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Minimal mechanism leading to discontinuous phase transitions for short-range
systems with absorbing states
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Motivated by recent findings, we discuss the existence of a direct and robust mechanism providing
discontinuous absorbing transitions in short-range systems with single species, with no extra symmetries or
conservation laws. We consider variants of the contact process, in which at least two adjacent particles (instead
of one, as commonly assumed) are required to create a new species. Many interaction rules are analyzed,
including distinct cluster annihilations and a modified version of the original pair contact process. Through
detailed time-dependent numerical simulations, we find that for our modified models, the phase transitions are of
first order, hence contrasting with their corresponding usual formulations in the literature, which are of second
order. By calculating the order-parameter distributions, the obtained bimodal shapes as well as the finite-scale
analysis reinforce coexisting phases and thus a discontinuous transition. These findings strongly suggest that the
above particle creation requirements constitute a minimum and fundamental mechanism determining the phase
coexistence in short-range contact processes.
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I. INTRODUCTION

Nonequilibrium phase transitions into absorbing states
have attracted great interest in recent years, not only for the
possibility of describing a countless number of processes, such
as wetting phenomena, spreading of diseases, and chemical
reactions [1,2], but also for the search for experimental
realizations [3]. In the simplest examples, they manifest in
single-species systems, such as probabilistic cellular automata
or contact processes (CPs) [1,4]. Typically, these transitions
are second order, belonging to the directed percolation (DP)
universality class [2]. Although infrequent in the above
situations, discontinuous absorbing transitions have also been
observed. Mean-field approaches [5], lattice models [6–8],
and continuous descriptions [9] reveal that their occurrence
requires an effective mechanism that suppresses low-density
states. According to the Elgart-Kamenev classification [10],
for one-component reaction diffusion with n-particle creation
and k-particle annihilation, the reactions kA → (k − l)A and
nA → (n + m)A summarize the existence of a discontinuous
transition whenever k < n. Although such semiclassical field
theory is an important benchmark, suggesting crucial ingre-
dients for its occurrence, the system dimensionality or the
inclusion of spatial fluctuations may suppress the stabilization
of compact clusters in the above conditions [11,12].

Inspired by mean-field-like predictions [5], some restrictive
versions of the two- and three-dimensional CPs [4] have been
considered [13–15]. They differ from the original case in which
more than one nearest-neighbor occupied site is required to
create a new particle (instead of one as in the standard CP)
and single particles are annihilated. In the simplest case [15],
two particles are required and the creation does not depend on
the specific particle displacements, as exemplified in Fig. 1(a).
Unlike the original CP, the transition becomes discontinuous
for dimensions larger than 1. Extension of such interactions
for complex networks [16] (instead of regular lattices [13–15])
has revealed that the topology of the lattice does not affect
the phase coexistence. In contrast, by changing the dynamics
mildly, where one nearest-neighbor pair is necessary to create

a new offspring (instead of two nearest-neighbor particles but
still fulfilling the condition k < n) the phase coexistence is
suppressed, becoming continuous again (schematically, such
a change is equivalent to shifting the local rule of particle
creation at 0 from 1-0-1 to 1-1-0). All these comments inspire
us to raise two fundamental questions: Is there an ingredient
that always provides a discontinuous absorbing transition in
single-species systems? If so, what is this dynamics? To try
to answer such questions, we investigate thoroughly a class
of four restrictive processes. In the first three examples, we
consider the particle creation in the presence of at least
two particles (as considered in Ref. [15]) and a family of
annihilation processes (to be described further). Our goal is to
verify if the phase coexistence is maintained by changing the
annihilation rules. The fourth model is a small modification
in the pair contact process (PCP), a notorious model with
infinitely many absorbing states and a DP phase transition
[17,18]. In our modified version, at least two pairs of particles
are required (instead of one as in the original PCP) to create
a new particle. This modification aims to verify if, similarly
to previous cases, this small change is sufficient to shift the
order of transition. As will be shown, under two distinct
methodologies, in all restrictive models the phase transition
is first order, which suggests that the particle creation in the
presence of a minimal neighborhood (for the studied models it
is 2) constitutes a fundamental (and robust) mechanism ruling
discontinuous absorbing phase transitions.

II. MODELS AND METHODS

In all the situations considered here, if a site i is empty
(occupied) then the occupation variable ηi assumes the value
0 (1). In the first three model versions, when ηi = 0 a particle
can be created at i with a probability N /z for N � 2 and
zero otherwise [Fig. 1(a)]. There is no creation if N � 1.
Here N is the number of occupied neighbors of i and z is the
lattice coordination number. In a square lattice (all our studies)
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FIG. 1. Examples of transition rates in a square lattice (z = 4).
Models A, B, and C are defined by the (a)-(b), (a)-(c), and (a)-(d)
interaction rules, respectively. In (d), the symbol × denotes a local
configuration composed of N nearest-neighbor occupied sites (with
N ranging from 0 to 4) and after the annihilation all N + 1 particles
are extinct.

z = 4. In a similar fashion, particles can be annihilated with a
probability α (according to the rules described below).

In model A, annihilation occurs only for pairs of adjacent
particles (k = l = 2). Thus, an isolated particle cannot be
destroyed [Fig. 1(b)]. For model B, annihilation occurs only
for three adjacent particles (k = l = 3) [Fig. 1(c)]. Thus,
neither isolated particles nor pairs of particles are eliminated.
Finally, in model C the annihilation of a particle at site i

automatically wipes out all its N nearest-neighbor occupied
sites (k = l = N + 1) [Fig. 1(d)]. Therefore, contrasting with
A and B, the number of exterminated particles is not fixed,
ranging from 1 to 5 in a square lattice (recall that N varies
from 0 to 4 in a square lattice). Thus, for models B and C,
the Elgart-Kamenev classification is violated. The last one,
model D, is a modification of the PCP [17,18]. In the original
PCP, only pairs of particles are annihilated and a particle is
created with probability Np/z if the number of neighboring
pairs Np � 1. In model D we consider that the creation can
occur only if Np � 2 (Fig. 2).

For any of the above model versions, a phase transition
is expected to separate an active regime (stable for low α)
from an absorbing phase (stable for larger α) at a threshold
value α = α̃. Actually, as we are going to see that three
models present infinitely many absorbing states. Such a fact
makes standard approaches, such as spreading experiments,
difficult to use since the dynamic exponents present values
dependent on the initial condition [19–22]. Thus, in order to
analyze the transition by means of distinct (and unambiguous)
procedures, we first study the order-parameter φ decays
starting from a fully occupied initial condition for distinct

α
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FIG. 2. Examples of transition rates for model D. Note that there
is no particle creation if the number of pairs of particles Np is smaller
than 2.

independent runs. In the case of continuous transitions, φ

decays algebraically as φ ∼ t−θ at the critical point, with θ the
associated critical exponent. Conversely, at a discontinuous
transition φ is not expected to present a power law decay.
This crucial difference is an important indication of the phase
transition type. To further confirm the results, we plot the
probability distribution Pφ (in the steady regime) assuming
different initial configurations. A bimodal distribution points to
a phase coexistence, whereas a single-peaked distribution, with
its position continuously moving by changing α, corresponds
to a continuous transition.

III. NUMERICAL RESULTS

Numerical simulations will be performed in square lattices
of size L2 and periodic boundary conditions. For the time
decay analysis, we consider L = 200, whereas the probability
distributions have been evaluated for L ranging from 40 to 120.
Since isolated particles cannot create new ones, for this latter
study, some extra conditions are required. Following Ref. [15],
the extremities of the lattice are fully occupied by particles that
cannot be removed. Thus, at any moment, there are at least
four empty active sites that allow for the creation of particles.
In addition, since in three of four models isolated particles
cannot create new offsprings or be removed, whenever the
system reaches the absorbing state a randomly chosen site
and its nearest-neighbor sites are fulfilled by particles. In the
first analysis, we show in Fig. 3 the main results for model
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FIG. 3. (Color online) For model A and distinct α’s, we plot in
(a) the time decay of the order parameter φ evaluated over all and
over only survived (inset) runs, respectively. In order to compare, we
plot in (b) the time decay of the order parameter ρ for distinct α’s by
considering theN � 1 creation with pair annihilation [23]. The black
line in the middle curve has slope θ = 0.4505(10). The upper inset
in (b) shows the time decay of φ (fraction of particles surrounded
by at least N = 1 occupied sites) over all runs and the lower inset
shows the time decay of ρ measured over only survived runs. In (c)
we plot the probability distribution Pφ for distinct L’s at αL, in which
the peaks present the same height. The scaling plot of αL vs L−2 is
shown in (d). In the inset, we show a log-log plot of steady order
parameters φst , in the active φac and absorbing φab phases, vs L.
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A. In order to compare, we also show results for the particle
creation in the presence of N � 1, as studied by Dickman and
Dickman [23]. One difference between the N � 1 and N � 2
cases [shown in Figs. 3(b) and 3(a), respectively] is that in
the latter case any configuration devoid of pairs is absorbing
and thus the system presents infinitely many absorbing states.
Unlike the N � 1 case, the phase transition is not ruled by
the particle density ρ for N � 2, but for the fraction φ of
active particles (e.g., occupied sites presenting at least N = 2
occupied neighbors). Another difference concerns the time
decay behaviors. For N � 1 [Fig. 3(b)], all curves decay
algebraically for low t , deviating from such behavior off the
critical point for larger t . For αc ∼ 0.985 the power law is
present for sufficient large times, with an exponent consistent
with the DP value θ = 0.4505(10) [1]. Such an estimate for αc

agrees very well with the value 0.9846(1) obtained by Dickman
and Dickman [23]. A similar exponent is obtained for the
fraction φ of occupied sites presenting at leastN = 1 occupied
neighbor. In contrast, for N � 2 [Fig. 3(a)] the behavior of φ

changes abruptly from a threshold value α̃ ∼ 0.1330. For α <

α̃ the activity survives indefinitely, dying off exponentially for
α > α̃. Averages calculated only from survival runs enhance
the above differences. Whenever in the nonrestrictive case ρs

decays algebraically toward a constant value, the restriction
also provokes distinct regimes. For α < α̃, φs saturates in a
value close to φ (indicating the survival of almost all runs),
whereas for α > α̃ it decays exponentially, reaching a lower
saturated value. The existence of a discontinuous transition for
N � 2 is confirmed by plotting Pφ for distinct system sizes,
as shown in Fig. 3(c). For all L’s, it presents a bimodal shape,
with well defined peaks signaling active φac and absorbing
φab phases. The former changes very mildly with L, reaching
the value ∼0.877, whereas the latter vanishes following the
scaling relation L−0.63(5). In addition, the difference between
αL and α0, in which the bimodal probability distribution has
peaks of equal height for finite L and L → ∞, respectively,
scales with L−2. Using this asymptotic scale relation, we obtain
the extrapolated value α0 = 0.1326(2), which agrees very well
with the previous estimate. We note that such a dependence on
L is similar to equilibrium discontinuous transitions [24,25].

Next we consider model B [exemplified by interaction rules
(a)–(c) in Fig. 1], whose results are summarized in Fig. 4. As
in model A, such a version presents infinitely many absorbing
states and the decay of the order parameter also presents
two distinct regimes from a threshold value α̃ ∼ 0.1310.
For α < α̃, it converges to a well defined value, indicating
indefinite activity, whereas the exponential decay for α > α̃

signals full activity extinction. The pseudotransition points αL,
in which the two peaks of the probability distribution have the
same height, also scale with L−2 forN � 2, from which we get
the extrapolated estimate α0 = 0.1309(1). Such a value agrees
very well with the previous estimate α̃ ∼ 0.1310 [Fig. 4(b)].
The dependences on L of the steady order parameters φac and
φab are also similar to those obtained for the previous model.
Whenever φac also changes very mildly with L, converging to
the value ∼0.785, φac vanishes following the scaling relation
φab ∼ L−0.55(8), which is similar to the pair annihilation case.
As a result of three-particle annihilation, the compact cluster
is somewhat less compact than the value for model A. Despite
the Elgart-Kamenev conjecture that predicts a continuous
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FIG. 4. (Color online) For model B and distinct α’s, we plot in
(a) the time decay of the order parameter φ evaluated over all and
over only survived (inset) runs, respectively. In order to compare,
we plot in (b) the time decay of the order parameter ρ for distinct
α’s by considering the N � 1 creation case with triplet annihilation.
The black line in the middle curve has slope θ = 0.4505(10). The
inset in (b) shows the time decay of ρ measured over only survived
runs. In (c) we plot the probability distribution Pφ for distinct L’s
at αL, in which the peaks present the same height. The scaling plot
of αL vs L−2 is shown in (d). In the inset, we show a log-log plot
of steady order parameters φst , in the active φac and absorbing φab

phases, vs L.
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FIG. 5. (Color online) For model C and distinct α’s, we plot in
(a) the time decay of the order parameter ρ evaluated over all and
over only survived (inset) runs, respectively. In order to compare, we
plot in (b) the time decay of the order parameter ρ for distinct α’s by
considering the N � 1 creation case, but with the same annihilation
rule of model C. The black line in the middle curve has slope θ =
0.4505(10). The inset in (b) shows the time decay of ρ measured
over only survived runs. In (c) we plot the probability distribution Pρ

for distinct L’s at αL, in which the peaks present the same height.
The scaling plot of αL vs L−2 is shown in (d). In the inset, we show
a log-log plot of steady order parameters ρst , in the active ρac and
absorbing ρab phases, vs L.
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FIG. 6. (Color online) For the model D and distinct α’s, we plot
in (a) the time decay of the order parameter φ evaluated over all and
over only survived (inset) runs, respectively. In order to compare, we
plot in (b) the time decay of the order parameter φ for distinct α’s
for the original PCP. The black line in the middle curve has slope
θ = 0.4505(10). The inset in (b) shows the time decay of φ measured
over only survived runs. In (c) we plot the probability distribution Pφ

for distinct L’s at αL, in which the peaks present the same height.
The scaling plot of αL vs L−2 is shown in (d). In the inset, we show
a log-log plot of steady order parameters φst , in the active φac and
absorbing φab phases, vs L.

transition (since k = 3 > n = 2), numerical results show that
the phase transition is indeed first-order for N � 2.

In order to strengthen the above conclusions, we examine
model C, whose extinction includes all neighboring occupied
sites of a given particle chosen at random. Unlike the previous
examples, the system presents a single absorbing state and thus
the dynamics is ruled by the particle density ρ. The results
are summarized in Fig. 5. As in the previous examples, the
creations in the presence of N � 1 [Fig. 5(b)] and N � 2
[Fig. 5(a)] behave very differently. Whenever in the former,
ρ decays following a DP exponent θ = 0.4505(10) at αc ∼
0.1009; for N � 2 one has two distinct regimes separated
from a given threshold value α̃ ∼ 0.0244. The probability
distribution Pρ [Fig. 6(c)] is also bimodal for N � 2 and
the positions of two equal peaks αL also scale with L−2,
from which one gets the estimate α0 = 0.0243(1), in excellent
agreement with α̃. The steady densities ρst also exhibit distinct
dependences on the system size and are similar to previous
cases. Whenever ρac saturates in a constant value ρac ∼ 0.747
when L increases, ρab vanishes according to the asymptotic
law L−0.52(5).

Finally, we extend the restriction for the two-dimensional
PCP (model D). By comparing Figs. 6(a) and 6(b), we see
that similarly to previous models, the order parameter φ

(the pair density in both cases) behaves differently from
the original Np � 1 and Np � 2 versions. Whenever in
the former φ decays with an exponent consistent with the
DP value θ = 0.4505(10) at the phase transition (placed at
αc ∼ 0.188 [26]), a threshold value (α̃ ∼ 0.0480) separates
permanent extinction (α < α̃) from the full activity extinction
(α > α̃) for Np � 2. Averages evaluated over survival runs
corroborate the differences between both versions as well
as the similarities among the above three examples. The
probability distribution Pφ [Fig. 6(c)] also presents two
peaks for Np � 2, whose αL’s scale with L−2, providing the
extrapolated estimate α0 = 0.0474(2), which is close to the
above estimate. As in all previous restrictive examples, φac

and φab also exhibit distinct dependences on the system size
L. Whenever φac reaches the constant value ∼0.755 in the
thermodynamic limit, φab vanishes according to the relation
L−0.63(5), which is consistent with all previous examples.

IV. CONCLUSION

We presented strong evidence of a minimal mechanism
leading to a first-order transition into absorbing states for
short-range systems. In all cases, results differing greatly
from their original cases (in which the phase transitions are
unambiguously continuous) have been achieved. The onset
of a threshold value separating endless activity from an
exponential decay toward the full extinction as well as bimodal
distributions with (pseudo) transition points scaling on the
system volume strongly suggests that the particle creation
in the presence of a minimal neighborhood (for all studied
models it is 2) constitutes a robust and fundamental ingredient
determining the phase coexistence in short-range contact
processes. An understanding about the role of such a particle
creation requirement is achieved by performing mean-field
calculations. By taking the correlation at the level of two
sites, in all cases low-density states become unstable (with
α increasing with ρ), signaling a jump. In contrast, for the
nonrestrictive versions, ρ always decreases with α. As a final
remark we note that the study of other restrictive processes,
including the diffusion of particles and competitive dynamics,
should be addressed in future work.
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[21] M. A. Muñoz, G. Grinstein, R. Dickman, and R. Livi,

Physica D 103, 485 (1997).
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