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We present a powerful semiclassical expression to evaluate off-diagonal matrix elements of the evolution
operator between quantum states constructed in the neighborhood of unstable short periodic orbits, which is valid
up to the Heisenberg time. The expression is much easier to evaluate than the Van Vleck propagator and consists
of a sum over the set of heteroclinic orbits, where each term of the series is computed by canonical invariants.
Here we introduce relevant canonical invariants of heteroclinic orbits and with them at hand, the semiclassical
expression is derived. Finally, our formula is successfully verified in the hyperbola billiard.
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Introduction. Semiclassical propagation of waves is a fruit-
ful approach to understand and evaluate a wide set of physical
processes in atomic and molecular systems. Nevertheless,
long-time propagation in Hamiltonian systems with classically
chaotic dynamics is a long-standing unsolved problem, the
main reason being that the Van Vleck propagator [1] suffers
from serious drawbacks. Specifically, the evolution operator
in configuration space 〈q ′′|e−iĤ t/�|q ′〉 [2] is evaluated by the
method of semiclassical propagation [3,4] as follows. The state
|q ′′〉 is associated with the plane (q = q ′′,p) in phase space and
the state e−iĤ t/�|q ′〉 with the classical evolution (for a time t)
of the plane (q = q ′,p); these planes and their evolutions are
Lagrangian manifolds [5,6]. Then it is necessary to compute
the set of submanifolds resulting from the intersection of
(q = q ′′,p) and the evolution of (q = q ′,p). This is a hard
geometrical problem and moreover the calculation must be
repeated for all times involved.

Recently, we showed that by using the stable and unstable
manifolds of periodic orbits it is possible to achieve long-time
propagation [7,8]; these manifolds are Lagrangian manifolds
existing on a surface of constant energy and so they are
time invariant. The idea is to construct a quantum state
|γ 〉 in the neighborhood of a short periodic orbit γ [9],
which is represented in phase space by a tube enclosing γ .
Then the forward and backward evolutions take place by
stretching the tube along the unstable and stable manifolds.
Consequently, the ket and bra of the diagonal matrix element
(〈γ |e−iĤ t/2�)(e−iĤ t/2�|γ 〉) are associated with the unstable
and stable manifolds, respectively. In this way, the geometrical
problem is enormously simplified because the intersection of
these manifolds consists of the set of homoclinic orbits of
γ . However, as the required classical information is huge
because each homoclinic orbit is infinite, it is mandatory to
express the corresponding semiclassical contribution in terms
of canonical invariants. In this respect, we have found four
relevant canonical invariants to compute 〈γ |e−iĤ t/�|γ 〉 [7,10]:
the homoclinic action S, the homoclinic Maslov index μ, the
relevance A, and the normalized Lazutkin invariant L.

In this Rapid Communication we obtain a semiclassi-
cal expression to evaluate the off-diagonal matrix element
〈δ|e−iĤ t/�|γ 〉 valid for long times of the order of the Heisen-
berg time; δ is a short periodic orbit different from γ . This

matrix element is given by a sum over the set of heteroclinic
orbits (HEOs) connecting γ and δ and each term of the series
is evaluated by four canonical invariants. We first introduce
the canonical invariants used and later derive the semiclassical
expression. Finally, the formula is verified in the hyperbola
billiard [11].

Notation. Given a two degrees of freedom chaotic Hamil-
tonian system, let us consider a Poincaré surface of section
where the dynamics is specified by the map M . Moreover, γ

and δ are given by the fixed points zγ and zδ on the section
[12], with the stable ξs and unstable ξu manifold directions at
the fixed points normalized by ξ

γ
u ∧ ξ

γ
s = ξ δ

u ∧ ξ δ
s = 1.

Let us parametrize the manifolds of zγ as follows. The
forward evolution by κ steps of a point on the unstable direction
z = Mκ (zγ + εξ

γ
u ) exists on the unstable manifold M γ

u of
γ (|ε| � 1). One associates z with uγ = |ε|eκPγ λγ + O(ε2),
where Pγ is the period of γ and λγ its stability index, and gets
the vector ξ

γ
u (z) = dz/duγ tangent to M γ

u at z. In contrast,
the backward evolution of a point on the stable direction z =
M−κ (zγ + εξ

γ
s ) exists on the stable manifold M γ

s of γ and
by using the parametrization sγ = |ε|eκPγ λγ + O(ε2) of z one
gets the vector ξ

γ
s (z) = dz/dsγ tangent to M γ

s at z. Of course,
the manifolds of zδ are parametrized in the same way by using
the period Pδ of δ and its stability index λδ .

Let ζ be a HEO going from γ to δ (γ is the starting orbit
and δ is the ending one), which is defined on the section
by the infinite sequence of points . . . ,z−1,z0,z1, . . . , with
Mzn = zn+1; that is, limn→−∞ zn = zγ and limn→+∞ zn = zδ .
Moreover, ζ ′ is a HEO going from δ to γ , which is defined by
the sequence . . . ,z′

−1,z
′
0,z

′
1, . . . .

Heteroclinic stability. This is a canonical invariant asso-
ciated with each HEO. For ζ it is evaluated at an arbitrary
zn by

D = uγ (zn)ξγ
u (zn) ∧ sδ(zn)ξ δ

s (zn), (1)

where the starting (ending) orbit uses the unstable (stable)
manifold. This is independent of the selected surface of section
and reduces to the product AL when γ and δ are the same orbit,
with A the homoclinic relevance and L the Lazutzin.

Heteroclinic relevance. This canonical invariant, related to
the pair (ζ,ζ ′), is evaluated at arbitrary points zn and z′

m by

Ã = [ũγ (zn)s̃γ (z′
m)]λδ/(λγ +λδ )[ũδ(z′

m)s̃δ(zn)]λγ /(λγ +λδ ). (2)
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FIG. 1. Closed circuit defined by the selected points zn and z′
m

corresponding to two heteroclinic orbits between zγ and zδ .

The tilde indicates another parametrization of the manifolds
[13] given by (equivalent relations work at z′

m)

ũγ (zn) = uγ (zn)exp

⎛
⎝λγ

n−1∑
i=−∞

(ti − Pγ )

⎞
⎠,

s̃δ(zn) = sδ(zn)exp

⎛
⎝λδ

+∞∑
i=n

(ti − Pδ)

⎞
⎠,

with ti the time for going from zi to zi+1; the sums converge
because (ti − Pγ ) [(ti − Pδ)] goes exponentially to zero as i →
−∞ (i → +∞). This invariant is independent of the selected
surface of section.

Heteroclinic action. This canonical invariant depends on
the selected points zn and z′

m used to define a closed circuit on
the surface of section. For instance, the closed circuit displayed
in Fig. 1 defines the symplectic area S(zn,z

′
m) (shadowed area

in the figure), which is evaluated by

n−1∑
i=−∞

(Si − Sγ ) +
+∞∑
i=n

(Si − Sδ)

+
m−1∑

i=−∞
(S ′

i − Sδ) +
+∞∑
i=m

(S ′
i − Sγ ),

with Si (S ′
i) the action for going from zi to zi+1 (z′

i to z′
i+1) and

Sγ (Sδ) the action of γ (δ). The four sums correspond to the
following paths: from zγ to zn along M γ

u , from zn to zδ along
M δ

s , from zδ to z′
m along M δ

u , and from z′
m to zγ along M γ

s .
It is trivial to verify the relations S(zn,z

′
m) = S(zn−1,z

′
m−1) =

S(zn−1,z
′
m) − 	S = S(zn,z

′
m−1) + 	S, where 	S = Sγ − Sδ .

Heteroclinic winding number. This invariant is defined in
the same way as the heteroclinic action. The closed circuit
displayed in Fig. 1 defines an integer number of half turns of
the manifold directions μ(zn,z

′
m) evaluated by the expression

n−1∑
i=−∞

(μi − μγ ) +
+∞∑
i=n

(μi − μδ)

+
m−1∑

i=−∞
(μ′

i − μδ) +
+∞∑
i=m

(μ′
i − μγ ).

Here μi (μ′
i) is the angle swept by the unstable manifold

direction as we move from zi to zi+1 (z′
i to z′

i+1), divided

by π , and μγ (μδ) is the winding number of γ (δ). In
particular, for the closed circuit of the figure μ(zn,z

′
m) = 0.

Moreover, one has μ(zn,z
′
m) = μ(zn−1,z

′
m−1) = μ(zn−1,z

′
m) −

	μ = μ(zn,z
′
m−1) + 	μ, where 	μ = μγ − μδ .

Assigning invariants to individual heteroclinic orbits. We
use the following criteria.

(i) It is easy to verify that the sequence

dn = ln[uγ (zn)/sδ(zn)]/(Pγ λγ + Pδλδ)

satisfies dn = 1 + dn−1. Then one takes n such that 0 � dn < 1
and selects the points zn−1 and zn with probabilities dn and
1 − dn, respectively [14].

(ii) Let ζ0 (ζ ′
0) be the HEO from γ to δ (δ to γ ) with the

smallest |D| and then select [according to (i)] the point za ∈ ζ0

(z′
a ∈ ζ ′

0) with the greatest probability. These HEOs define
the simplest transitions between γ and δ and so we assume
that they are equivalent (for instance, see Fig. 1). Specifically,
given S0 = S(za,z

′
a) [for this circuit μ(za,z

′
a) = 0], we assign

to each path (one from γ to δ through za and the other from
δ to γ through z′

a) an action S0/2, a winding number 0, and a
relevance Ã0, with Ã0 the relevance of the pair (ζ0,ζ

′
0).

(iii) We assign to ζ the relevance

A = Ã2/Ã0,

with Ã the relevance of the pair (ζ,ζ ′
0). Furthermore, we only

use two paths from γ to δ. The path going through zn has
heteroclinic action and winding number

S = S(zn,z
′
a) − S0/2, μ = μ(zn,z

′
a)

and we assign to this path the probability 1 − dn. The other
path (with probability dn) goes through zn−1 and has action
and winding number S + 	S and μ + 	μ.

Heteroclinic Maslov index. When the system includes hard
walls, it is necessary to add the contribution by boundary
conditions at the walls as follows:

μ̃ = μ +
n−1∑

i=−∞
(Ni − Nγ ) +

+∞∑
i=n

(Ni − Nδ),

with Ni the number of bounces (with the walls) satisfying
Dirichlet condition minus the number satisfying Neumann
condition, when one goes from zi to zi+1; the same applies for
Nγ (Nδ) along γ (δ). Of course, μ̃γ = μγ + Nγ (μ̃δ = μδ +
Nδ) is the Maslov index of γ (δ), while 	μ̃ = 	μ + Nγ − Nδ .

The states |γ 〉 and |δ〉. Here |γ 〉 has nγ excitations
along γ and mean energy 〈γ |Ĥ |γ 〉 = Eγ + O(�3/2), with Eγ

satisfying

Sγ /� − μ̃γ π/2 = 2πnγ ; (3)

the dispersion is
√

〈γ |(Ĥ − Eγ )2|γ 〉 = �λγ /
√

2 + O(�3/2)
[15]. The same applies for |δ〉 with nδ excitations and
Bohr-Sommerfeld energy Eδ . The state |γ 〉 has a simple
representation in configuration space by using local coordi-
nates on γ [9,15]. The so-called resonance is the product
of a local plane wave along γ and a transverse wave packet
that evolves according to a modified dynamics (we eliminate
the contraction-expansion contribution to the motion in the
vicinity of γ ). After one turn around γ the wave packet
accumulates the phase Sγ /� − μ̃γ π/2, which is an integer
multiple of 2π when the energy is Eγ [see (3)]. To have some
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intuition, with q and p the variables on the Poincaré section,
the restriction of |γ 〉 to the section is given by

eiϕγ[
π�P 2

γ

(
q2

u + q2
s

)]1/4 exp

[
− (q − qγ )2

2�
� + i

�
pγ (q − qγ )

]
,

with � = (pu + ips)/(qu + iqs), (qu,pu) = ξ
γ
u , (qs,ps) = ξ

γ
s ,

and (qγ ,pγ ) = zγ .
Semiclassical correlation. We compute the correlation by

〈δ|ei(E−Ĥ )t/�|γ 〉 = (〈δ|ei(Eδ−Ĥ )tδ/�)(ei(Eγ −Ĥ )tγ /�|γ 〉),
where the ket (bra) is a forward (backward) propagation of
|γ 〉 (〈δ|) for a time tγ (tδ). Here tγ = (1 − ε)t/2 and tδ =
(1 + ε)t/2, with ε being in principle arbitrary, and [16]

E = (Eγ + Eδ)/2 − ε(Eγ − Eδ)/2. (4)

At a semiclassical level, the ket (bra) is a WKB state existing
on M γ

u (M δ
s ) and so the contribution of ζ results in

ei(ϕγ −ϕδ )
√

2π�F0(t)eiα,

where ϕγ − ϕδ is the phase difference between the initial states
on the Poincaré section and eiα = (1 − dn)eiα + dne

i(α+	α) is
the mean phase over the selected paths, with α = S/� − μ̃π/2
and 	α = 	S/� − 	μ̃π/2. In contrast, F0(t) computes at
time t the accumulated contribution to the amplitude

F0(t) =
∫ ∞

−∞

�s[z(t ′), − tδ]�u[z(t ′),tγ ]∣∣ξ̃ γ
u [z(t ′)] ∧ ξ̃ δ

s [z(t ′)]
∣∣1/2 ei(Eγ −Eδ)t ′/�dt ′, (5)

where z(t ′) runs over ζ at energy E [17]. Here �u (�s) is the
amplitude of the ket (bra) on M γ

u (M δ
s ) [7],

�u[z(t ′),tγ ] = 1

P
1/2
γ (π�)1/4

exp

[
− A

2�
e2λγ (t ′−tγ ) − λγ tγ /2

]
,

�s[z(t ′),−tδ] = 1

P
1/2
δ (π�)1/4

exp

[
− A

2�
e−2λδ (t ′ + tδ )−λδtδ/2

]
,

and ξ̃
γ
u [z(t ′)] ∧ ξ̃ δ

s [z(t ′)] = e(λδ−λγ )t ′D/A. The imaginary ex-
ponential in (5) is included because the expression for �u (�s)
is valid for ζ at energy Eγ (Eδ); specifically, (Eγ − Eδ)t ′ is
the action (as we move along ζ ) at Eγ minus the action at Eδ .

By the change of variable y = λt ′ in (5), with λ = (λγ +
λδ)/2, and defining the dimensionless parameters [18]

ε = (λγ − λδ)/2λ, η = (Eγ − Eδ)/2λ�,

the semiclassical correlation for 0 � t < τ results in

〈δ|ei(E−Ĥ )t/�|γ 〉 �
√

�ei(ϕγ −ϕδ )

λ(Pγ Pδ)1/2

∑
tA�τ

f ε
η [λ(t − tA)]√|D| eiα. (6)

The sum runs over the set of HEOs from γ to δ, with

λ = (1 − ε2)λ, tA = ln(A/�)/λ, (7)

and the switching function (it starts to be relevant for x > 0)

f ε
η (x) =

√
2e−x/2

∫ ∞

−∞
exp[−e2εy−x cosh(2y)

+ (ε + i2η)y]dy.

The integral can be expanded in powers of ε by using Kν(x) =∫ ∞
0 e−x cosh(t) cosh(νt)dt , the modified Bessel function of order
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FIG. 2. (Color online) (a) Switching function f ε
η (x) for ε = 0

and η = 0,0.5,1,1.5. (b) Plot of N (t) (solid line) and N (t) (dashed
line). (c) Plot of (N − N )/

√
N . (d) Periodic orbit γ (dashed line) in

the hyperbola billiard and contour lines at 1 and 0.2 of the probability
density of a resonance of γ . (e) Same as (d) but for δ. (f) Real part of
the quantum (solid line) and semiclassical (dashed line) correlation
between the states of (d) and (e). (g) Same as (f) but for the imaginary
part.

ν [19]; f ε
η (x) = √

2e−x/2[Kiη(e−x) + O(ε)] [see Fig. 2(a)]
[20].

Note that (6) results independently of dn for Eγ = Eδ

because in such a case 	α = 2π (nγ − nδ) [see (3)].
Heteroclinic orbits. In order to verify (6) we consider

the hyperbola billiard, a strongly chaotic Hamiltonian system
consisting of the free motion of a particle, with mass and speed
taken as unity, within the region 0 � y � 1/x of the Euclidean
plane. The shortest periodic orbit is named γ and the next one δ

(see Fig. 2), with Pγ = 2
√

2, Pδ = 4, λδ = ln(3 + √
8)/2, and

λγ = λδ/
√

2. In Ref. [8] we found M γ
u , given by an infinity

set of disjoint curves on the Poincaré section. Here M δ
s is

obtained in a similar way, while the intersection of M γ
u and

M δ
s provides the set of HEOs from γ to δ.
As the semiclassical time tA [see (7)] indicates when the

heteroclinic contribution starts to be relevant, the set of HEOs
is ordered by increasing values of A (tA is the transition time
through the HEO). We find 1427 HEOs with relevance A <

Ac = 10 000; HEOs connected by symmetry were included
only once (each HEO is connected by reflection in the diagonal
x = y with the other one).

In order to analyze the convergence of (6) we define the
excursion time of a HEO (a classical time) by

t̃A = ln(A/
√

Aγ Aδ)/λ, (8)

with Aγ ≈ 0.953 (Aδ ≈ 0.960) the relevance of the first homo-
clinic orbit of γ (δ). Then we study N (t), the number of HEOs
with excursion time smaller than t . This function increases
exponentially and fluctuates around the mean value N (t) =
aebt , with a ≈ 1.586 and b ≈ 0.591. Figure 2(b) displays N (t)
and N (t) and Fig. 2(c) shows the fluctuation. According to
this result, the sum over heteroclinic contributions in (6) is
at most conditionally convergent. In contrast, by assuming
no correlation among different heteroclinic contributions, the
convergence is guaranteed because b/λ ≈ 0.809 < 1. Notice
that b is the same as that obtained for homoclinic orbits [8]
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and also is close to the topological entropy h ≈ 0.592 given in
Ref. [21]. These facts suggest that N (t) ∼ eht is always valid.

Numerical results. Reference [8] provides the expression
for the resonance of γ and [13] gives the one of δ. Figures 2(d)
and 2(e) display resonances of γ and δ, while Figs. 2(f)
and 2(g) show the correlation between them for a long time
(the Ehrenfest time is around 2 and the Heisenberg time is 42).
At a semiclassical level we use the obtained set of HEOs in
(6), where τ ∼ ln(Ac/�)/λ. As it can be seen, the semiclassical
approximation provides a good estimate; the error is computed
by the mean value Er = (1/τ )

∫ τ

0 |CQ(t) − CS(t)|dt ≈ 0.025,
with CQ and CS the quantum and semiclassical correlations,
respectively. Moreover, we have computed Er for other values
of nγ and nδ , finding an error that is well estimated by 3.3k−3/2,
with k the wave number at the energy given by (4); this
expression was obtained in Ref. [8] to estimate the error of
diagonal matrix elements.

Conclusion. A HEO contributes to the correlation when a
point εuξ

γ
u of the HEO evolves into the point εsξ

δ
s , with εu

and εs O(
√

�). This transition occurs for a time t � tA and
consists of three stages clearly identified by the relation tA ≈
t
γ

E + t̃A + t δE , with t
γ

E = ln(Aγ /�)/2λγ the Ehrenfest time of
|γ 〉 (the same applies for t δE). First, the point εuξ

γ
u goes away

from the vicinity of γ after the time t
γ

E , then the evolved
point makes an excursion for a time t̃A, and finally it goes
to the vicinity of δ. Within this scheme, a direct transition is
characterized by t̃A � 0.

The expression for λ [see (7)] was derived from (6) by
requiring the same time dependence for all HEOs to minus a
shift. Furthermore, from the definition of the excursion time
[see (8)], which uses λ, one obtains that the number of HEOs
with t̃A smaller than t is ∼ eht (h is the topological entropy).
This is surprising because we obtain an expression for λ that
works at a classical level from a semiclassical derivation.

Finding homoclinic and heteroclinic orbits with a long
excursion time is much easier than periodic orbits with a long
period. In the first case, the search is reduced to the intersection
of two well defined curves on a Poincaré section, while in the
second case the search covers the full section. For this reason,
it should be interesting to develop semiclassical expressions

equivalent to the Gutzwiller formula [1] in terms of homoclinic
and heteroclinic orbits; a first step in such a direction was given
in Ref. [7]. We would also like to mention the interesting use
of homoclinic orbits developed in Ref. [22] to characterize
properties of scarring.

The obtained matrix elements, just the off diagonal of
this Rapid Communication or the diagonal of Ref. [7],
have a relative error O(�) in correspondence with the used
approximation.

The obtained accuracy is limited to Hamiltonian systems
without traces of integrability (see the discussion of Ref. [8]).
The extension of our development to systems with mixed
dynamics requires an understanding of the influence of small
stable regions on the structure of manifolds.

Equation (5) shows clearly the enormous advantage of using
canonical invariants. See the Supplemental Material [13] to
clarify the evaluation of (5).

The evolution of resonances is given by 〈x,y|Î e−iĤ t/�|i〉,
with Î the identity operator in the basis of resonances. Let
{〈x,y|i〉} be a set of N resonances of the shortest periodic
orbits, with Bohr-Sommerfeld energies existing in an energy
window of width 	E � �λL (λL is the Lyapunov exponent).
By construction 〈i|i〉 = 1 + O(�) and we select N � ρ	E,
where ρ is the mean energy density [9]. Then, with 〈i|j 〉 =
O(

√
�) [Eq. (6) at t = 0], one can use for practical purposes

Î ≈ ∑
i ai |i〉〈i| − ∑

i �=j 〈i|j 〉|i〉〈j |, where ai = ∑
j |〈i|j 〉|2.

The basis of resonances is particularly efficient to prop-
agate waves existing in a narrow energy window. This
often occurs when a system is affected by a moderated
perturbation.

With the off-diagonal matrix elements of this Rapid Com-
munication, plus the diagonal ones of Ref. [7], it is possible
to propagate quantum waves for long times of the order of
the Heisenberg time. This result elucidates a long-standing
unsolved problem and probably encourages the development
of asymptotic techniques for similar processes, for instance,
the propagation of acoustic or electromagnetic waves in
complex media.
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