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Advection of passive particles over flow networks
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The problem of stochastic advection of passive particles by circulating conserved flows on networks is
formulated and investigated. The particles undergo transitions between the nodes, with the transition rates
determined by the flows passing through the links. Such stochastic advection processes lead to mixing of
particles in the network and, in the final equilibrium state, concentration of particles in all nodes becomes equal.
As we find, equilibration begins in the subset of nodes, representing flow hubs, and extends to the periphery nodes
with weak flows. This behavior is related to the effect of localization of the eigenvectors of the advection matrix
for considered networks. Applications of the results to problems involving spreading of infections or pollutants
by traffic networks are discussed.
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Advection phenomena play an important role in physics,
biology, engineering, and earth sciences [1–4]. They yield a
general mechanism by which particles (pollutants) become
spread over the system by conserved fluid flows. Generally,
the flow pattern is given and not influenced by variations in
particle concentration. Statistical aspects of advection of a pas-
sive scalar by turbulent flows have attracted much attention [4].

Advection processes have been extensively studied for
continuous media, but there are also many situations where
flows are passing over connections between discrete nodes
constituting a network. Obvious examples are provided by
pipeline networks, used for delivery of gas or oil to a set of
destinations, but models of flow networks are used also in sys-
tems biology when signal transduction effects are considered
(see, e.g., [5]). In the transportation context, traffic flows are
established by trains, ships, or aircraft on a regular scheduled
service between rail stations, ocean harbors, or airports.

Fluid flows in pipelines are conserved so that the total
amount of fluid arriving to a redistribution node is equal to the
amount of fluid which leaves it. Often this is also true for traffic
flows where the number of carriers (ships or airplanes) entering
a transportation node (a harbor or an airport) is, on time
average, the same as the number of carriers departing from it.

Pipelines generally have source nodes where the fluid is
pumped into a network, and sinks where the fluid is taken
away from it. In contrast to this, traffic networks typically have
no nodes where new transportation carriers are persistently
created or existing carriers are persistently removed. This
means that the sources and sinks are then absent and steady
patterns of circulating flows are maintained.

Stochastic transport of particles, such as pollutants or
infectious agents, over networks can be described in terms
of random Markov processes [6]. Diffusion processes on
networks are of fundamental importance for spreading of
infectious diseases [7–10], and dispersal connections between
ecological habitats may significantly affect the dynamics
and stability of a metapopulation [11,12] (see also [13–15]).
When modeling such phenomena, it is usually assumed that
probabilities of transitions between the nodes are not correlated
and, in principle, they can be arbitrarily assigned.

In this Rapid Communication we consider the problem of
advection, i.e., of stochastic transport of particles by conserved

circulating flows on networks. We assume that the flow pattern
is stationary and, for each node, total incoming and outgoing
flows are equal. The particles can only be transported together
with a flow, so that the probability of transition from one node
to another is proportional to the intensity of the flow passing
through the respective link. As we show, flow conservation
has strong implications for transport behavior. At equilibrium,
concentrations of particles in all nodes (with nonvanishing
passing flows) are the same and thus the steady state is always
uniform. Equilibration of particle concentrations begins in the
subset of nodes, representing flow hubs, and spreads gradually
to the periphery where only weak flows are present.

In the classical description of advection in continuous
media, evolution of the concentration u of passive particles
in a given flow field �v(�r) is described by the equation ∂u/∂t +
div(�vu) = 0. If flows are conserved, condition div(�v) = 0
should additionally hold. What would be the analog of this
advection equation for stochastic transport of particles by
conserved flows on networks?

Let us consider a network of size N . The network topology
is determined by the adjacency matrix A whose elements are
Aij = 1, if there is a link from node j to node i, and Aij = 0
otherwise. Passive particles occupy network nodes and are
transported with certain probabilities together with flows
over the links that connect them. Their stochastic advection
corresponds to a Markov process (a random walk), and the
evolution of the concentrations ui of the particles in network
nodes is described by the equation

∂ui

∂t
=

N∑
j=1

(νJijAijuj − νJjiAjiui). (1)

It is important that in the advection problem the probability rate
νij for the transition from node j to node i is proportional to the
intensity Jij of the flow along the respective link, νij = νJij ,
and furthermore, that the flows are conserved. Therefore the
total incoming flow in each node is equal to the total outgoing
flow. Thus the condition

N∑
j=1

JijAij =
N∑

j=1

JjiAji (2)

should hold for any node i.
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Note that because of the conditions (2), the incoming and
outgoing flows become correlated and hence the flows Jij

cannot be arbitrarily assigned. To construct the flow pattern on
a network, one can proceed in the following way. Suppose that
Xi is the total incoming flow in node i, i.e., Xi = ∑N

j=1 JijAij .
If all network links are identical in terms of their transportation
capacities, it is natural to assume that the incoming flow Xi is
equally divided among all outgoing links of node i. Then, for
a link from node i to node j , we have Jji = Xi/k

out
i , where

kout
i = ∑N

l=1 Ali is the outgoing degree of node i [16].
Generally, links may have different transportation capaci-

ties wij . In this case, the flow is divided among the outgoing
links according to their relative transportation capacities so that

Jji = wjiXi∑N
l=1 wliAli

. (3)

In absence of external sources, flows Xi passing through the
node can therefore be found as solutions of equations,

N∑
j=1

(
wijAij∑N
l=1 wljAlj

− δij

)
Xj = 0. (4)

Once they are known, flows Jij along the links can be obtained
using Eq. (3). It should be stressed that the flow pattern is
a global property of a network, and the flow Xi in a given
node may strongly change when perturbations in the network
structure far from this node have occurred.

Unless otherwise specified, only networks with equal
transportation capacities of the links will be considered below,
so that wij = 1 in Eq. (4). Moreover, we use the normalization∑N

i=1 Xi = 1. It is convenient to enumerate nodes according
to the flows Xi which pass through them, so that X1 � X2 �
· · · � XN , and the nodes with the smallest indices represent
flow hubs. Figure 1 shows an example of a network with its flow
pattern. As seen from this figure, flow hubs do not generally
correspond to network hubs, i.e., the nodes with the largest
incoming or outgoing degrees (compare nodes 1, 5, and 7).
Furthermore, there are nodes where flows are absent [nodes
17–20 in Fig. 1(a)].

An important property of the considered advection pro-
cesses is that they lead to equilibration of particle concentra-
tions in all network nodes (except for a subset of nodes through
which flows do not pass). Indeed, it can be easily checked that
the uniform distribution ui = const is always a stationary state
of Eq. (1) if flow conservation conditions (2) are satisfied.

By introducing an advection matrix M with elements
Mij = JijAij − ∑N

l=1 JliAliδij and vectors �u with component
ui , Eq. (1) can be rewritten as �̇u = M�u, where, for simplicity,
we choose ν = 1. Their general solution is given by

�u(t) =
N∑

α=1

c(α) exp[�(α)t] �φ(α), (5)

where �(α) and �φ(α) are the eigenvalues and the eigenvectors
of the advection matrix M �φ(α) = �(α) �φ(α), and the coefficients
c(α) are determined by initial conditions.

The spectrum of the advection matrix plays an important
role in the evolution of a concentration pattern. It can be
straightforwardly checked that the advection matrix is negative
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FIG. 1. (Color online) (a) Flow pattern in a network of size N =
20. Arrows represent directed connections. The thickness of each
arrow characterizes the flow Jij passing through the respective link.
Dashed arrows correspond to the links without flows. The total flow
Xi is displayed by using the color code in the bar. In panels (b) and
(c), eigenvalue spectra �(α) and λ(α) of the advection matrix M and
the Laplacian matrix L for the same network are shown.

semidefinite and therefore the real parts of all its eigenvalues
are nonpositive, Re�(α) � 0. The eigenvector with the zero
eigenvalue corresponds to the stationary state which, as we
have noted above, represents a uniform distribution. Hence
Eq. (5) describes a relaxation process. Note that the index α

can always be assigned in such a way that Re�(1) � Re�(2) �
· · · � Re�(N) and we have �(N) = 0.

In addition to the advection matrix, it is also possible
to define the Laplacian matrix of the same network with
the elements Lij = Aij − δij

∑N
l=1 Ali . These two matrices,

and therefore also their eigenvectors and eigenvalues, are
generally different. As an example, Figs. 1(b) and 1(c) show
spectra of the advection and the Laplacian matrices of the
network in Fig. 1(a).

Figure 2 shows an example of the mixing process in
a flow network starting from a random initial condition.
This scale-free network was generated by the preferential
attachment algorithm [17]. The direction of each link was
randomly chosen under a restriction that each node has at
least one incoming and one outgoing link. The network size is
N = 500, and the mean degree (number of links per node) is
〈k〉 = 20. The simulation started from a random concentration
distribution (t = 0 in Fig. 2). In the visualization employed in
Fig. 2, network nodes with large passing flows Xi (flow hubs)
are located at the center, and the nodes with weak passing flows
are in the periphery of the graph. The equilibration first takes
place in the center, at flow hubs (t = 200). It gradually spreads
over the network (t = 500). At the final stage, the periphery
nodes become equilibrated (t = 1000).
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FIG. 2. (Color online) Mixing process in a scale-free flow net-
work of size N = 500 and mean degree 〈k〉 = 20. The color code
shows deviations of the concentration from the uniform steady state.

Such mixing equilibration behavior is general and could
always be seen in the numerical simulations for various
networks. As we show below, it can be explained by the
localization of eigenvectors of the advection matrix M.

According to Eq. (5), the initial distribution at time t = 0
can be decomposed into the sum of contributions c(α) corre-
sponding to different eigenmodes α of the advection matrix.
As time goes on, first the contributions with large relaxation
rates |Re�(α)| should disappear and, generally, at time t = T

only the contributions corresponding to different eigenmodes
of α satisfying the condition |Re�(α)| � T −1 will remain.

Eigenvectors �φ(α) of the advection matrix are localized
on the network, as illustrated in Fig. 3. Figure 3(a) displays
two different eigenvectors with α = 60 and 440. It can be
seen that the eigenvector corresponding to the smaller α is
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FIG. 3. (Color online) Localization of eigenvectors of the ad-
vection matrix for the scale-free network shown in Fig. 2.
(a) Two eigenvectors for α = 60 (blue solid curve) and α = 440
(red dotted curve). Magnitudes |φ(α)

i | are displayed, and large-
deviation points where |φ(α)

i | � 0.1 are marked by dots (α = 60)
and crosses (α = 440). (b) Density plot of the large-deviation points
(see the text). Eigenvalue spectra of the advection matrix M and the
Laplacian matrix L for this network are shown in the Supplemental
Material [19].

localized on the subset of nodes with small indices i. Because
we enumerate the nodes in the order of the decreasing flows
Xi , the nodes with the small indices are actually flow hubs.
On the other hand, at α = 440 the eigenvector is localized on
a subset of nodes with high indices i where flows Xi are weak.

According to Fig. 3(b), localization holds for all eigen-
modes α. We have constructed this density plot in the following
way: For each eigenvector �φ(α), all nodes were divided into
groups according to their flows Xi . Each group contained the
nodes with the flows Xi within the window of width 0.1 for
the variable ln(Xi). For each group, the numbers of the large-
deviation nodes with |φ(α)

i | � 0.1 were counted. Furthermore,
the variable ln(|Re�(α)|) was divided into equal intervals of
width 0.1, and the numbers of large-deviation nodes for all
eigenvectors �φ(α) with α within the same interval were summed
up. The resulting relative numbers of the large-deviation node
in each cell are displayed as a density plot in Fig. 3(b). One
can see that large-deviation nodes are approximately located
along the diagonal of the density map. This means that for each
eigenmode α there is a characteristic flow Xα which specifies
the large-deviation nodes and Xα � |Re�(α)|.

Our investigations show that localization is not significantly
sensitive to the topology and size of random networks. We
could observe it for scale-free networks of different sizes
N . It was also present [see Fig. 4(a)] for Erdös-Rényi
networks where links were chosen independently with the
same probability for every pair of nodes [18]. Moreover, the
condition Xα � |Re�(α)| was always found to hold.

So far, only networks where all links have been identical
in terms of their transportation capacities were considered.
However, our analysis can be straightforwardly extended to
the situation when different transportation capacities wij are
assigned to the links. In this case, flows Xi can be computed
from Eq. (4) and flows Jij along the links are given by Eq. (3),
so that the respective advection matrix M is obtained. As it
turns out, the eigenvectors of such an advection matrix are also
localized on the subsets of nodes with some characteristic flows
Xα . Figure 4(b) shows the density plot for the advection matrix
which corresponds to the same Erdös-Rényi network as in
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FIG. 4. (Color online) Density plots (see the text) for (a) the
Erdös-Rényi random network of size N = 500 and mean degree
〈k〉 = 20 and (b) the same network with transportation capaci-
ties randomly drawn from the uniform distribution 0 < wij � 1.
Counting intervals for these density plots were Δ[ln(−Re�(α))] =
Δ[ln(Xi)] = 0.05. Eigenvalue spectra of the advection matrix M
and the Laplacian matrix L for these networks are shown in the
Supplemental Material [19].
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Fig. 4(a), but with different transportation capacities randomly
assigned to each of the links. Thus the localization effects are
apparently universal, and therefore the mixing process should
have similar properties in various kinds of networks.

Our study reveals that there are essential differences
between advection phenomena and diffusion of particles over
networks. Generally, a random walk is described by the master
equation for a stochastic Markov process, which has the same
form as Eq. (1) but where the transition rates νij may be
arbitrarily and independently chosen for each link. This leads
to the establishment of a steady state where final concentrations
ui of particles in network nodes are different. For diffusion, i.e.,
if the transitions are symmetric and νij = νji , concentrations
are equal in the steady state. In the advection problem, even if
the flows are allowed to pass only in one direction along a link,
the steady state always represents a uniform distribution, and
this directly follows from the flow conservation condition (2).

Localization has previously been considered for network
diffusion processes, where eigenvectors of the Laplacian ma-
trix play an important role and the localization is determined by
degrees of the nodes [12,13,20]. In contrast to this, localization
of eigenvectors of the advection matrix is determined by the
flows passing through network nodes, and generally, flow hubs
are different from network hubs. Accordingly, equilibration of

concentrations in advection phenomena starts in flow hubs and
proceeds to the flow periphery of a network.

Moreover, there is also a difference with respect to the
classical problem of advection by hydrodynamical flows,
described by the equation ∂u/∂t + div(�vu) = 0. If flows are
turbulent, mixing takes place and a uniform state is eventually
established [4]. When hydrodynamical flows are stationary,
there is no mixing and no relaxation to a uniform state.
Mixing, leading to equilibration of particle concentrations
in our problem, is due to the stochastic nature of transitions
between the nodes.

Note that our study refers only to patterns of conserved
circulating flows on the networks. However, the analysis can
be straightforwardly extended to the networks, which include
flow sources and sinks. Our investigations were focused on
the mathematical aspects, and specific applications have not
been considered here. For example, in the future it may be
interesting to apply the theory to situations where infection or
pollution spreading by conserved traffic flows is involved.
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