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Electron dynamics controlled via self-interaction
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The dynamics of an electron in a strong laser field can be significantly altered by radiation reaction. This
usually results in a strongly damped motion, with the electron losing a large fraction of its initial energy. Here we
show that the electron dynamics in a bichromatic laser pulse can be indirectly controlled by a comparatively small
radiation reaction force through its interplay with the Lorentz force. By changing the relative phase between the
two frequency components of the bichromatic laser field, an ultrarelativistic electron bunch colliding head-on
with the laser pulse can be deflected in a controlled way, with the deflection angle being independent of the initial
electron energy. The effect is predicted to be observable with laser powers and intensities close to those of current
state-of-the-art petawatt laser systems.
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I. INTRODUCTION

The rapid progress of high-power laser systems has paved
the way for the investigation of unexplored regimes of
laser-matter interaction with a number of applications, e.g.,
in extreme field physics [1,2], nuclear physics [3], hadron-
therapy [4,5], and relativistic laboratory astrophysics [6].
Next-generation 10-PW optical laser systems are expected to
achieve intensities beyond 1023 W/cm2 [2,7], and laser pulses
with power beyond 100 PW and intensity up to 1025 W/cm2

are envisaged at the Extreme Light Infrastructure (ELI) [8] and
at the eXawatt Center for Extreme Light Studies (XCELS) [9].
At such ultrahigh intensities, an electron becomes relativistic
in a fraction of the laser period and its dynamics is dominated
by radiation reaction (RR) effects, i.e., by the back reaction on
the electron’s motion of the radiation emitted by the electron
itself while being accelerated by the laser pulse [10]. Hence,
a deep understanding of RR effects is crucial for the design
and the interpretation of future laser-matter experiments in
the ultrarelativistic regime. Indeed, RR effects have several
important implications ranging from the generation of high-
energy photon [11–13], electron [14–16], and ion [17–21]
beams, to the determination of bounds on particle acceleration
in relativistic astrophysics [22,23].

At available and upcoming laser intensities, RR effects
become large for ultrarelativistic electrons, where the RR
force basically amounts to a strongly nonlinear and anisotropic
frictionlike force [19]. This explains why all the proposals
to experimentally test the underlying equation of motion
[the so called Landau-Lifshitz (LL) [10] equation] rely on
the RR-driven damping of the electron motion when an
ultrarelativistic electron beam collides head-on with an intense
laser pulse [11,24–27]. However, the research to date has
focused on revealing RR effects and understanding their
fundamental features rather than exploiting them in a possibly
beneficial and controlled way.

In this paper, we show that RR effects can provide a route to
the control of the electron dynamics via the nonlinear interplay
between the Lorentz and RR forces. This is achieved in a
setup where an ultrarelativistic electron is exposed to a strong
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either few-cycle [28] or bichromatic [29] laser pulse. Our exact
analytical calculations for a plane-wave pulse and our more
realistic numerical simulations for a focused laser pulse show
that, already at the intensities achievable with state-of-the-art
laser systems, an ultrarelativistic electron colliding head-on
with a bichromatic laser pulse can be deflected in an ultrafast
and controlled way within a cone of about 8◦ aperture
independently of the initial electron energy as long as quantum
effects remain small. At still higher intensities, the interplay
between the RR and Lorentz forces can even overcome the
radiation losses themselves, resulting in a RR assisted electron
acceleration instead of damping.

II. ELECTRON DYNAMICS IN AN ARBITRARY
PLANE-WAVE FIELD

The LL equation of an electron (mass m and charge e) in
the presence of an external electromagnetic field Fμν is [10]

duμ

dτ
= −Fμνuν + rR[FμνFναuα − (FβνuβFναuα)uμ], (1)

where τ is the proper time, uμ ≡ dxμ/dτ , and where rR =
4πe2/3mc2λ ≈ 1.18 × 10−8/λμm, with λ being a typical
length scale, conveniently chosen as the wavelength of a
Ti:sapphire laser, i.e., λ = 0.8 μm. In Eq. (1) dimensionless
units have been employed, such that time is in units of
ω−1 ≡ λ/2πc, length is in units of ω−1c, and fields are in
units of E∗ ≡ mωc/|e|. Note that the term of the RR force
containing the derivatives of the field tensor Fμν [10] has
been neglected in Eq. (1) since its contribution is smaller than
quantum effects [19] and it does not appreciably influence the
electron dynamics in the regime of interest here.

Modeling the laser pulse as a plane wave propagating along
the direction �n, the LL equation can be solved exactly for
any plane-wave electromagnetic field which is an arbitrary
function of the phase of the wave ϕ = nμxμ only, where
nμ ≡ (1,�n) and nμnμ = 0 [30]. Hereafter, the subscripts 0
and f refer to the initial and final value of the corresponding
quantity, respectively. In order to analyze the origin of
each term in the solution, we first omit the last term on
the right-hand side of Eq. (1) (Larmor term). In this case
dτ/dϕ = 1/ρ0, where ρ0 ≡ nμu

μ

0 is the initial Doppler factor
and u

μ

0 is the initial four-velocity. Inclusion of the Larmor
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term renders the relation between the proper time and the
phase nonlinear [30]: dτ/dϕ = h(ϕ)/ρ0 where h(ϕ) = 1 +
rRρ0

∫ ϕ

ϕ0
[ �E(φ) × �B(φ)] · �n dφ, with �E(φ) and �B(φ) being the

plane-wave electric and magnetic field, respectively. For an
arbitrary plane wave, Eq. (1) written as a function of the phase
ϕ becomes

dũμ

dϕ
= − h

ρ0
Fμνũν + h

ρ2
0

dh

dϕ
nμ, (2)

where ũμ ≡ dxμ/dϕ. In Eq. (2), the only effect of the Larmor
term is to multiply the terms in the right-hand side by h(ϕ).
Since nμFμν = 0, the solution of Eq. (2) is the sum of the two
solutions obtained considering each term on the right-hand
side of Eq. (2) separately. The second term in Eq. (2) results in
a contribution proportional to (h2 − 1)nμ. This term accounts
for the effect of the radiation pressure [10] and leads to a
small energy gain when an electron at rest is swept by a laser
pulse [31,32]. Finally, the first term on the right-hand side of
Eq. (2) is a strongly nonlinear effective Lorentz force. This
term can be integrated analytically, and the exact solution of
Eq. (2) for the dimensionless four-momentum pμ = (ε, �p) as
a function of ϕ is [30]

ε = ε0

h
+ 2�I · �p0 + (h2 − 1) + �I2

2ρ0h
, (3)

�p = �p0 + �I
h

+ 2�I · �p0 + (h2 − 1) + �I2

2ρ0h
�n, (4)

where �I(ϕ) = − ∫ ϕ

ϕ0
h(φ) �E(φ)dφ. Since �E · �n = 0, in Eq. (4)

the vectors directed along �n and �I correspond to the longitu-
dinal and transverse momentum gain, respectively.

Let us consider a bichromatic plane-wave pulse propagating
along the positive z axis and polarized along the x axis with
Ex(ϕ) = g(ϕ) [ξ1 sin(ϕ + θ1) + ξ2 sin(2ϕ + θ2)], where g(ϕ)
is a smooth temporal envelope identically vanishing for ϕ

outside the interval (ϕ0,ϕf ), ξ1, ξ2 are the field amplitudes
of each frequency component, and θ1, θ2 are two constant
initial phases. After the electron passes through the laser beam,
the relevant functions in the electron four-momentum are
hf = 1 + rRρ0�, Iy,f = 0, and Ix,f = −rRρ0�, where � ≡∫ ϕf

ϕ0
dφ E2

x(φ), � ≡ ∫ ϕf

ϕ0
dφ Ex(φ)

∫ φ

ϕ0
dϑ E2

x(ϑ). For simplic-
ity, in the following we assume a pulse envelope g(ϕ) =
sin2(ϕ/2N ) in the interval (0,ϕf ) (i.e., ϕ0 = 0), where N =
ϕf /2π is the total integer number of cycles of the pulse.

For the sake of comparison, we first consider a quasi-
monochromatic plane wave (ξ2 = 0 and N � 1). In this
case, two frequencies are basically present in E2

x(ϕ), which
arise from sin2(ϕ + θ1). After integrating E2

x(ϕ), only the
zero-frequency component provides a net contribution to �.
Analogously, the integrand of � only contains frequencies
which are odd multiples of the central frequency ω, and �

averages out to zero for a quasimonochromatic plane wave. In
fact, in our case

� = 3πξ 3
1 N cos(θ1)

16(N2 − 1)
(N � 4) , (5)

which tends to zero for N → ∞. The situation is essentially
different for the bichromatic plane wave considered above.
Here, a zero-frequency term arises in the integrand of �, such

that � diverges in the limit N � 1:

� ≈ 15π

64
ξ 2

1 ξ2N cos(θ2 − 2θ1) (N � 1) . (6)

Recalling that Ix,f = −rRρ0�, Eqs. (4) and (6) already show
in general that the electron dynamics can be controlled either
by changing the constant initial phase (θ2 − 2θ1) or the field
amplitudes ξ1, ξ2, and the effect dramatically increases for
increasing ξ1, ξ2, N . Indeed, for N � 1 a different pulse
envelope g(ϕ) only alters the numerical factor on the right side
of Eq. (6). Finally, we mention that Ix,f can become large also
for ultraintense nearly one-cycle laser pulses [28]. However,
in this case Ix,f is sensitive both to the carrier envelope phase
θ1 and to the precise shape of the pulse g(ϕ).

Physically, without RR the electron transverse momentum
�p⊥(ϕ) = �p(ϕ) − [�n · �p(ϕ)]�n oscillates with the same frequen-
cies as the plane-wave field [see Eq. (4) with h(ϕ) = 1]. Hence,
the cumulative effect of the force eventually averages out to
zero. However, the energy loss associated with the RR force
modulates the position of the electron within the plane-wave
field. For a quasimonochromatic plane wave, there is no control
on this modulation and thus no net transverse momentum
gain [24,27], as the modulation is intrinsically related to the
frequency of the driving field. On the contrary, if a higher-
frequency field is also included, its frequency and absolute
phase can be chosen in such a way that a Fourier component
is nonlinearly generated in the resulting modulation, which
resonantly oscillates with the lower-frequency field. In turn,
this resonance can result in a net transverse momentum gain
δpx = Ix,f /hf , and the interplay of the two components of
the bichromatic field is indeed reflected in Eq. (6).

III. ELECTRON DYNAMICS CONTROL

Let us consider the effects arising from the interaction of
an ultrarelativistic electron colliding head-on with a second-
harmonic enriched laser pulse. Hereafter, the term (h2 − 1) in
the numerator of Eqs. (3) and (4) is neglected in the analytical
results, since it does not appreciably affect our conclusions.
Equation (4) indicates that the initially counterpropagating
electron is deflected in the xz plane asymmetrically. Since
ρ0 ≈ 2| �p0|, the deflection angle with respect to the initial
propagation direction is

ζ ≈ − arctan

(
2rR�

1 − r2
R�2

)
(7)

if rR|�| < 1, ζ + π if rR� < −1, and ζ − π if rR� > 1
independently of the initial electron energy. Again in the
ultrarelativistic regime, for rR|�| > 1 the electron is back
reflected by the plane-wave pulse. We stress that this condition
is independent of the initial electron energy because higher
initial energies imply higher RR effects, the functions hf

and �If being proportional to the initial Doppler factor ρ0.
In other words, for rR|�| > 1 the laser pulse behaves like a
perfectly reflecting electron “mirror,” i.e., it reflects back all
the electrons with arbitrarily high initial energy, as long as the
onset of quantum effects does not severely alter the predictions
of classical electrodynamics (see below). In addition, from
Eq. (3) it follows that if the initial electron energy ε0 is less
than rR�2/2� then a surprising circumstance occurs: the final
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electron energy is larger than its initial energy. In fact, although
the direct effect of the RR force is to reduce the electron
energy, it also alters the temporal electron evolution, such
that the electron’s world line with RR effects differs from the
electron’s world line without them. As a result, while without
RR effects the Lorentz force cannot perform a net work on
the electron [see Eq. (3) with h(ϕ) = 1], with RR effects the
Lorentz force can perform a positive work along the RR-altered
electron world line. Hence, the dissipative RR force indirectly
allows the Lorentz force to accelerate the electron, and when
ε0 < rR�2/2� the indirect energy gain is larger than the direct
energy loss. In order to observe this effect, an intensity beyond
1023 W/cm2 and a waist radius of the order of some tens of
micrometers are required, resulting in a power of the order of
a few exawatts. Although such powers are well beyond those
currently available, they may be achieved employing coherent
beam superposition techniques [9,33,34].

IV. NUMERICAL RESULTS FOR A FOCUSED
LASER PULSE

The above analytical predictions are exact if the laser field
is modeled as a plane wave. In order to test them in a more
realistic setup, we solve Eq. (1) numerically for a focused
laser pulse interacting with an electron bunch. Our simulations
show that the plane-wave and the focused pulse results are
in good agreement already with a 5-μm waist radius (see
below). Following Refs. [35,36], a hyperbolic secant temporal
envelope and a Gaussian transverse profile with terms up
to the fifth order in the diffraction angle are employed to
accurately describe the laser pulse, which reaches its maximal
focusing at the origin with waist radius wO . According to the
notation employed so far, the laser beam stems from two pulses
with wavelengths 0.8 and 0.4 μm, respectively, and with
peak field amplitudes ξ1 and ξ2, respectively. Hereafter, for
simplicity we set the constant phase θ1 = 0. The electrons are
initially distributed according to a six-dimensional Gaussian
probability distribution

f (�x, �p) = Ne

e
−
[

x2+y2

2σ2
T

+ (z−z0)2

2σ2
L

]
−
[

p2
x+p2

y

2σ2
pT

+ (pz−pz,0)2

2σ2
pL

]

(2π )3σ 2
T σ 2

pT
σLσpL

, (8)

with Ne being the total number of electrons and σT and σL (σpT

and σpL
) being the transverse and the longitudinal position

(momentum) widths, respectively.

A. Simulation setup

In our simulation, the laser pulse is 70 fs long between
its first and last half maximal intensity with ξ1 = 40 (3.4 ×
1021 W/cm2), ξ2 = 28 (1.7 × 1021 W/cm2), and the waist
radius is wO = 5 μm. Hence, the total intensity and power are
5.1 × 1021 W/cm2 and 2 PW, respectively. Initially, the elec-
tron bunch has mean momentum pz,0 = −165mc with stan-
dard deviations σT = 0.2 μm, σL = 0.5 μm, σpT

= 1mc, and
σpL

= 12mc. The electron average density is 3 × 1015 cm−3

so that the electron bunch contains about 400 electrons. The
above-mentioned laser parameters are similar to those of
available petawatt laser systems [2,7]. Much larger effects
can be achieved at higher intensities, since the transverse

momentum gain increases rapidly with rising laser field am-
plitudes ξ1, ξ2 [see Eq. (6)]. In addition, the electron deflection
can be controlled by changing either the phase θ2 or the
amplitudes ξ1, ξ2. The latter approach can be exploited tuning
the ratio between ξ1 and ξ2 by controlling the second-harmonic
conversion efficiency, e.g., by changing the tilt angle in a
tilted-crystal configuration [37]. To date, frequency-doubling
efficiencies up to 73% at 2 TW/cm2 intensity have been
demonstrated experimentally for femtosecond pulses [29].
Also, phase-control of bichromatic laser pulses has been
employed at intensities of the order of 1014 W/cm2 to steer
the electron dynamics in nonrelativistic atomic physics [38].
Similar techniques might be extended to higher intensities via
coherent beam superposition of multiple laser beams [9,33,34],
since a relatively compact optics can be employed for each
amplification channel. Finally, electron bunches with the same
parameters as in our simulation have been generated experi-
mentally employing standard multiterawatt optical lasers [39].
Such relatively low-power pulses can also be generated by
extracting a fraction of energy from the initial strong pulse
before the frequency doubling.

B. Results and discussion

Figure 1 reports the electron density distribution ne(pz,px)
as a function of the longitudinal pz and transverse px mo-
mentum for the interaction of 400 electrons with the focused
laser pulse both for cos(θ2) = 0 and cos(θ2) = 1, with and
without RR. No appreciable difference between cos(θ2) = 0
and cos(θ2) = 1 is found if only the Lorentz force is taken into
account. Furthermore, if the RR force is neglected, the mean of
the momentum distribution remains unaltered after the electron
bunch has passed through the laser pulse p̄x ≈ 0 and p̄z ≈
−165mc [see Figs. 1(a) and 1(c)]. However, if the RR force
is taken into account, for cos(θ2) = 0 the electrons still move
along their initial propagation direction and are distributed
symmetrically in the transverse momentum space with p̄x ≈ 0
and p̄z ≈ −82mc [see Fig. 1(b)] in good agreement with
the plane-wave prediction px,f ≈ 0 and pz,f ≈ −79mc. On
the other hand, for cos(θ2) = 1 all the electrons are deflected in
the transverse direction independently of their initial energy,
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FIG. 1. (Color online) Electron density distribution ne(pz,px) as
a function of the longitudinal pz and transverse px momentum after
the interaction of 400 electrons with a bichromatic laser pulse. Panel
(a): cos(θ2) = 0 without RR. Panel (b): cos(θ2) = 0 with RR. Panel
(c): cos(θ2) = 1 without RR. Panel (d): cos(θ2) = 1 with RR. See the
text for further numerical details.
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FIG. 2. (Color online) Trajectory of an electron colliding head-
on with a bichromatic laser pulse without (blue dashed line) and with
(red solid line) RR force included. The corresponding plane-wave
result with RR (green dotted line) is also reported for comparison. In
all cases θ1 = 0. Panel (a): cos(θ2) = −1/

√
2. Panel (b): cos(θ2) = 0.

Panel (c): cos(θ2) = 1/
√

2. Panel (d): cos(θ2) = 1. See the text for
further numerical details.

the mean of the momentum distributions being p̄x ≈ −7mc

and p̄z ≈ −82mc [see Fig. 1(d)]. For the corresponding plane-
wave pulse, we obtain px,f ≈ −5.8mc and pz,f ≈ −79mc,
in good agreement with the above-mentioned focused pulse
results.

The effect of QED corrections to the classical prediction
has been estimated by introducing a quantum corrected RR
force, which accounts for the reduction of the emitted power
in the quantum case compared to the classical one [40]. The

present approach is valid as long as the quantum parameter
χ = |e|�

√
|[Fμνpν]2|/m3c4 (Gaussian units) remains much

smaller than unity [2,40]. Indeed, in our simulations we
found χ � 0.04. Moreover, due to RR effects, χ remains
significantly smaller compared to the case without RR,
especially at higher laser pulse intensities. In our simulation,
quantum corrections do not qualitatively affect the results but
induce a correction to the final mean momenta of the electron
distribution, with p̄x ≈ 0 and p̄z ≈ −87mc for cos(θ2) = 0,
and p̄x ≈ −6mc and p̄z ≈ −88mc for cos(θ2) = 1. Finally,
stochasticity effects in quantum RR may broaden the final
electron distribution but do not significantly alter its mean
value [41].

Figure 2 displays the trajectory of an electron injected into
the focus of the bichromatic laser pulse with initial momentum
�p0 = (0,0,−165mc) without (blue dashed line) and with (red
solid line) RR effects included [the corresponding plane-
wave result with RR (green dotted line) is also shown for
comparison]. In all cases, the electron passes through the laser
pulse without changing its initial propagation direction when
RR effects are neglected. When RR effects are included, for
cos(θ2) = 0 the electron goes through the laser pulse without
significantly deviating from its initial propagation direction
[see Fig. 2(b)], whereas it is quickly deflected in the transverse
direction for cos(θ2) �= 0 [see Figs. 2(a), 2(c), and 2(d)]. From
Eq. (7) with cos(θ2) = 1 [cos(θ2) = ∓1/

√
2], the predicted

deflection angle for the plane wave becomes ζ ≈ −4.2◦
(ζ ≈ ±3◦) in fair agreement with the focused pulse result ζ ≈
−5.4◦ (ζ ≈ ±3.8◦). Quantum effects lead to relatively small
corrections, the deflection angle being ζ ≈ −3.6◦ (ζ ≈ ±2.5◦)
for the plane wave with cos(θ2) = 1 [cos(θ2) = ∓1/

√
2] and

ζ ≈ −4.5◦ (ζ ≈ ±3.2◦) for the focused pulse.
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