
structure of the phase diagram.

In the strong-coupling sector, we find the two fixed points
that govern the SR and LR rough phases, which constitutes
our main result. They exchange their stability when LR comes
across SR from an unphysical quadrant of the coupling space
which occurs for zLR = zSR. We hence computed the phase
boundary ρSR(d) which is not accessible within perturbation
theory. All of the fixed points can be followed continuously
when ρ and d are varied, and we show in particular that there
exists a unique SR fixed point. This is not consistent with the
scenario proposed by JFT of two SR phases, below and above
dc(ρ) respectively, of different natures. We finally suggest
that the RG finding does not in fact rule out the possibility
that the SR phase (SR-I in JFT’s work) has an upper critical
dimension that differs from 4, and is possibly infinite, which
would be compatible with the numerical results. However, the
NLO approximation we used does not allow us to determine
whether this possibility is realized within NPRG, as the NLO
approximation does not allow us to accurately investigate the
d = 4 case. This is left for future work.
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APPENDIX A: PERTURBATIVE ANALYSIS
OF NPRG EQUATIONS

In this Appendix, we analyze the NPRG flow equations
in some perturbative regimes. In the vicinity of d = 2 and
ρ = 0, the NPRG flow equations coincide with Eqs. (4.33)
and (4.34) of Ref. [38], which, in our normalizations, that is,
with uJFT = vd ĝκ/2, read as follows:

∂κ ĝκ = ĝκ

[
ε − vd

ĝκ

4
(1 + ŵκ )2

]
, (A1a)

∂κŵκ = ŵκ

[
−2ρ + vd

ĝκ

4
(1 + ŵκ )2

]
, (A1b)

with ε = d − 2.
The NPRG β functions for these couplings are given by

Eqs. (21). The anomalous dimensions are defined at zero
external momentum, through the normalization conditions
f̂ ν

κ (0) = f̂ D
κ (0) = 1 ensuing from definitions (17) and (22).

Equation (23) then yields the implicit equation for the
anomalous dimensions

0 = ηX
κ + Î X

κ (0), (A2)

where both integrals Î ν
κ (0) and ÎD

κ (0) depend linearly on ην
κ

and ηD
κ . We hence define

Î D
κ (0) = Î DD

κ ηD
κ + Î Dν

κ ην
κ + Î D0

κ , (A3a)

Î ν
κ (0) = Î νD

κ ηD
κ + Î νν

κ ην
κ + Î ν0

κ . (A3b)

The explicit form of the various integrals is given by the
following [22]:

Î DD
κ = −ĝκ

vd

2

∫ ∞

0
dq̂ q̂d+3 r(q̂2) k̂κ (q̂)

f̂ λ
κ (q̂)(l̂κ (q̂))3

, (A4a)

Î Dν
κ = ĝκ

3vd

4

∫ ∞

0
dq̂ q̂d+5 r(q̂2) (k̂κ (q̂))2

f̂ λ
κ (q̂)(l̂κ (q̂))4

, (A4b)

Î D0
κ = ĝκ

vd

2

∫ ∞

0
dq̂

q̂d+5(∂q̂2r(q̂2))

f̂ λ
κ (q̂)(l̂κ (q̂))4

k̂κ (q̂)

×[3q̂2k̂κ (q̂) − 2l̂κ (q̂)], (A4c)

Î νD
κ = ĝκ

vd

4d

∫ ∞

0
dq̂

q̂d+1r(q̂2)

f̂ λ
κ (q̂)(l̂κ (q̂))3

×[
f̂ λ

κ (q̂)q̂∂q̂ l̂κ (q̂) − l̂κ (q̂)q̂∂q̂ f̂
λ
κ (q̂) − 2f̂ λ

κ (q̂)l̂κ (q̂)
]
,

(A4d)

Î νν
κ = −ĝκ

vd

4d

∫ ∞

0
dq̂

q̂d+3r(q̂2)

f̂ λ
κ (q̂)(l̂κ (q̂))3

[
f̂ λ

κ (q̂)q̂∂q̂ k̂κ (q̂)

−(
2q̂∂q̂ f̂

λ
κ (q̂) + (2 − d)f̂ λ

κ (q̂)
)
k̂κ (q̂)

]
, (A4e)

Î ν0
κ = −ĝκ

vd

2d

∫ ∞

0
dq̂

q̂d+3∂q̂2r(q̂2)

f̂ λ
κ (q̂)(l̂κ (q̂))3

×[
q̂∂q̂ f̂

λ
κ (q̂)

(−2q̂2k̂κ (q̂) + l̂κ (q̂)
) + f̂ λ

κ (q̂)

×(
q̂3∂q̂ k̂κ (q̂) − q̂∂q̂ l̂κ (q̂) + (d − 2)q̂2k̂κ (q̂)+2l̂κ (q̂)

)]
,

(A4f)

where

k̂κ (q̂) = f̂ D
κ

(
q̂) + ŵq̂−2ρ + r(q̂2

)
, (A5a)

l̂κ (q̂) = q̂2
(
f̂ ν

κ (q̂) + r(q̂2)
)
. (A5b)

[Note two misprints in Eqs. (A4d) and (A4f) of Ref. [22]
corrected here].

To investigate the properties of the EWLR fixed points, we
consider the limit ŵ → ∞ and ĝ → 0, at ĝŵ2 fixed, that is,
x̂ → 1 at fixed ŷ. As long as f̂ ν

κ , f̂ D
κ , and f̂ λ

κ are of order
one in this limit (which holds by definition at LPA′ and is
verified below at NLO), it amounts to replacing, in the various
Eqs. (A4), k̂κ (q̂) with ŵq̂−2ρ . Accordingly, one observes that

Î DD
κ = O(ŷ/ŵ), (A6a)

Î Dν
κ = O(ŷ), (A6b)

Î D0
κ = O(ŷ), (A6c)

Î νD
κ = O(ŷ/ŵ2), (A6d)

Î νν
κ = O(ŷ/ŵ), (A6e)

Î ν0
κ = O(ŷ/ŵ). (A6f)

Let us check the behavior of the three functions f X
κ in this

limit in the NLO approximation. The NLO flow equations for
the functions f̂ ν

κ , f̂ D
κ , and f̂ λ

κ (see Ref. [22]) are of order

∂sf̂
D
κ (q̂) = O(ŷ), (A7a)

∂sf̂
ν
κ (q̂) = O(ŷ/ŵ), (A7b)

∂sf̂
λ
κ (q̂) = O(ŷ/ŵ). (A7c)

As a consequence, in the limit x̂ → 1 at fixed ŷ, one has
indeed

f̂ D
κ (q̂) = O(1), (A8a)

f̂ ν
κ (q̂) → 1, (A8b)

f̂ λ
κ (q̂) → 1. (A8c)

Therefore, even if f̂ D
κ does not remain at a bare level along

the flow, the NLO and LPA′ expressions for the anomalous
dimensions Eqs. (A2) in this limit are identical and become

ηD
κ = ρŷκ η̃

D(ρ,d), ην
κ = ρŷκ (1 − x̂κ )η̃ν(ρ,d), (A9)

with

η̃D(ρ,d) = −6vd

∫ ∞

0
dq̂

q̂d−1−4ρ(∂q̂2r(q̂2))

[1 + r(q̂2)]4
, (A10a)

η̃ν(ρ,d) = 2vd

d

∫ ∞

0
dq̂

q̂d−1−2ρ(∂q̂2r(q̂2)) (d − 2 − 2ρ)

[1 + r(q̂2)]3
.

(A10b)

Moreover the perturbative expansion of the NPRG flow
equations for the couplings Eqs. (A1) in the variables x̂κ and
ŷκ become

∂sx̂κ = ρ(x̂κ − 1)(2 − η̃D(ρ,d)ŷκ ) + O(x̂κ − 1)2, (A11a)

∂sŷκ = ŷκ (d − 2 + ρ(η̃D(ρ,d)ŷκ − 4)) + O(x̂κ − 1).

(A11b)
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To study the stability of the EWLR fixed points, these flow
equations can be linearized in the vicinity of a fixed point
(x̂∗,ŷ∗) with x̂∗ = 1 and the corresponding stability matrix
reads

� =
(

∂(∂s x̂κ )
∂x̂κ

∂(∂s x̂κ )
∂ŷκ

∂(∂s ŷκ )
∂x̂κ

∂(∂s ŷκ )
∂ŷκ

) ∣∣∣∣
x̂κ=x̂∗=1,ŷκ=ŷ∗

=
(

ρ(2 − ŷ∗η̃D) 0
∂(∂s ŷκ )

∂x̂κ

∣∣
x̂κ=1,ŷκ=ŷ∗

d − 2 − 4ρ + 2ρŷ∗η̃D

)
. (A12)

To determine the component ∂(∂sŷκ )/∂x̂κ requires to push
the expansion (A11) of ∂s ŷκ to order (x̂κ − 1), but this is not
necessary for the study of the stability of fixed points with
x̂∗ = 1. The expression (A12) of the stability matrix implies
that for any fixed point with x̂∗ = 1, the two eigenvalues,
which identify with the correction-to-scaling exponents, are
ω1 = ρ(2 − ŷ∗η̃D) and ω2 = d − 2 − 4ρ + 2ρŷ∗η̃D. We now
discuss the two fixed points with x̂∗ = 1.

1. EWLR1 fixed point

The EWLR1 fixed point is located at x̂∗ = 1 and ŷ∗ = 0.
The corresponding correction-to-scaling exponents are

ω1 = 2ρ, ω2 = ε − 4ρ, (A13)

which are identical to the correction-to-scaling exponents
obtained by JFT [38,39]. Consequently, we recover the same
stability conditions, namely the EWLR1 fixed point is always
attractive in the x̂ direction, whereas it is attractive in the ŷ

direction for d > 2(1 + 2ρ) and repulsive for d < 2(1 + 2ρ).

2. EWLR2 fixed point

The coordinates of the EWLR2 fixed point are

x̂∗ = 1, ŷ∗ = 4

η̃D(ρ,d)

(
1 − ε

4ρ

)
, (A14)

and the corresponding correction-to-scaling exponents are
given by

ω1 = ε − 2ρ, ω2 = 4ρ − ε, (A15)

which again identify with the correction-to-scaling exponents
found perturbatively [38,39]. Checking that η̃D(ρ,d) is always
positive, we deduce the same stability conditions as JFT. The
EWLR2 fixed point is always attractive in the x̂ direction, and

EWLR1 and EWLR2 exchange their stability in the ŷ direction
when EWLR2 crosses EWLR1 at dEWLR = 2(1 + 2ρ).

APPENDIX B: CUTOFF DEPENDENCE

In this Appendix, we discuss the dependence of our results
in the regulator function, which can be tested via the variation
of the (positive) parameter α in Eq. (9). Of course, physical
observables computed from the exact NPRG equation (13)
do not depend on the choice of regulator. However, any
approximation induces a spurious dependence in this regulator,
which can be used to test the quality of the approximation.

The α dependence of the critical exponent χSR of the SR
fixed point at the NLO approximation has been studied in
details in Ref. [22]. The exponent χSR is exact in d = 1 (no
α-dependence) and depends very weakly on α in d = 2, with
an optimal value of χSR  0.373, and somewhat more on α

in d = 3, with an optimal value of χSR  0.179. In this work,
we used α = 4 in d = 2,3 which belongs to the interval in
α where the variations of the critical exponents with this
parameter are minimal, and their values very close to the
optimal ones; see Ref. [22]. Increasing further the dimension
above d � 3.5, an increased cutoff dependence was observed,
with even unphysical negative χSR values for small α in d = 4.
This clearly signals that the NLO approximation becomes less
accurate as the dimension grows and quantitatively unreliable
for d � 3.5. In particular, we here chose α = 10 in d = 4 in
order to get a positive exponent χSR, which is of the same order
as the optimal value obtained at LO; see Ref. [22].

Let us now review the sensitivity of the results in the LR
sector presented in this work with respect to a variation of the
cutoff function, that is, of α. First, the boundary line ρSR(d)
separating the LR and SR phases is entirely determined by
the value of χSR, so its dependence on α can be directly
inferred from that of χSR discussed above. Second, the critical
exponents of the LR-dominated phases (EWLR1, EWLR2, and
LR) are exact and thus independent of α. The same holds true
for the correction-to-scaling exponents Eqs. (A13) and (A15)
at the EWLR fixed points and thus for their stabilities. Indeed,
only the coordinate ŷ∗ of EWLR2 depends on α through η̃D

[Eq. (A10)] and we checked that η̃D remains positive for all
values of α.

Finally, the coordinates of the LR, SR, and T fixed points
do depend on α. However, below d  3.5, and also in d = 4,
provided a sufficiently large value of α is chosen (to ensure that
χSR > 0), the qualitative structure of the flow diagram with the
relative positions of T, SR, and LR presented in Figs. 1, 2, and 4
is preserved, together with the stability change of SR and LR
at χSR = χLR.
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[15] J. Kelling and G. Ódor, Phys. Rev. E 84, 061150
(2011).

[16] A. Pagnani and G. Parisi, Phys. Rev. E 87, 010102 (2013).
[17] T. Halpin-Healy, Phys. Rev. Lett. 109, 170602 (2012).
[18] T. Halpin-Healy, Phys. Rev. E 88, 042118 (2013); ,88, 069903(E)

(2013).
[19] T. J. Oliveira, S. G. Alves, and S. C. Ferreira, Phys. Rev. E 87,

040102 (2013).
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