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We study the combined effects of noise and detector sensitivity on a dynamical process that generates
intermittent events mimicking the behavior of complex systems. By varying the sensitivity level of the detector
we move between two forms of complexity, from inverse power law to Mittag-Leffler interevent time survival
probabilities. Here fluctuations fight against complexity, causing an exponential truncation to the survival
probability. We show that fluctuations of relatively weak intensity have a strong effect on the generation of
Mittag-Leffler complexity, providing a reason why stretched exponentials are frequently found in nature. Our
results afford a more unified picture of complexity resting on the Mittag-Leffler function and encompassing the

standard inverse power law definition.
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I. INTRODUCTION

Inverse power laws are generally interpreted as a signature
of complexity, this being a so widely shared conviction as
to make it difficult to afford a fair list of key references
in a regular research paper. In this article we focus on
power laws connected to temporal complexity and intermittent
dynamics of critical fluctuations. As shown by Contoyiannis
et al. [1], these fluctuations have a close connection with the
intermittency generating maps [2—6]. The Pomeau-Manneville
(PM) map generates sporadic randomness and the laminar
regions between two consecutive randomness bursts have a
distribution density that is an inverse power law. This is what
we mean by temporal complexity, the theoretical perspective
adopted in this article.

In real physical systems the inverse power law distribu-
tion densities are truncated in the long-time regime [7]. If
fluctuations characterized by a truncated inverse power law
distribution are used to generate diffusive motion, according
to the central limit theorem the resulting diffusion process is
ordinary. However, the time necessary to produce ordinary
diffusion is much more extended compared to when the
fluctuations are taken from a distribution without the scale-free
property [7]. This important result can be interpreted as an
explanation of why Lévy processes are frequently observed
in nature. A weak noise truncating complex fluctuations is
responsible for the emergence of normal diffusion in the long-
time limit [8,9]. Although, moving from the one-dimensional
to high-dimensional cases may generate much more complex
effects [10,11], we refer to the one-dimensional case, where the
effect of fluctuations perturbing the generators of anomalous
diffusion is a transition in the long-time limit from anomalous
to ordinary diffusion [12,13].

The Mittag-Leffler (ML) function, a generalization of
the exponential function, can display inverse power law
behavior in the asymptotic limit. As a consequence, many
researchers have focused their attention on the ML function
as a manifestation of complexity, for example, in complex
materials [14,15]. It must be pointed out that the ML function
is becoming important also for its deep connections with the
subject of fractional calculus [16]. There are indications that
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the ML function may emerge at criticality [17]. In spite of the
increasing interest for this form of temporal complexity, there
is no understanding about what the role of noise may be in this
case.

It is important to notice that the cooperation-induced
emergence of ML complexity [18,19] is suggesting a quite
different connection between the complexity generating maps
and noise. In fact, in both the case of random growth of
surfaces and neural dynamics the single units in the absence
of cooperation are random and as an effect of cooperation are
forced to generate global properties where the influence of
randomness is quenched. As a consequence, the stochastic
force that the authors of Refs. [12,13] assumed to be of
environmental origin, in the case of cooperation-induced
complexity is the residual of the randomness of the single
individuals. We make the reasonable conjecture that the
truncation of the inverse power law in the case of the PM map
is correctly predicted using the methods of Refs. [12,13], the
internal rather than the environmental origin of fluctuations
being irrelevant. However, this assumption does not lead us
to the solution of the problem, because, to the best of our
knowledge, there are no maps generating ML complexity in
the same way as the PM map generates the inverse power law
distributions.

To settle this problem we rest on the theoretical result
of Ref. [20]. The authors of this article showed that ML
complexity can be derived from the PM map assuming that the
events generated by the PM map have a very small probability
Ps of being detected. When the probability of perceiving
another PM map event after the occurrence of a visible event is
very small, the decay of the corresponding survival probability
becomes extremely slow. A rescaling procedure is applied
to go back to an appropriate time scale. After rescaling, the
resulting survival probability is a ML function. This entire
process was named the “stochastic central limit theorem”
(SCLT) by the authors in Ref. [20].

We make the assumption that the effect of noise on ML
complexity can be determined by applying the SCLT to the
PM map perturbed by noise according to the prescriptions
of Refs. [12,13]. The main result of this method is that the
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ML function is much more sensitive to either internal or
environmental noise than the PM map survival probability.

This paper is organized as follows. In Sec. II we show
the emergence of the noise-induced truncation in the inverse
power law, PM case. The effect of noise on the ML function
is described via numerical calculations in Sec. III. We devote
Sec. IV to explaining theoretically the results of the numerical
calculations and Sec. V to concluding remarks.

II. ORDINARY INVERSE POWER LAW AND NOISE

We make the simplifying assumption that the cooperation-
induced temporal complexity is satisfactorily described by the
idealized PM map [21,22]. It is important to notice, however,
that the idealized PM map is a generator of complex events,
namely of an inverse power law only in the long time limit.
The PM map generates a survival probability with a transition
from the microscopic to the macroscopic time that is absent
in the ML complexity. To derive the ML process from the
PM dynamics we have to find a way to annihilate the events
carrying information on the microscopic PM dynamics, this
being the central property of this article.

This section to a large extent is a review of the work done in
Refs. [12,13] that we do to make the paper self-contained and to
make it easier for the readers to understand the procedure that
we adopt to solve the problem in the case of ML complexity.

The idealized PM map reads [21,22]

d

—y = ay?, 1
preiai (D

with z > 1. The variable y is assigned the initial condition yy
obeying the inequality 0 < yg < 1. When it reaches the value
y = 1 it is injected back with uniform probability, signifying
the occurrence of an intermittent event in a complex system.

The time distance between the back injection to an initial
value yy, that for simplicity’s sake we now call y, and the
arrival at the border, through integration of Eq. (1), is

—1( 1
=t {—]—1}. )
a y“ﬁ

By making the choice of the initial value y uniform, we find
that the time distance between two consecutive events is given
by the waiting time distribution density

-1
Y(r) = — D(r:—T)M’ 3)
where
b4
n=—— @)
and
r=H=1 (5)
a
The mean waiting time (t) is given by
()= —— (6)
(n—2)

for © > 2. When p < 2, the mean time diverges and the
process generates aging and ergodicity breaking [23].
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The survival probability W(z) corresponding to the waiting
time distribution density ¥ () of Eq. (3) reads

T \*!
\If(t)=(T+t> . @)

This analytical expression allows us to explain the main
difference between the PM and the ML complexity. Using the
widely accepted conviction that complexity implies an inverse
power law, we can say that the PM dynamics are complex for
times ¢t >> T, where the waiting time distribution density ¥ ()
of Eq. (3) becomes indistinguishable from an inverse power
law, due to the property

1
lim ¥(7) &« —. (8)
T—00 ™
On the contrary, for the ML survival probability,
V(1) = Eq[—(A)*], )

complexity emerges at even extremely short times, be-
cause [14] in the short-time regime (¢ < 1/X) the ML survival
probability is the stretched exponential, exp[ ;(gjr):)], where I'
denotes the gamma function. In the long-time limit (r — o0),
the ML survival probability becomes proportional to 1/¢¢.
Thus, if we identify it with the asymptotic time of the PM map
survival probability of Eq. (7) we must set the condition

a=pu—1. (10)

In conclusion, the short-time stretched exponential affords
information on the complexity of the process.

Note that for the ML function to be compatible with the def-
inition of survival probability the condition & < 1 is required,
thereby implying p < 2. According to the earlier argument,
(t) diverges leading to aging and ergodicity breaking [23].

Following the earlier work of Refs. [12,13], adapted to the
idealized PM map of Refs. [21,22], we now assume that the
PM map is perturbed by noise according to the prescription

d .

gy = A+ ). (11
The fluctuation is a white noise given by f(t) = /o r(t), where
r(t) is either 1 or —1, according to a coin-tossing prescription.
Note that in this article we adopt arbitrary units resting on the
assumption that the numerical integration time step is equal to
the time unit, At = 1. As a consequence of this assumption, for
the integration of Eq. (11) we obtain the correlation function

(f(n) f(m)) =208,m. (12)

We refer to o as the noise intensity.

Figure 1 shows that the main effect of f(¢) is that of
an exponential truncation to the survival probability W(¢) of
Eq. (7). We see that the larger the noise intensity o, the shorter
the truncation time 7, the time at which the transition from
inverse power law to exponential behavior occurs. In fact,
we estimate that the noise intensities 1 x 1072, 1 x 107, and
1 x 107'° approximately make ¢7 equal to 126, 5372, and
233258, respectively.

These results qualitatively agree with those of Refs. [12,13].
Here we make the evaluation of the truncation time more
accurate than in these earlier papers and at the same time
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FIG. 1. (Color online) Survival probability of the PM map under
the influence of fluctuations, Eq. (11),withyu =1.7and T =7 (a =
0.1 and z = 2.428), and noise intensities & = 1 x 1072 (red squares),
o =1 x 107 (blue triangles), o = 1 x 107! (green circles). The
dashed gray line refers to the survival probability of Eq. (7)
corresponding to the PM map without noise, Eq. (1).

we connect #r to the lifetime of the truncating exponential
function, 1/e. We make the following assumption

Lyt ift <17
Ye(r) = (7 -l . (13)
{<TLT>“ e, it > 1

We adopt a log-linear representation to fit the exponential tail
and a log-log representation to fit the inverse power law region,
thereby generating the dashed line and the dotted line of Fig. 2,
respectively. Then, in the linear representation, for any time
t we evaluate the distance between the dotted and the dashed

10”5

N
<

N
e

N

RN
=
[
il

Survival Probability, ¥(t)
<)
IL

-
=)
o

10" 10° 10° 10* 10°
Time, t

-
o
=)

FIG. 2. (Color online) Fitting procedure for the perturbed PM
map with o =1 x 10™® (gray triangles) with the inverse power
law (Tiﬂ)“_1 (blue dotted line) and exponential decay e~ (green
dashed line), yielding T =7 and € = 1.425 x 107, respectively.
The truncation time #7 is the time where there is the smallest gap
between the inverse power law and exponential decay. For this case
tr = 5372.
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FIG. 3. (Color online) Comparison of the survival probability for
the perturbed PM map with o = 1 x 107° (gray triangles) and the
analytical expression of Eq. (13) (blue dashed line) using fitting
parameters f7 = 5372 and € = 1.425 x 10™* given by the fitting
procedure described in Fig. 2.

line, and we define 77 as the time generating the minimal
distance. We record also the values of €. For instance, the fit
of the exponential tail in the log-linear representation, in the
correspondence of o0 = 1 x 1072, 1 x 107, and 1 x 10710,
which are the noise intensities used in Fig. 1, yields for
€ the values 6.32 x 1073, 1.43 x 10~*, and 3.09 x 1079,
respectively. The result illustrated in Fig. 3, which plots
Eq.(13)foro = 1 x 1079 using the values of 77 and € obtained
using this fitting procedure, gives a good agreement with the
numerical calculation.
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FIG. 4. (Color online) Comparing the truncation time, f7 (red
circles), and the lifetime of the truncating exponential function 1/¢
(blue squares), at different values of noise intensity for the perturbed
PM map with u = 1.7. The slopes of 77 and 1/€ are 0.4255 and
0.4204, respectively.

022107-3



PENSRI PRAMUKKUL, ADAM SVENKESON, AND PAOLO GRIGOLINI

It is remarkable that 77 is very close to 1/€, as shown in
Fig. 4. As a consequence, the analytical expression

n—1
v =(——) e (14)
T+t

is very close to the prescription of Eq. (13) for both ¢ < 77 and
t > tr. This simpler expression will be used for the theoretical
arguments in Sec. IV.

Using Eq. (2), it is possible to predict the dependence of
tr on the noise intensity o. In fact, we see that the initial
conditions very close to the origin generate extremely large
waiting times. This is so because the dynamics of y generated
by Eq. (1) are extremely slow in that region. The noise f(¢) of
Eq. (11) generates diffusion, and the diffusion process in the
region very close to y = 0is much faster than the deterministic
dynamics. As a consequence, there exists a region 0 < y < §,
with § very small, which does not contribute to Eq. (2). The
trajectories with an initial condition in this region diffuse very
quickly beyond the border. This effect generates the truncation
time ¢ given by

—1( 1
ol {—1—1}. (15)
a ST

With a rigorous theoretical treatment, the authors of Ref. [13]
established the relation between § and the noise intensity to be

u—1

8~ owT, (16)
This result, using Eq. (15), yields

fr oo, (17)

We check the accuracy of this prediction through numerical
calculations yielding results that are illustrated in Fig. 5. It
is important to notice that although Eq. (15) is valid for u
ranging from 1 to oo, it has a special relevance in the region
1 < u < 2, because in this specific region the mean time (7)
would be divergent with #; = oo, but instead it is made finite
by the exponential truncation due to the influence of noise.

III. THE MITTAG-LEFFLER FUNCTION
AFFECTED BY NOISE

The complex system generating events via the PM map
yields the survival probability of Eq. (7). Let us assume that
only some of these events are detected, the probability of
detecting one event being Ps < 1. Then the resulting survival
probability reads [20]

Wy (1) = Z(l - 1”5)"/0 dt'y, (Wt — 1), (18)
n=0

where 1,,(¢)dt is the probability that the nth event occurs at
time ¢, being the last of a sequence of n — 1 events occurring
earlier. Note ¥ (¢) is ¥ (¢), the waiting time distribution defined
in Eq. (3), and W(¢) is the corresponding survival probability
in Eq. (7). The Laplace transform of Eq. (18) is

N 1

W =, 19
v(u) T D) Ps 19)

PHYSICAL REVIEW E 89, 022107 (2014)

105 AELELRLLLL BELLELLLLL LR ALY LN ELLLLL I LLY BRI ALY BRI B L
Q
\
\
\

|—
= 10" * 3
o N
£ .
- LN
c \
S el o~ ]
£ 10 .
(] \
c \
E N\
= .

102+ *

10° 10® 10" 10° 10° 10* 10° 10° 10"

Noise Intensity, o

FIG. 5. (Color online) The numerical results for the dependence
of the truncation time on the noise intensity for the perturbed PM
map (u = 1.7) (red circles) fit the theoretical prediction (blue dashed
line) given by Eq. (17). The slope of the numerical data, —0.428,
corresponds to the exponent in Eq. (17), —0.416.

where ®(u) is the Laplace transform of the Montroll-Weiss
memory kernel [20],

b(uy = Y 20)
I —v)
Equation (19) can be written in the form
o 1
Wy (u) = (21)

u+ AW~ + T(u))Ps
We denote by X (u) the corrections to the ML function Laplace
transform,

1
generated by the adoption of the PM waiting time distribution

density and survival probability. The connection to the PM
map requires that

W) = (22)

T = ;, (23)
AL —a)]«
Details on the higher-order corrections in Eq. (21) can be found
in the Appendix.
When Ps is small enough the resulting Wy (¢) is indistin-
guishable from the ML function E,[—(A?)*] with

A =APy. (24)

As shown in Ref. [20], the emergence of an exact ML function
with Pg — 0 is made compelling by compressing the time
scale, namely, either by replacing u with u = u’Psl/ “ (in the
Laplace domain) or ¢t with ¢ = tPsl/ “ (in the time domain).
This has the effect of making X (') vanish. In Fig. 6, in fact,
after rescaling, the resulting survival probability with Py =
0.01 goes close to the ideal ML function generated using the
algorithm in Ref. [24], while the rescaling of the resulting
survival probability with Pg = 0.5 goes in between the original
PM map and the ideal ML function. In conclusion, the ML
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FIG. 6. (Color online) The survival probability after applying the
SCLT to the PM map with Py = 0.5 (red squares) and Ps = 0.01
(green triangles). Decreasing Ps causes a shift in the short-time region
of the survival probability from the original PM map (Ps = 1) (blue
dotted line) toward the ideal ML function (gray dashed line). The
numerical survival probability coincides with the ideal ML function
when Ps = 0.01 for @ = 0.7. The inset shows that the asymptotic
time behavior remains unchanged.

function can be generated numerically by the rescaling process
of the PM map with a small probability of event detection, that
is, by the SCLT procedure.

These results suggest the following solution to the problem
of evaluating the effects of noise on the emergent ML function.
We run Eq. (11), with T related to A through Eq. (23)
and z = (1 + o)/a, and with the condition that not all the
event times are recorded, but only a fraction of them with
probability Ps. We adopt for Pg the value that generates
after rescaling a very good agreement with the exact ML
prescription, Pg = 0.01 in the case of Fig. 6, and we scale back
the result. Of course, using this procedure, we find that like in
the PM map, the noise causes an exponential truncation of the
inverse power law tail of the ML survival probability as shown
in Fig. 7. However, the truncation occurs much earlier than in
the perturbed PM map of Fig. 1. For example, with Py = 0.01
and the noise intensity o = 1 x 107'9, the truncation time of
the perturbed ML function (in Fig. 7) corresponding too = 0.7
is approximately 500 times smaller than the truncation time
of the perturbed PM map. Due to the fact that the noise has
a greater effect on the ML survival probability than the PM
map, we reach the conclusion that the stretched exponentials
frequently found in nature may be ML functions with their fat
tails hidden by noise.

It is important to notice that assigning very small values to
Ps is equivalent to diminishing the dependence of the resulting
dynamical process on the microscopic events generated by the
PM map, and this is subtly related to the sensitivity of the ML
process to noise. We shall devote Sec. IV to a discussion of this
important issue. Here we limit ourselves to illustrate additional
numerical results that in Sec. IV will help the realization of
this rigorous criterion. We find 77 and € of the perturbed ML
function numerically using the same procedure as in Sec. II,
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FIG. 7. (Color online) The perturbed ML function generated by
applying the SCLT (with Ps = 0.01) to the perturbed PM map
witho = 1 x 1072 (red squares), & = 1 x 107° (blue triangles), and
o =1 x 10719 (green circles). This is compared to both the ideal ML
function (gray dashed line) and the PM map without noise (black
dotted line). The strong effect of noise on the generation of the
perturbed ML function prevents the realization of the asymptotic
inverse power law behavior.

based on the assumption

Eq [=(A)*],

ift <tr
\Ile(t) = {Ea [_()\-tT)a] €_€(t_lr),

. 25
ift > tr. (25)

The result is shown in Fig. 8 for 0 =1 x 10719, where
we can see the assumption in Eq. (25) again gives a very
good agreement with the numerical calculation. On the basis
of these numerical results we conclude that also in this case
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FIG. 8. (Color online) Comparison of the survival probability for
the perturbed ML function with ¢ = 1 x 1070 (gray triangles) and
the analytical expression of Eq. (25) (blue dashed line) using fitting
parameters t; = 524 and € = 1.847 x 1073 given by the same fitting
procedure described in the legend of Fig. 2.
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€ #, with the condition, however, that t7 is much smaller
than the PM truncation time.

IV. THEORETICAL ARGUMENTS

The main purpose of this section is to explain the
connection between a real ML function, namely, a ML
dynamical process realized using a detector of events
of limited sensitivity, and the accuracy of its repre-
sentation through an ideal ML function, generated by
the rigorous mathematical prescriptions of Refs. [14-16].

PHYSICAL REVIEW E 89, 022107 (2014)

A. Detection of events in the presence of noise

As pointed out earlier, to study the influence of noise
on a ML process defined by A and «, we run the PM
map prescription of Eq. (11) with T given by Eq. (23) and
z = (1 4+ «)/a. We adopt the analytical expression of Eq. (14),
and detecting the events with a given Pg we obtain

1

It is convenient to write Eq. (27) as

b =

U (u) = . (26)
u+e+2[u+e)*+ Z(u+e€)Ps
The rescaling u = u’PS1 /* turns Eqg. (26) into
|
W) 1 27)
u) = .
‘ u/Pl/a—i—e—i—)»“[(u/Pl/a—i—e)l_a—i—E(u/PSl/a—i—e)]Ps
1
(28)

P erd T P P ) T )]}

The overall factor P# can be canceled so as to fit the normalization condition W(0) = 1 [20], and u’ replaced by u, thereby

1/a
N

leading to

~

We(u) =

1

—1/a

Notice that in the absence of noise (¢ = 0) all the contributions
to this expression except X become independent of Pg. The
correction term vanishes for P¢ — 0. When noise is present,
the adoption of this prescription would make Eq. (29) always
generate a sharp exponential for P — 0. As we shall see in
Sec. IV B, we have to set a bottom limit to Ps.

Let us use Eq. (29) to evaluate the mean waiting time
(t), which is obtained by setting u = 0. By neglecting the
contribution generated by X, we get

1/
Py 1
el—a co + A% Pg :
Comparing the ML function case with Ps < 1 to the PM map,
with Pg = 1, we obtain

(T)mL

(T)pm
The adoption of this formula with the numerical values adopted
in Sec. III leads to results in reasonable agreement with the
numerical results of that section. In fact, the ratio of the ML
to the PM mean waiting times for o = 1 x 107'% evaluated
from Eq. (31) is 0.120, which is in reasonable agreement with
the ratio from the numerical calculation, 0.138. It is important
to notice that (7) ~ t}f"‘. Thus, the ratio of the ML function
truncation time to the PM truncation time is of the order of
0.138%333 = 0.00135, whose order of magnitude is the same
as that observed in Sec. III for Py = 0.01.

(r) = (30)

_ ]/a EO( + )\‘Ol
TS eaqpapg’

€Y

B. Accuracy of the procedure adopted to derive
ML function from PM map

To determine the proper value of Ps in Eq. (31) necessary
to achieve the desired level of accuracy in the ML process, we

u+ €Pg +Psl_l/°‘)\°‘[(uPSl/“+e)l

- . (29)
“F B upy +€)]
[
move from Eq. (21) to
%) : (32)
)= ——,
u +Aaul—a

where A is defined in Eq. (24) and we proceed as follows.
We define Ps in such a way as to make the correction X (u)
of Eq. (21) as small as possible. From the expression of X(u)
in Eq. (A7), the lowest-order contributions to ¥(u) are given
by X(u) oc uf with f =1for0 <a < 0.5, and g =2 — 2«
for 0.5 < o < 1. To be more precise, we must compare the
correction X (u) to the leading contribution 1!~ after applying
the rescaling u = u’PSI/a. We assume u’ to be of the order of
unity and the accuracy of the ML function representation is
ensured by setting

] la
Py < Py, (33)
yielding
B—1+a
Py <1 (34)

We define the accuracy of the ML function representation by
means of the parameter 7,

B—1+a

n=~P;" . (35

For 0 < @ < 0.5, Eq. (35) yields
Psg =, (36)
while for 0.5 < o < 1,

o

Py = nis. (37)
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Equation (37) shows that the numerical accuracy of the ML
function representation becomes more and more difficult to
realize as « becomes closer and closer to the singularity o« = 1.

Setting the accuracy n of the ML function representation is
equivalent to establishing the limited sensitivity of the event
detector Pg, and, consequently, using Eq. (31) we can estimate
the sensitivity of the ML complex process under study to noise.
The process of detecting only a fraction of the PM map events,
leading to the ML function with A given by Eq. (24), once we
scale it back to the original time scale, can be interpreted as
the generator of a real ML function. This real ML function is
close but not exactly identical to the ideal ML function (see
Fig. 6), the accuracy of the ML function representation being
determined by the nonvanishing parameter 5. This prevents
us from sending Pg of Eq. (29) to zero, which would make
the real ML process infinitely sensitive to noise. Of course,
the same effect, of turning the survival probability W.(¢) into
an extremely fast exponential decay, can be produced by
increasing the value of €, namely, by increasing the noise
intensity according to Eq. (17). This would have the effect of
turning the ML function into an exponential function as shown
from Fig. 7 for o = 0.01.

As far as the issue of the emergence of stretched exponential
functions is concerned, we make the following prescription. In
the absence of noise we determine « and A and their accuracy
n as a function of the detector sensitivity Ps. Then, on the
basis of Eq. (29), we predict that the low value of u, at which
the ML representation is invalidated, is given by

u%ePs_l/a. (38)

If e Py Ve ~ A, the long-time tail of the ML function is erased
and only the stretched exponential function is visible. When the
condition € Py Ve x applies, noise has the effect of turning
the complex survival probability into an exponential function.
Thanks to Eq. (17) and to € ~ 1/¢r, we can establish the value
of noise intensity o making the survival probability W (z)
virtually equivalent to a stretched exponential function.

V. CONCLUDING REMARKS

In the literature of complexity, some authors (see, for
instance, Ref. [25]) refer to the emergence of stretched
exponential functions as a form of complexity complementing
the inverse power law distributions. This is a consequence of
the fact that the stretched exponentials are frequently found in
nature and economics [25].

In the subject of dielectric relaxation in solids [26,27] the
important issue has been debated for years of establishing a
connection between the power law nature of dielectric response
and dipole relaxation function. This issue was successfully
addressed by Weron and Jurlewicz [28], who related the power
law response function to the dipole relaxation function with
the stretched exponential form.

As pointed out by Metzler and Klafter [14], for a long time
there have been authors advocating the stretched exponential
as well as authors advocating the inverse power law, as a
statistical manifestation of complexity. The ML function, in
a sense, can be interpreted as a bridge between these two
apparently conflicting theoretical perspectives.
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It is important to stress that this paper addresses this issue,
as pointed out in Sec. I, from within the perspective of temporal
complexity based on the occurrence of events. It confirms the
conjectures made by the authors of earlier work [18,29], resting
on the hypothesis that deviations from ordinary statistical
physics are indeed due to the occurrence of crucial events.
The authors of Ref. [18] interpreted their results as being
the manifestation of a process driven by events and found
stretched exponential functions, interpreted as the short-time
manifestation of a ML function. This article confirms also
the conjecture made by the authors of Ref. [29] that the
stretched exponential revealed by their search of events in
brain dynamics is the emerging tip of a ML function, the tails
of which are killed by noise.

This paper shows that as an effect of noise the inverse power
law of a ML function can become invisible and that only the
short-time stretched exponential part of a ML function may
remain visible when the noise intensity is very high. This
might generate the impression that the stretched exponential
function is an alternative sign of complexity. In conclusion, an
important result of this article is its contribution to proving the
universality of the ML function theoretical perspective.

There are numerical results on neural dynamics showing
that the ML process may be generated by cooperation of
limited intensity [19,30]. The results of this paper may be
used to establish for which value of the cooperation parameter
the distribution of the time distances between two consecutive
neuron firings makes a transition from the exponential to the
stretched exponential form.
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APPENDIX: NOTES ON THE EVALUATION
OF THE HIGHER-ORDER TERMS

We find @(u), the Laplace transform of

Yo = (u - 1)0:—;)“ (A1)
by means of the prescription
) = %[ TR (A2)
where
Eﬁ | = i M (A3)

T +2-p)

is the generalized exponential function defined in Ref. [31].
By expanding the ordinary exponential e’ and using the
expansion of Eq. (A3) we obtain

N . re—uw
Y(u) = [1 + ra _’u)uT-i-

I'2—p
(4 —p)

wT)> + - :|
-T2 -p [(uT)*” + @T)" + %(uT)ﬂ“

+ é(uT)“+2 +- ] : (A4)
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Arranging terms according to increasing powers of u, we
write

) =1-TQ2 - wul)* "+ E), (AS)
where
1) — M _ _ “oy
B(u) = F(3_M)(MT) TQ— Wl +---. (A6)
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To estimate the error associated with the use of a finite
rather than vanishing Pg we consider the slowest contribution
of order higher than u — 1 in Eq. (AS). This leads us to
estimate the order of the correction X(u) of Eq. (21) by
means of

l—(xu2—2a
> =
() T
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