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Quantum information-geometry of dissipative quantum phase transitions
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A general framework for analyzing the recently discovered phase transitions in the steady state of dissipation-
driven open quantum systems is still lacking. To fill this gap, we extend the so-called fidelity approach to quantum
phase transitions to open systems whose steady state is a Gaussian fermionic state. We endow the manifold of
correlation matrices of steady states with a metric tensor g measuring the distinguishability distance between
solutions corresponding to a different set of control parameters. The phase diagram can then be mapped out in
terms of the scaling behavior of g and connections with the Liouvillean gap and the model correlation functions
unveiled. We argue that the fidelity approach, thanks to its differential-geometric and information-theoretic
nature, provides insights into dissipative quantum critical phenomena as well as a general and powerful strategy
to explore them.
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I. INTRODUCTION

The occurrence of typical equilibrium phenomena in out-of-
equilibrium driven condensed-matter systems (e.g., long-range
order, topological order, and quantum phase transitions) has
been recently discovered [1–4]. This poses new, fascinating,
and challenging problems both at the theoretical and exper-
imental levels. Indeed, it has been shown that dissipation
processes can in principle be controlled and tailored in order to
compete with system-free evolution and to realize fundamental
protocols such as quantum state preparation [5], quantum
simulation [6], and computation [7]. The natural question
that arises is whether and how the methods typically used
in the equilibrium realm can be adapted to characterize
nonequilibrium problems. In particular, the occurrence of
quantum phase transitions (QPTs) in nonequilibrium steady
states (NESSs), which are the results of complex many-body
dissipative evolutions, is far from being understood, and we
still lack a comprehensive and systematic framework that can
link equilibrium and nonequilibrium properties.

In this paper, we propose an information-geometric strategy
for describing NESS-QPT based on the study of a quantity
borrowed from quantum information theory, i.e., the fidelity
F between quantum states. This general approach has been
successfully applied to a large variety of ground-state QPTs
(GS-QPTs) [8–11] and quantum chaos [12]. In the context of
NESS-QPTs, the set of (control) parameters λ ∈ M defines
a Liouvillean superoperator L(λ) which drives the system,
independently of the chosen initial state, to the corresponding
(unique) NESS ρ(λ). Depending on λ, the NESS can exhibit
quite different properties and the system can exhibit NESS-
QPTs. The main idea behind the fidelity approach is the
following: when dramatic structural changes occur in ρ(λ),
e.g., approaching a critical point, the geometric-statistical
distance d[ρ(λ),ρ(λ + δλ)] between two infinitesimally close
states grows as they become more and more statistically
distinguishable. Although there are several metrics in in-
formation geometry [13–15] for (mixed) density operators
ρ(λ) [16], here we concentrate on the Bures metric ds2

B =

2[1 − F(ρ,ρ + dρ)]. The latter is written in terms of the
Uhlmann fidelity [17] F , and, in turn, represents the natural
measure of distinguishability. The infinitesimal distance ds2

B

is the fundamental tool of the fidelity approach: it has been
shown that the study of its scaling behavior (extensive versus
superextensive) allows a systematic study of GS-QPTs [10,18].
When expressed in terms of the physical λ of the model,
the Bures distance provides a metric g onto the parameter
manifold M. The tensor elements of g allow one to study
the responsiveness of the system to small variations of the
physical parameters and eventually detect a phase transition.
Although the metric tensor g is not coordinate-free, as long as
the coordinate transformations are not singular themselves and
are independent of the system size, the finite-size scaling of the
metric is an intrinsic property of the family of quantum states
that is parametrization-independent. This simple fact has been
amply recognized in the corresponding fidelity approach for
closed quantum systems [9,10] and applied here verbatim.

Dissipative QPTs are of a different nature from the standard
QPTs at zero temperature. Accordingly, in spite of some ob-
vious yet somewhat superficial similarity, their understanding
calls for a different set of conceptual as well as mathematical
tools. In the first place, stationary states are the result of an
equilibration process: NESS-QPTs need a new equilibration
time after the perturbation and, as such, they are not a result
of an adiabatic reorganization of the (ground) state. From
a mathematical point of view, a NESS is the zero eigenvalue
density matrix of the non-Hermitian Liouvillean superoperator
L, as opposed to pure eigenvectors of a Hermitian Hamiltonian
operator H . This implies that, on the one hand, one has
to employ the more sophisticated information-geometry of
mixed states and, on the other hand, that the whole wealth of
powerful results stemming out of Hermiticity, e.g., the spectral
theorem and perturbation theory, is simply not available in
the dissipative case. The challenge here is to find a suitable
way to parametrize the manifold of stationary states and pull
back into the parameter manifold the state metric. This is in
general a quite daunting task, but restricting to the physically
relevant case of a quadratic Liouvillean can be achieved.
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Specific models belonging to this class indeed display rich
nonequilibrium features and NESS-QPTs, which have been
characterized by studying long-range magnetic correlations
and the Liouvillean spectral gap �L [1,19]. However, to
the best of the authors’ knowledge, a precise mathematical
definition of a NESS-QPT is still lacking. This paper aims
to be an attempt toward the use of the fidelity approach for
defining the NESS-QPT.

We derive a general formula for the Bures distance over the
set of Gaussian fermionic (GF) states and the metric tensor
g over the parameter manifold. Then we discuss how the
scaling of the metric implies both the closing of �L and
the divergences of some two-point correlations. Finally, we
apply our theoretical framework to exactly solvable models.
Our analysis demonstrates that the NESS phase diagram can
be accurately mapped by studying the (finite-size) scaling
behavior of the metric tensor g; critical lines can be identified
and the different phases distinguished.

II. BURES METRIC FOR GAUSSIAN FERMIONIC STATES

The calculation of the Bures distance is a notoriously
hard task for large Hilbert spaces: standard methods [16] are
computationally not applicable for many-body systems, and
finding an efficient way to evaluate ds2

B is still a subject of
active research [20]. Here we show a compact and efficient
way to evaluate the Bures metric (for convenience, we use a
rescaled metric ds2 = 8 ds2

B ) when the state space is restricted
to the physically important case of Gaussian fermionic states.
Consider a system of n fermion modes described by a set of 2n

Majorana operators wi . These operators are Hermitian, depend
linearly on the fermionic creation and annihilation operators
via w� = f� + f

†
� , wn+� = i(f� − f

†
� ), � = 1, . . . ,n, and sat-

isfy the algebra {wi,wj } = 2δij . A GF state ρ, i.e., a Gaussian
state in terms of the operators wj , is completely specified by the
two-point correlation functions Cij = 1

2 〈[wi,wj ]〉ρ , where the
complex 2n × 2n matrix C is imaginary and antisymmetric.

With this natural parametrization, the metric can be pulled
back from the many-body Liouville space to the manifold of
the two-point correlation functions. Indeed, in Appendix A
we have shown that the fidelity metric around the GF state ρ

specified by the correlation function C is given by

ds2 = Tr[dC(1 − AdC)−1dC] =:
∥∥(1 − AdC)−

1
2 dC

∥∥2
2,

(1)

where AdCX:=CXC†=CXC is the adjoint action,
and −1 refers to the pseudo-inverse. In particular, when ρ

is pure, Sp(C) = {±1} and the above equation reduces to
ds2

pure=‖dC‖2
2/2.

This is an interesting result, but it is just the first step of our
analysis. In fact, the crucial physical information is contained
in the external parameters {λμ} ∈ M of the model. As dC =∑

μ dλμ∂μC, we obtain

ds2 =
∑
μ,ν

gμνdλμdλν, gμν =
′∑
rs

(∂μC)rs(∂νC)sr
1 − crcs

, (2)

where C =∑r cr |r〉〈r|, with cr ∈ R and (∂C)rs = 〈r|∂C|s〉,
i.e., the sum in the above equation is performed in the

basis in which C is diagonal and it is restricted over
the elements such that crcs �= 1. The infinitesimal distance
ds2 encodes the statistical distinguishability between two
infinitesimally close Gaussian fermionic states; this result is
completely general and it can be used to study the geometrical
properties of manifolds of GF states. Equations (1) and (2)
provide the basic tool for studying the phase transitions
occurring when the NESS are GF states. In this respect,
a first qualitative indication that the scaling behavior of
the metric can spot QPTs is suggested by the following
inequality (see Appendix D): ds2 � 2nPC ‖dC‖2

∞, where
PC = ‖(1 + C⊗2)−1‖∞ and ‖A‖∞ refers to the maximum
singular value of A. If PC=O(1), a superextensive behavior of
ds2 implies some sort of singularity in the correlation functions
that may reflect the occurrence of a phase transition.

III. DISSIPATIVE SOLVABLE MODEL

We consider a Markovian dissipative open quantum system
evolution [21] governed by the Lindblad master equation,

dρ

dt
= Lρ := −i[H,ρ] +

∑
μ

(2Lμ ρ L†
μ − {L†

μ Lμ,ρ}), (3)

with a quadratic Hamiltonian H =∑ij Hij wiwj and linear
Lindblad operators Lμ =∑i �μi wi , where the matrices H

and � depend on the parameters λ ∈ M defining the specific
model. In the following, we obtain the steady state 	, namely
the state for which d	/dt = L	 = 0, and pull back the set of
admissible NESS to the parameter manifold. The Liouvillean
can be written as a quadratic form in terms of the following
set of 2n creation and annihilation superoperators:

a
†
j · = − i

2
W {wj,·}, aj · = − i

2
W [wj,·], (4)

where W = in
∏2n

j=1 wj is a Hermitian idempotent operator
which anticommutes with all the wj . A direct calcula-
tion proves that the operators defined in Eq. (4) satisfy
the canonical anticommutation relations (CAR), {a†

j ,ak} =
δjk , and that L = −∑ij (Xij a

†
i aj + Yij a

†
i a

†
j /2), where X =

4(iH + ReM) ≡ X∗, Y = −8i ImM ≡ −Y ∗ ≡ −Y T , with
Mij =∑μ �μi�

∗
μj ≡ M†. This result was derived in [22], but

thanks to our definition (4), complex transformations [23] for
unifying the different parity sectors are avoided. The two-point
correlation functions in the steady state, Cij = 〈[wi,wj ]〉,
are obtained from the solution of the following Sylvester
equation [23]:

X C + C XT = Y. (5)

As shown in Appendix B, the matrix C also plays a central
role in the diagonalization of the Liouvillean. To simplify our
analysis, we assume the real matrix X to be diagonalizable,
i.e., X = UxU−1 for x = diag({xi}), xi ∈ C, as this condition
is always satisfied in our numerical simulations; the general
(nondiagonalizable) case is discussed in Appendix C. The
transformation d = U−1(a + Ca†), d× = UT a†, realizes a
nonunitary Bogoliubov transformation and brings L to the
diagonal form L = −∑k xk d×

k dk . The (unnormalized) steady
state 	 is then obtained as the d-vacuum, (di	 = 0, ∀ j =
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1, . . . ,2n), i.e.,

	 = e− 1
2 a†·Ca†(1), (6)

where the identity operator is the a-vacuum. The physical
conditions for the existence and uniqueness of the steady state
are given in [24]: if � := 2 mini Re(xi) > 0, then the solution
of (5) is unique and every initial state converges for t→∞
to the unique steady state (6). The gap � represents both the
inverse of the time scale for reaching the steady state and the
gap of the Liouvillean: min{|∑j xjnj | : nj∈{0,1}} ≡ �.

If � > 0, the steady state 	(λ) is unique, and since L
smoothly depends on the parameters λ ∈ M, it is a smooth
function of λ [25]. If the gap �(n)→0 for n→∞, the steady
state 	(λ) may become a nondifferentiable function of λ.
However, NESS-QPT are not defined by the closing of the
Liouvillean gap. Nevertheless, the scaling properties of �(n)
have been used as indicators of NESS criticality [19,26–28].
Motivated by this, in Appendix D we derive the following
upper bound, which relates the behavior of �(n) and ds2:

ds2

n
� 2

PC

�2
(‖dY‖∞ + 2‖dX‖∞)2. (7)

The latter is the dissipative analog of the GS-QPT one given in
[10], where it was shown that superextensivity of ds2 implies
the closing of the Hamiltonian gap [10] and the occurrence
of criticality. Here the bound intriguingly links the geometric
quantity ds2 to the dynamical property �, and it provides
the following information: if the numerator of the right-hand
side in (7) is O(1), then any superextensive behavior of ds2 =
O(nα+1), α > 0, implies that the Liouvillean gap � closes at
least as O(n−α/2). Therefore, the geometric properties of the
NESS manifold set the minimal time scales for the reaching
of the steady state.

In the next sections, we specialize our results to particular
solvable instances of (3) and we perform numerical and
analytical analyses aimed at validating the importance and
usefulness of the fidelity approach to NESS-QPT and at
comparing the scaling properties of � and ds2. In particular,
we will focus on the scaling of metric tensor gμν and of
its largest eigenvalue |g|, which depends on the control
parameters of the model. However, the scaling of the metric
tensor is a coordinate-free concept, as long as the coordinate
transformations over the control manifold do not depend on n.
This latter is always going to be the case on physical grounds,
as the control manifold’s dimension is unrelated to the Hilbert
space one and therefore does not scale with the number of
particles.

IV. BOUNDARY-DRIVEN XY SPIN CHAIN

We now concentrate on a solvable spin- 1
2 model exhibiting

a NESS-QPT [1]. Coherent interactions are described by the
XY Hamiltonian

H =
n−1∑
i=1

(
1 + γ

2
σx

i σ x
i+1 + 1 − γ

2
σ

y

i σ
y

i+1

)
+ h

n∑
i=1

σ z
i , (8)

where σα
j are the Pauli operators acting on the j th spin.

The two boundary spins of the chain are coupled to two
(thermal) reservoirs via the Lindblad operators L±

L =
√

±
L σ±

1 ,

TABLE I. Scaling analysis of the gap � and of the maximum
eigenvalue of the fidelity metric gμν . These laws do not depend on
the particularly chosen rate ±

L,R . An asterisk denotes that the lines
h = 0 and γ = 0 consist of a short-range region embedded in the
long-range phase; one finds (see discussion in the text) |g| ≈ ghh for
h = 0 and |g| ≈ gγγ for γ = 0.

Phase Parameters � |g|
Critical * h = 0 n−3 n6

Long-range 0 < |h| < hc n−3 n3

Critical |h| ≈ hc n−5 n6

Short-range |h| > hc n−3 n

Critical * γ = 0,|h| < hc n−3 n2

L±
R =

√
±

R σ±
n , where σ±

j = (σx
j + iσ

y

j )/2, and the strengths
±

L,R depend on the reservoir parameters as well as on their
temperature [23]. Due to the Jordan-Wigner transformation,
such a model can be exactly described by a quadratic
Majorana master equation (3). The steady state of the resulting
dissipative Markovian evolution is therefore Gaussian, and
different phases can be identified depending on the parameters
(h,γ ) of the Hamiltonian (8). Along the lines h = 0, γ = 0,
and for h > hc = |1 − γ 2|, magnetic correlations are short-
ranged, i.e., the correlation function Czz

ij = 〈σ z
i σ z

j 〉 exhibits
an exponential decay, Czz

ij ≈ e−|i−j |/ξ , with a localization
length ξ ≈ √

2hc/(h − hc)/8. On the other hand, for h < hc

a phase with long-range magnetic correlations emerges which
is characterized by nondecaying structures in Czz

ij and a
strong sensitivity to small changes of the parameters. Around
the critical point hc, one finds a power-law behavior Czz

ij ≈
|i − j |−4.

In Table I we summarize the scaling analysis performed.
Our results show that the Liouvillean gap and the metric
encode different information. Indeed, unlike the Hamiltonian
gap ruling ground state QPT, the Liouvillean gap � closes for
n → ∞ both at the critical point and for h �= hc, both in the
long-range and short-range phase. As the reservoirs act only
at the boundaries of the spin chain, the eigenvalues xk of the
matrix X for n � 1 are a small perturbation of the n→∞ case,
where xk = ±4iωk , where ωk =

√
(cos k − h)2 + γ 2 sin2 k is

the quasiparticle dispersion relation of the Hamiltonian (8).
In particular, xk gains a small real part and one finds a
gap � = O(n−3) for h �= hc and � = O(n−5) for h = hc.
Therefore, the scaling of the Liouvillean gap allows one to
identify the transition from the short-range phase to the
long-range phase only along the critical line h = hc, while the
transition occurring at the h = 0 (or γ = 0) line can only be
appreciated by evaluating the long-rangedness of the magnetic
correlations. The question that naturally arises is how the
different phases and transitions can be precisely characterized
in a way similar to what happens for GS-QPTs. This question
becomes more compelling if one compares the above results
with the scaling of the geometric tensor gμν , and in particular
of its largest eigenvalue |g|; see Table I and Fig. 1 for specific
values of the parameters.

A first important result is that the tensor g is able to
identify the transitions between short-range and long-range
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FIG. 1. (Color online) Scaling of |g| for γ = 0.6 and h ∈ [0,0.8]
(left) and for γ = 0.5 and h ∈ [0.735,0.755] (right). In both cases,
+

L = 0.3, −
L = 0.5, +

R = 0.1, −
R = 0.5. Points represent the nu-

merical data, while lines are linear fits, whose results are summarized
in Table I. |g| fluctuates slightly as a function of n in the long-range
phase, and the relative amplitude of the fluctuations increases close
to the critical field hc. Due to finite-size effects and to the differential
nature of the geometric tensor, the value where |g| takes its maximum
is slightly smaller than hc, and this difference depends on n.

phases. On the “transition lines” h = 0 and h = hc one has
that |g| = O(n6), while in the rest of the phase diagram
|g| < O(n6). Furthermore, a closer inspection of the elements
of g shows that while ghh(h = 0,γ ) = O(n6), one has that
gγγ (h = 0,γ ) = O(n): the scaling is superextensive only if
one moves away from the line h = 0 (ghh) and enters the
long-range phase, while if one moves along the h = 0 line
(gγγ ), i.e., if one remains in the short-range phase, the scaling
is simply extensive and it matches the scaling displayed in
the other short-range phase h > hc. On the other hand, the
transition occurring at γ = 0 has a different scaling: gγγ =
O(n2) while ghh ≈ 0. These findings can be further confirmed
by a detailed study [29] based on the analytical results available
for γ � 1 [23]. The understanding of the transitions occurring
at h = 0 or γ = 0 is complicated by the fact that each of
these lines corresponds both to the critical line separating
two phases, but also to one of those phases. Therefore, in
these lines there are mixed features: there is both a phase
with short-range correlations and a critical line separating two
phases, which is detected by the superextensive scaling of
some metric tensor elements. Moreover, it turns out that the
introduction of the magnetic field or the anisotropy drives
different transitions whose specificity is accounted for by the
different superextensive scalings of different components of
the metric tensor.

Another important result shown in Table I is that the metric
tensor is able to signal the presence of long-range correlations:
within the long-range phase, ds2 scales superextensivity as
|g| = O(n3), and this superextensive behavior is different from
that displayed at the transition lines. One is therefore led to
conjecture that all long-range phases have a critical character,
due to the presence of long range correlations.

The findings discussed above demonstrate that the metric
tensor g, being directly linked to the correlation properties of
the Gaussian NESS, encodes all the relevant information about
the dissipative phase transition featured by the model (8). In
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ln
|g
|

FIG. 2. (Color online) Maximum eigenvalue |g| of the fidelity
metric (2) for n = 250. The Lindblad parameters are the same as
in Fig. 1. The larger value of |g| close to the phase transition line
h = hc(γ ) is not evident in Fig. 2 because of the numerical mesh,
and because the actual values of |g| for h ≈ hc can be comparable to
those of the long-range phase, depending on n (e.g., see Fig. 1). The
qualitative form of Fig. 2 is not affected by different values of the
Lindblad parameters ±

L,R and by the dimension n.

particular, the specificity of the different phases (short-range
versus long-range) and the information about the physically
relevant parameters (whether it is the magnetic field or the
anisotropy) that drive the different transitions are properly
accounted for. As shown in Fig. 2, the complete phase diagram
can indeed be reconstructed with the study of the single
function g. While these results are specific to the model
examined, the connection established in (2) roots the behavior
of g in the correlation properties of the general class of GF
states. Accordingly, one expects the fidelity approach to have
a broader scope of application. We would like to stress that
there are compelling questions that are still unanswered. In the
first place, there is the relation between g and other relevant
quantities that have been used so far to characterize NESS-
QPT. For the model (8), these are the ranges of correlations
and the finite-size scaling of the Liouvillean gap �. The
latter does not entirely capture the criticality phenomenon,
and further investigation of the relation between criticality in
NESS-QPT and geometrical and dynamical aspects is in order
[30]. Notice also that, in the XY model, different types of
symmetries (discrete versus continuous) are broken moving
away from the h = 0 or γ = 0 line. It would be interesting to
understand whether the scaling exponents of ds2 at different
lines can be related to different nonequilibrium universality
classes. Extending the present results to non-Gaussian states
[31] and transitions [32] is also an important future direction.

V. TRANSLATIONALLY INVARIANT CASE

To support the generality of the geometric approach in
understanding dissipative phase transitions, we apply our
theoretical framework to a different dissipative model, first
introduced in [19]. We consider an XY spin chain on a ring
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where each site is coupled to the environment via L−
i = εμfi ,

L+
i = ενf

†
i : these Lindblad operators describe a competition

between particle-loss and particle-gain processes. The closed
boundary conditions and the uniform interaction with the
environment make the phase diagram very different from the
previous one.

In this case, the quadratic Liouvillean is translationally
invariant and can be diagonalized with a Fourier transfor-
mation together with a Bogoliubov transformation. In the
Fourier basis, the two-point correlation function matrix takes
the following form [19] in the weak-coupling limit ε → 0:

C = i
�

2

⊕
k

(
0 1 + eiqk

−1 − e−iqk 0

)
, (9)

where qk = −2 arctan( γ sin φk

h−cos φk
), and where φk = 2πk/n is the

quasimomentum, n is the length of the chain, and � = ν2−μ2

ν2+μ2 .
The eigenvalues of the above matrix are ck,± = ±� cos qk

2 .
The metric (2) can be obtained by writing the matrix dC

in the basis in which C is diagonal. A straightforward
calculation yields

ds2 = �2

2

∑
k

1 − �2 cos2 qk

2 cos qk

1 − �4 cos4 qk

2

(dqk)2, (10)

dqk = 2γ
sin φk

ω2
k

dh − 2
(h − cos φk) sin φk

ω2
k

dγ, (11)

where ωk =
√

(cos φk − h)2 + γ 2 sin2 φk is the dispersion
relation of the XY model. An extensive behavior of (10)
is given by the continuous limit

∑
k → n

2π

∫ 2π

0 dφ: if the
resulting integral is convergent, no superextensive behavior
can occur. However, from (11) it is clear that a possible (the
only?) source of a divergent behavior of dq2

k is the vanishing of
the gap mink ωk . It is known that in the XY model this condition
occurs only for h = 1, where one finds for φ � O(n−1) that
mink ω ≈ O(n−1). Hence

max
k

dqk ≈ O(n) dh + O(n−1) dγ, (12)

from which

|g| ≈ ghh = O(n2), for h = 1. (13)

On the other hand, for γ → 0, ω � |h − cos φ|, so if h =
cos φ + O(n−1) we obtain

dqk|γ→0 = −2
φk

(h − cos φk)
dγ � O(n)dγ, (14)

again recovering the scaling |g| = O(n2).
In this particular translationally invariant case, the critical

points match the known values for GS-QPT: for γ �= 0 there is
a critical field h = 1, while in the XX case the whole segment
|h| < 1 is critical. The information-geometric content of this
dissipative phase transition is not as rich as the one in Table I,
and again the scaling of the metric tensor allows one a precise
mapping of the phase diagram.

VI. CONCLUSIONS

In this paper, we developed an information-geometric
framework for studying dissipative critical phenomena

exhibited by the nonequilibrium steady states of Markovian
evolutions described by a quadratic Fermionic Liouvillean.
The presented results represent a step toward a full mathemat-
ical understanding of dissipative quantum critical phenomena
via information-geometric concepts. Indeed, to the best of
our knowledge, a precise definition and characterization of
NESS-QPT is still lacking in the literature. We first derived a
general formula for the infinitesimal Bures distance between
Gaussian fermionic (mixed) states. This in turn allows one
to define a metric tensor g on the manifold of steady
states corresponding to different sets of control parameters.
The intuitive underlying idea is that a transition between
two structurally different phases should be reflected by the
statistical distinguishability of pairs of infinitesimally close
steady states. The method does not require knowledge about
or the existence of any order parameters, as the tensor g

is directly connected to the two-point correlation functions
which define the Gaussian fermionic steady states. We have
shown that the superextensive behavior of the tensor g implies
some singularity for n→∞ in the derivative of the correlation
functions. We have applied the method to specific (XY) models
and shown that the scaling of the geometric tensor enables one
to identify the critical lines and to distinguish between different
phases characterized by short- or long-ranged correlations.
The metric tensor encodes also for the direction of maximal
distinguishability in the parameter manifold, thus allowing
a detailed study of the sensitivity of the steady state to
small variations of some control parameters. This is a crucial
point for experimental applications of dissipative evolution.
The scope of the information-geometric approach extends
well beyond the important quadratic case analyzed in this
paper, and it may pave the way to the systematic study
of general nonequilibrium critical phenomena. This in turn
would allow the investigation of a broad class of systems and
processes which are natural candidates for the preparation
of desired quantum states and the realization of quantum
protocols.

ACKNOWLEDGMENTS

P. Z. was supported by the ARO MURI Grant No. W911NF-
11-1-0268 and by NSF Grants No. PHY- 969969 and No.
PHY-803304.

APPENDIX A: PROOF OF EQ. (1)

We consider a Gaussian fermionic state written in the
following form:

ρ = e− i
4

∑
ij Gij wiwj /Z, (A1)

where the matrix G has to be real and antisymmetric.
Accordingly, G can be cast in the canonical form by an
orthogonal matrix Q, i.e.,

G = QT

n⊕
k=1

(
0 gk

−gk 0

)
Q, QT = Q−1, (A2)
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and it has eigenvalues ±igk . Moreover, let zi =∑j Qijwj be
the new Majorana operators. Hence

ρ = 1

Z

∏
k

[
cosh

(
gk

2

)
− i sinh

(
gk

2

)
z2k−1z2k

]
, (A3)

Z =
∏
k

2 cosh

(
gk

2

)
=
√

det

[
2 cosh

(
i
G

2

)]
, (A4)

where we used the fact that the eigenvalues of iG are ±gk . As
Cij = 1

2 〈[wi,wj ]〉 = 2i
Z

∂Z
∂Gij

, one can show that

C = tanh

(
i
G

2

)
. (A5)

The correlation matrix C = C† = −CT is diagonal in the same
basis of G, and its eigenvalues read ck = tanh(gk/2). Hence

ρ =
∏
k

1 − ick z2k−1z2k

2
, (A6)

where |ck| � 1. Note that for ck = ±1, one has gk = ±∞,
making the ansatz (A1) not well-defined, unlike Eq. (A6).
The latter possibility occurs, for instance, for pure states, as is
clear from the following explicit expression for the purity of
the states (A1) and the states (A1) and (A6):

Tr[ρ2] = det[2 cosh(i G)]
1
2

det
[
2 cosh

(
i G

2

)] =
√

det

(
1 + C2

2

)
. (A7)

We now derive the proof of Eqs. (1) and (2), dividing the
different steps into three lemmas. At first we assume ck �= ±1
and then we extend the result for including pure states.

Lemma 1. Let ρ,ρ ′ be two GF states (A1) parametrized by
G,G′, respectively. Then

F(ρ,ρ ′) = Tr
√√

ρρ ′√ρ (A8)

= det[1 +
√

eiG/2eiG′
eiG/2]

1
2

det[1 + eiG]
1
4 det[1 + eiG′ ]

1
4

. (A9)

Proof. This lemma is a direct consequence of the fact that
the quadratic Majorana operators form a Lie algebra:[

w · Aw
4

,
w · Bw

4

]
= w · [A,B]w

4
, (A10)

and accordingly

e
i
4 w·Awe

i
4 w·Bw = e

i
4 w·Dw, eA eB = eD. (A11)

Thanks to the above identity,√√
ρρ ′√ρ

∝ exp

⎛
⎝1

4

∑
ij

(
log[e−iG/2e−iG′

e−iG/2]

2

)
ij

wiwj

⎞
⎠ ,

(A12)

and using (A4) we find

F(ρ,ρ ′) = det
[

cosh
(

1
4 log e−iG/2e−iG′

e−iG/2
)] 1

2√
det
[

cosh
(
i G

2

)] 1
2 det

[
cosh

(
i G′

2

)] 1
2

, (A13)

which is equivalent to (A9).

A convenient parametrization of Eq. (A9) is obtained in
terms of the correlation function by defining the new matrix
T = eiG. Then

C = T − 1

T + 1
, T T = T −1, T † = T , (A14)

F(ρ,ρ ′) =: F(T ,T ′) = det[1 +
√√

T T ′√T ]
1
2

det[1 + T ]
1
4 det[1 + T ′]

1
4

. (A15)

The following lemma conveys the metric pull back within
the manifold of states parametrized by T :

Lemma 2. Let ds2 = 8 ds2
B = 16[1 − F(T ,T + dT )] be the

fidelity metric around the state (A1) pulled back in the space
of the matrices T , and let dT = ∂μT dλμ, where λμ ∈ M are
the parameters of the model. Then the fidelity metric can be
cast in the form ds2 =∑μν gμν dλμ dλν , where the geometric
tensor is

gμν = 2
∑
ij

(∂μT )ij (∂νT )ji

(1 + ti)(1 + tj )(ti + tj )
. (A16)

In (A16), the sum is performed in the basis in which T is
diagonal, i.e., we set T =∑i ti |i〉〈i| and (∂μT )ij = 〈i|∂μT |j 〉.

Proof. Proceeding along the same lines as Section 3 of [33],
we obtain for T ′ = T + dT√√

T T ′√T

= T +
∑
ij

|i〉〈j |
√

ti tj

ti + tj
dTij −

∑
ijk

|i〉〈k| dTij dTjk

×
√

ti t
2
j tk

(ti + tj )(tj + tk)(ti + tk)
+ O(dT )3. (A17)

Due to the above expression and to Eq. (A15), the fidelity
F(T ,T + dT ) can be written in terms of some infinitesimal
operators δ,∂ ,

F(T ,T + dT ) � det[(1 + T )(1 + ∂)]
1
2

det[1 + T ]
1
4 det[(1 + T )(1 + δ)]

1
4

= det[1 + ∂]
1
2

det[1 + δ]
1
4

= e
1
2 Tr log(1+∂)− 1

4 Tr log(1+δ)

� e
1
2 Tr(∂−δ/2)− 1

4 Tr(∂2−δ2/2), (A18)

where

δ = (1 + T )−1 dT =
∑
ij

|i〉〈j | 1

1 + ti
dTij , (A19)

∂ = (1 + T )−1 (

√√
T T ′√T − T )

=
∑
ij

|i〉〈j |
√

ti tj

ti + tj

1

1 + ti
dTij −

∑
ijk

|i〉〈k| dTij dTjk

×
√

ti t
2
j tk

(ti + tj )(tj + tk)(ti + tk)

1

1 + ti
. (A20)
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The elements of Eq. (A18) become

Tr(∂ − δ/2) = −1

4

∑
ij

|dTij |2 1

(ti + tj )2

(
tj

1 + ti
+ ti

1 + tj

)
,

(A21)

Tr δ2 =
∑
ij

|dTij |2 1

(1 + ti)(1 + tj )
, (A22)

Tr ∂2 �
∑
ij

|dTij |2 ti tj

(ti + tj )2

1

(1 + ti)(1 + tj )
, (A23)

so that

F(T ,T + dT ) � 1 − 1

8

∑
ij

|dTij |2
(1 + ti)(1 + tj )(ti + tj )

,

(A24)

which completes the proof.
Before proving Eq. (1) we introduce the following lemma,

which will be used for analytical continuations to the pure state
manifold:

Lemma 3. Let f (x,y) := (x − y)2(1 − xy)−1 be a func-
tion defined in [−1, 1]2 − {z+, z−}, z± := (±1, ± 1). Then
f (x, y) � 4 and lim(x,y)→z± f (x, y) = 0.

Proof. The upper bound is found thanks to 1 − xy =
1 − [(x + y)2 − (x − y)2]/4 � (x − y)2/4. To show that
lim(x,y)→z± f (x, y) = 0, let us restrict f to the x � 0, y � 0
part of the domain to analyze the limit to z+. The limit z−
follows because of the (x, y) → (−x, − y) symmetry of f.

One can write y = 1 + m (x − 1) or x = 1 + m (y − 1) with
with m ∈ [0, 1]. Because of the (x, y) → (y, x) symmetry
of f , we can consider just the first case. One obtains
f (x,y) = (1 − x) (1−m)2

1+mx
� 1 − x, which is in a disk of radius

δ centered on z+ and is upper bounded by δ. This shows
that ∀ε > 0, ∃δ = δ(ε) s.t ‖(x, y) − z+‖ � δ ⇒ f (x, y) � ε

[with δ(ε) = ε], i.e., the claim.
Proof of Eq. (1). Equation (2) is obtained directly from

lemma A. Indeed, from Eq. (A14),

dC = dT
1

1 + T
− T − 1

T + 1
dT

1

T + 1
= 2

1

T + 1
dT

1

T + 1
.

(A25)

Inserting the above equation in (A16), and noting that C and
T are diagonal in the same basis, ci = ti−1

ti+1 , one obtains

gμν =
∑
ij

(∂μC)ij (∂νC)ji

1 − cicj

. (A26)

The singular behavior of (A26) for ci = ±1 is just ap-
parent. Indeed, let iG|j 〉 = gj |j 〉 (j = 1, . . . ,2n), Sp(iG) =
{gj } ⊂ R, and then C =∑j cj |j 〉〈j |, cj := tanh(gj/2). By

differentiation, dC =∑j ((1 − c2
j ) dgj

2 |j 〉〈j | + cj (|dj 〉〈j | +
|j 〉〈dj |)). One has, therefore, the matrix elements (dC)jj =
(1 − c2

j )dgj and (dC)ij = (ci − cj )〈di|j 〉 (i �= j ). Plugging
these into (A26), we obtain

ds2 = 1

4

∑
j

(
1 − c2

j

)
dg2

j +
∑
i �=j

f (ci,cj ) |〈di|j 〉|2. (A27)

Now one can see easily that for cj → ±1, the first (diagonal)
contribution in (A27) vanishes while the second, thanks to
lemma A, is upper bounded by 4

∑
i �=j |〈di|j 〉|2 for all ci,cj ∈

(−1, 1) and vanishes for (ci,cj ) → z±: even if (A26) has been
derived for C such that ci �= ±1, we can perform the limit
|ci | → 1,(∀ i), and in this way extend the metric to the pure
state manifold just by setting cicj to −1 (e.g., the case cicj = 1
gives a vanishing contribution).

The basis-independent expression Eq. (1) follows from
(A26),

ds2 =
∑
μν

gμνdλμdλν = 〈(1 − AdC)−1(dC), dC〉 (A28)

where dC =∑μ dλμ∂μC, and AdC(X) := CXC† =
CXC = (LC ◦ RC)(X) is the adjoint action. To see this, let
us first write dC =∑ij (dC)ij |i〉〈j |, where C|i〉 = ci |i〉.
Then (1 − AdC)−1(dC) =∑ij (dC)ij (1 − cicj )−1 |i〉〈j | and
〈(1 − AdC)−1(dC), dC〉 = ∑

ij (dC)ij ∗(1 − cicj )−1〈|i〉
〈j |, dC〉 =∑ij (dC)ij ∗(dC)ij (1 − cicj )−1. The zero
contribution to the sum (A26) for cicj = 1 is considered
thanks to the pseudo-inverse.

One can show that Eq. (1) reduces to the known expressions
when ρ is a thermal state [11] and when ρ is a pure state [34],
provided that the appropriate matrices T or C are used. In
Appendix B, this theorem is applied to NESS-QPT where C

is given by the solution of the Sylvester equation (5).

APPENDIX B: LIOUVILLEAN STEADY STATE

We call R the 4n-dimensional operator spaces generated by∏
j w

sj

j , (sj ∈ {0,1}), and we use the notation |s) to refer to the
elements of R, normalized with respect to the Hilbert-Schmidt
inner product, i.e., (s|s) ≡ Tr[s†s] = 1 for |s) ∈ R.

Following the notation introduced in Sec. III, the Liouvil-
lean L : R → R introduced in (3) can be written as

L = −1

2
(a† a)

(
X Y

0 −XT

)(
a
a†

)
− 1

2
Tr X. (B1)

The superoperator a
†
j is the Hermitian conjugate of aj in R.

If C is the matrix solution of (5), then(
X Y

0 −XT

)
=
(

U −C U−T

0 U−T

)(
x 0
0 −x

)

×
(

U−1 U−1 C

0 UT

)
. (B2)

We show now that the latter transformation is a nonunitary
Bogoliubov transformation [35] and that everything is consis-
tent. It is known that nonunitary Bogoliubov transformations
are isomorphic to the group of orthogonal complex matrices
O(4n,C). This condition can be expressed in a simple way
thanks to Eq. (2.6) of [35], i.e.,

V̂ �x V̂ T = �x, �x = σx ⊗ 12n. (B3)

It is simple to show that the transformation V̂ ,

V̂ =
(

U−1 U−1 C

0 UT ,

)
, (B4)
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satisfies that condition. We define new diagonal creation and
annihilation operators as(

d
d×

)
= V̂

(
a
a†

)
. (B5)

Since V is a nonunitary Bogoliubov transformation, the
operators di and d×

j satisfy the CAR algebra, but d×
j �= d

†
j .

Moreover, using (a† a) = ( a
a†)

T

�x , it is simple to show that

L = −1

2
(d× d)

(
x 0
0 −x

)(
d

d×

)
− 1

2
Tr X, (B6)

i.e.,

L = −
∑

j

xj d×
j dj . (B7)

Note also that the transformation (B5) can be written thanks
to Eq. (2.16) of [35] into the form

dj = VajV−1, d×
j = Va

†
jV−1, (B8)

where

V =: exp
(− 1

2 a† C a† + a† (U − 1) a
)

: , (B9)

and : exp(·) : refers to the normal ordering of the exponential.
It is now possible to express the stationary state of the

Liouvillean, i.e., the state 	 such that L	 = 0, as the d-
vacuum, i.e., dj |	) = 0. The identity operator, i.e., the element
|0) ∈ R, is the a-vacuum, i.e., ai |0) = 0, ∀ j = 1, . . . ,2n, and
in particular (0|L = 0. The d-vacuum can be readily obtained
from the Bogoliubov transformation: |	) = V|0). Indeed, as
aj |0) = 0, one has dj |	) = VajV−1V|0) = 0. Hence,

|	) = V|0) = e− 1
2 a† C a† |0). (B10)

We now show that the state (B10) is exactly (A6). Thanks to
the transformation Q defined in (A2) and the direct relation
(A5), one can write the imaginary antisymmetric matrix C =
QT

⊕
k ( 0 ick

−ick 0 ) Q. Then, using the definition (B10),

1

2
a† C a†ρ = 1

8
(w · Cwρ + 2w · Cρw + ρw · Cw)

= i

4

∑
k

ck[z2k−1z2kρ + z2k−1ρz2k

− z2kρz2k−1 + ρz2k−1z2k]

=:
∑

k

Gk(ρ). (B11)

As

Gk(1) = i ck z2k−1z2k, Gk(z2k−1z2k) = 0, (B12)

it is clear that

	 ∝ e− 1
2 c†Cc† |0) ∝

∏
k

e−Gk1 =
∏
k

(1 − i ck z2k−1z2k),

(B13)

thus recovering Eq. (A1).
The conditions for the existence and uniqueness of

(B13) are given in [24]. We now study those condi-
tions and express them in terms of the spectral gap. The

correlation matrix C ∈ M2n(C) is the matrix solution of
Eq. (5). To study the solution of that equation, it is useful
to consider the (noncanonical) “vectorizing” isomorphism
φ : M2n(C) → (C2n)⊗ 2 / |i〉〈j | → |i〉 ⊗ |j 〉. This is also a
Hilbert-space isomorphism, namely 〈φ(A),φ(B)〉 = 〈A,B〉 =
Tr (A†B). One can directly check that if RX(C) := CX and
LX(C) := XC, then φ(RX(C)) = (φ ◦ RX ◦ φ−1 ◦ φ)(C) =
(1 ⊗ XT )φ(C), and φ(LX(C)) = (φ ◦ LX ◦ φ−1 ◦ φ)(C) =
(X ⊗ 1)φ(C). Applying φ to both sides of (5), one then obtains
(C̃ := φ(C), Ỹ := φ(Y ))

(X ⊗ 1 + 1 ⊗ X)C̃ =: X̂C̃ = Ỹ , (B14)

where C̃,Ỹ ∈ (C2n)⊗ 2, X̂ ∈ End(C2n)⊗ 2 ∼= M4n2 (C). There
are three different key operators in the formalism for obtaining
the steady state:

(i) The Liouvillean L : End((C2)⊗n) → End((C2)⊗n),
a 22n × 22n matrix. Its complex spectrum, from (B7),
is given by

Sp(L) = −
⎧⎨
⎩xn :=

2n∑
j=1

xjnj / nj = 0,1, xj ∈ Sp(X)

⎫⎬
⎭ .

(B15)

Notice that 0 ∈ Sp(L), i.e., L is always noninvertible, and that
the steady state (e.g., our Gaussian one n = 0) is in the kernel
of L. If this latter is one-dimensional (unique steady state), the
gap of L can be defined as �L := minn �=0 |xn|.

(ii) The map X : C2n → C2n, a 2n × 2n real diagonalizable
matrix. Its spectrum is {xj }2n

j=1 ⊂ C and (because of reality)
is invariant under complex conjugation. On physical grounds
(stability) we must have Re xj � 0,∀ j. Indeed, the time scale
for convergence ρ(t) → ρ(∞) is dictated by �̃−1, where �̃ =
minn �=0 Re xn.

(iii) The map X̂ = X ⊗ 1 + 1 ⊗ X : C2n ⊗ C2n → C2n ⊗
C2n, a 4n2 × 4n2 matrix. It spectrum is {xi + xj }2n

i,j=1 ⊂ C and
the minimum (in modulus) is given by �X̂ := mini,j |xi + xj |.
Note also that

�−1
X̂

= ‖X̂−1‖∞. (B16)

For the uniqueness of the steady state, we must have X̂

invertible, i.e., �X̂ > 0.

Proposition 1. If � = minj 2 Re(xj ) > 0, then

� = �L = �X̂. (B17)

Proof. |xn| = |∑2n
j=1 xjnj | � |Re(

∑2n
j=1 njxj )|. The first

bound can be saturated by choosing the nj ’s in such a way that
only a set P of complex-conjugate pairs x±

p of eigenvalues are

present. In this case, |Re(
∑2n

j=1 njxj )| = 2
∑

p∈P Re xp, where
we used the assumption (∀ p) Re xp � 0. Using again positiv-
ity of all the terms, this sum can be made as small as possible
by choosing |P | = 1 and minimizing over p = 1, . . . ,n. This
shows that �L = minn |xn| = 2 min{Re xp}np=1. It is clear now
that a similar argument shows that �X̂ = min{|xi + xj |}2n

i,j=1
is given by the same expression, i.e., �L = �X̂. Finally,
� = 2 minn Re xn ≡ 2�̃ = 2 minp Re xp = �L.
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APPENDIX C: NONDIAGONALIZABLE CASE

The nondiagonalizable case has been extensively handled
in [24]. In Appendix B, we assumed X to be diagonalizable
for simplicity, and also because the matrices X encountered
in our numerical simulations were diagonalizable. Here we
briefly discuss the general case. The matrix X can always be
put in the Jordan canonical form, i.e., X = U xJ U−1 with
xJ = ⊕bJ�b

(xb),

J�b
(xb) =

⎛
⎜⎜⎜⎝

xb 1
xb 1

xb 1
. . .

. . .

⎞
⎟⎟⎟⎠ : . (C1)

xb are (possibly equal) eigenvalues of X and �b is the
dimension of the Jordan block: each block is composed of �b

degenerate eigenvalues of X. The form of the transformation
(B4) remains the same (although with a new matrix U ) while
(B7) becomes

L = −
2n∑

j=1

xj d×
j dj −

∑
b

�b−1∑
k=1

d×
bk+1dbk

, (C2)

where bk refers to the index of the kth element in the bth Jordan
block. It is clear that the state (B10) is still a stationary state.
Moreover, in [24] it has been shown that the spectrum of the
Liouvillean is

Sp(L) = −
{

xn :=
∑

b

xbnb / nb = 0, . . . ,�b

}
. (C3)

Accordingly, �L = � ≡ 2 minb Re[xb]. If � > 0, the steady
state (B10) is unique [24].

In the nondiagonalizable case, the last equation in Eq. (B17)
is not satisfied. On the other hand, one can obtain the following:

Proposition 2.

‖X̂−1‖∞ <
1 + p(�−1)

�
(C4)

for a certain polynomial p( ).
Proof. We start by writing

X̂ =
⊕

b

J�b
(xb) ⊗ 1 +

⊕
b

1 ⊗ J�b
(xb)

=
⊕
b,d

[
J�b

(xb) ⊗ 1�d
+ 1�b

⊗ J�d
(xd )

]

= x̂ +
⊕
b,d

[
J�b

(0) ⊗ 1�d
+ 1�b

⊗ J�d
(0)
]
, (C5)

where x̂ is the diagonal matrix with entries xi + xj and where
we used the decomposition 1 = ⊕b1�b

. Moreover, thanks to
Lemma 3.1 of Ref. [24],

X̂ = x̂ +
⊕
b,d

min{�b,�d }⊕
r=1

J�b+�d−2r+1(0)

= x̂

[
1 +

⊕
b,d

min{�b,�d }⊕
r=1

J�b+�d−2r+1(0)

xb + xd

]
. (C6)

As J is nilpotent,

X̂−1 = x̂−1

[
1 +

⊕
b,d

min{�b,�d }⊕
r=1

�b+�d−2r∑
m=1

(
−J�b+�d−2r+1(0)

xb + xd

)m
]

and

‖X̂−1‖∞ � ‖x̂−1‖∞

[
1 + max

b,d
max

r

�b+�d−2r∑
m=1

1

|xb + xd |m
]

= ‖x̂−1‖∞

[
1 + max

b,d

�b+�d−2∑
m=1

1

|xb + xd |m
]

� 1

�

[
1 + max

b,d

�b+�d−2∑
m=1

1

�m

]
. (C7)

APPENDIX D: UPPER BOUNDS

To derive some bounds to the fidelity metric ds2, let us
express Eq. (1) in a convenient form thanks to the vectorization
isomorphism. As AdC(X) = (LC ◦ RC)(X), one has φ ◦ (LC ◦
RC) ◦ φ−1 = C ⊗ CT = −C⊗ 2 and Eq. (1) becomes

ds2 = 〈(1 + C⊗ 2)−1(dC̃), dC̃〉 = ‖(1 + C⊗ 2)−1/2(dC̃)‖2,

(D1)

where dC̃ = φ(dC). Using the Cauchy-Schwarz inequality
and the definition of operator norm, one obtains

ds2 � ‖(1 + C⊗ 2)−1(dC̃)‖‖dC̃‖ � PC ‖dC̃‖2

� 2nPC ‖dC‖2
∞, (D2)

where we have exploited the fact that, by construc-
tion, ‖Ã‖ := ‖φ(A)‖ = ‖A‖2 and ‖A‖2 �

√
2n‖A‖∞. Now

Sp(C⊗ 2) = {cicj / ci,cj ∈ Sp(C)} and, from C = −CT ,

the spectrum of C is invariant under ci → −cj , it
follows that ‖(1 + C⊗ 2)−1‖∞ = (1 + mini,j cicj )−1 = (1 −
maxi c

2
i )−1 = (1 − ‖C‖2

∞)−1. The bound (D2) is not specific to
dissipative quadratic Liouvillean. To connect Eq. (D2) with the
properties of the Liouvillean (B7), we differentiate Eq. (B14),

dC̃ = X̂−1dỸ − X̂−1dX̂C̃. (D3)

As d ≡∑μ dλμ∂μ, the above equation can be conveniently
calculated via

X (∂μC) + (∂μC) XT = ∂μY − (∂μX) C − C (∂μXT ),

(D4)

i.e., the matrices ∂μC entering in (A26) can be obtained
by solving a new Sylvester equation where the matrices
X,Y,∂μX,∂μY are given by the model. Taking norms in
(C2n)⊗ 2,

‖dC̃‖ � ‖X̂−1‖∞(‖dỸ‖ + ‖dX̂‖∞‖C̃‖)

= ‖X̂−1‖∞(‖dY‖2 + ‖dX̂‖∞‖C‖2)

�
√

2n‖X̂−1‖∞(‖dY‖∞ + ‖dX̂‖∞‖C‖∞)

�
√

2n‖X̂−1‖∞(‖dY‖∞ + ‖dX̂‖∞), (D5)
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where, among other things, we used the inequality ‖C‖∞ � 1,
which follows from the ansatz (A5).

In summary, we have the following upper bound on
the squared Hibert-Schmidt norm of dC in terms of the
control parameters and their differentials, i.e., X, dX and
Y, dY :

‖dC̃‖2 � 2n‖X̂−1‖2
∞(‖dY‖∞ + 2‖dX‖∞)2, (D6)

where we also used ‖dX̂‖∞ = ‖dX ⊗ 1 + 1 ⊗ dX‖∞ �
2‖dX‖∞. Plugging the above equation in (D2) and using
Proposition 1 one then obtains the bound (7).

Note that in the nondiagonalizable case, there is a correction
to Eq. (7) due to the polynomial p in (C4). However, this
correction does not alter the main conclusion of bound (7):
a superextensive behavior of ds2 implies the closing of the
Liouvillean gap.
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[8] P. Zanardi and N. Paunković, Phys. Rev. E 74, 031123 (2006).
[9] P. Zanardi, P. Giorda, and M. Cozzini, Phys. Rev. Lett. 99,

100603 (2007).
[10] L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. 99, 095701

(2007).
[11] P. Zanardi, L. Campos Venuti, and P. Giorda, Phys. Rev. A 76,

062318 (2007).
[12] P. Giorda and P. Zanardi, Phys. Rev. E 81, 017203 (2010).
[13] D. Petz, Quantum Information Theory and Quantum Statistics

(Springer, Berlin, 2008).
[14] S. Amari and H. Nagaoka, Methods of Information Geometry

(AMS Bookstore, Washington, DC, 2000), Vol. 191.
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