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Robust computation of dipole electromagnetic fields in arbitrarily anisotropic,
planar-stratified environments
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We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing
electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer
may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors.
Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves)
supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive
refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions,
and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the
strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none
have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for
the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation).
Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The
present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified
environments. We demonstrate the formulation for a number of problems related to geophysical exploration.
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I. INTRODUCTION

The study of electromagnetic fields produced by dipole
sources in planar-stratified environments with anisotropic
layers is pertinent to many applications such as geophysical
prospection [1–7], microwave remote sensing [8], ground-
penetrating radar [9,10], optical field focusing [11], antenna
design [12,13], microwave circuits [14], and plasma physics
[15]. For this problem class, one can exploit the planar
symmetry and employ pseudoanalytical approaches based
upon embedding spectral Green’s function kernels within
Fourier-type integrals to compute the space-domain fields [16–
18]. A crucial aspect then becomes how to efficiently compute
such integrals [19–23]. Based on the specific characteristics
of the planar-stratified environment(s) considered, efficient,
case-specific methods arise. For example, when one assumes
isotropic layers so that no coupling between the TEz and
TMz modes occurs at the planar interfaces, the original vector
problem can be reduced to a set of scalar problems whose
mixed domain Green’s functions [i.e., those functions having
(kx,ky,z) dependence] are either the primary kernels in integral
representations of the Green’s dyads (e.g., transmission-line-
type Green’s functions [17–19]) or the field components
themselves (e.g., free-space Green’s function [24]). Alter-
natively, when each layer exhibits azimuthal symmetry in
its material properties, one can transform two-dimensional
(2D), infinite-range Fourier integrals into one-dimensional,
semi-infinite range Sommerfeld integrals [16–18,20–22]. For
layers with arbitrary anisotropy, however, neither of the above
simplifications apply, and a more general formulation is
required.
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Irrespective of the integral representation used, the follow-
ing challenges exist concerning their numerical evaluation
[19,24]: (i) The presence of branch points and branch cuts
associated with semi-infinite and infinite-thickness layers, (ii)
the presence of poles associated with slab- and interface-
guided modes, and (iii) an oscillatory integrand that demands
adequate sampling and whose exponential decay rate re-
duces with decreasing source-observer depth separation [21].
Among the approaches to address these issues one can cite
direct numerical evaluation, possibly combined with integral
acceleration techniques [19–22,25,26], asymptotic approxi-
mation of the space-domain field [24], and approximation
of the mixed-domain integrand via a sum of analytically
invertible images [19,23,27]. While image-approximation and
asymptotic methods exhibit faster solution time, they are
fundamentally approximate methods that either (respectively)
require user intervention in performing a priori fine tuning,
have medium-dependent applicability, and lack tight error-
control [19,22], or have a limited range of applicability in
terms of admitted medium classes and source and observer
locations [24].

Since our focus is on the general applicability and ro-
bustness of the algorithm (and not on the optimality for
a specific class of layer arrangements, medium parameters,
and source-observer geometries), we adopt a direct numerical
integration methodology based on 2D, infinite-range Fourier-
type integrals. Some key ingredients of the present formulation
are

(i) A numerically balanced recasting of the state matrix
[24] to enable the accurate computation of the eigenmodes
supported in media exhibiting arbitrary anisotropy (e.g.,
isotropic, uniaxial, biaxial, gyrotropic).

(ii) Closed-form eigenmode formulations for isotropic and
reciprocal, electrically uniaxial media that significantly reduce
eigenmode solution time (versus the state matrix method),
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obviate numerical overflow, and yield higher-precision
results versus prior (canonical) formulations in Refs. [24,28].

(iii) A numerically stable method to decompose degenerate
modes produced by sources in isotropic layers.

(iv) A multilevel, error-controlled, adaptive hp refinement
procedure to evaluate the radiation and weakly evanescent
spectral field contributions, employing nested Patterson-Gauss
quadrature rules to reduce computation time.

(v) Adaptive extension of the original method of weighted
averages (MWA) [20,26] and its application to accelerating
the numerical evaluation of infinite-range, 2D Fourier-type
integrals concerning environments containing media with
arbitrary anisotropy and loss.

Section II overviews the formulation. Section III contains
an analytical derivation of the mixed-domain, vector-valued
integrand1 WL(kx,ky ; z) of the 2D Fourier integral. Section IV
exhibits an efficient numerical algorithm to compute the
(inner) kx integral in Eq. (2.13) (note that this discussion
applies, in dual fashion, to the ky integral).

II. FORMULATION OVERVIEW

Our problem concerns computing the electromagnetic field
at r = (x,y,z)2 produced by a Herztian dipole source, which
radiates at frequency ω within a planar-stratified, anisotropic
environment at location r′ = (x ′,y ′,z′). We assume N layers
stratified along the z axis as depicted in Fig. 1, each with
(complex-valued) 3 × 3 material tensors3 ε̄c and μ̄c exhibiting
independent and arbitrary anisotropy,4 that is5

ε̄c = ε0ε̄r = ε0

⎡
⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦,

(2.1)

μ̄c = μ0μ̄r = μ0

⎡
⎣μxx μxy μxz

μyx μyy μyz

μzx μzy μzz

⎤
⎦

being simultaneous full, complex-valued tensors that can
be different for each layer. With this in mind, Maxwell’s
equations in a homogeneous region with impressed electric and
(equivalent) magnetic current densities6 J and M (respec-

1Vector, matrix, and tensor quantities have boldface script. Fur-
thermore, field quantities with (kx,ky,z) dependence are denoted
mixed-domain quantities.

2Note: z can refer to the observation depth or the coordinate,
depending on context.

3Matrix and tensor quantities are denoted by an over-bar.
4We assume the material tensors to be diagonalizable, as this

facilitates using plane wave fields as a basis to synthesize the field
solution. Since all naturally occurring media possess diagonalizable
material tensors, this constraint is not a practical concern and thus
warrants no further discussion.

5co (m/s) is the speed of light in free space, μo (H/m) is the free
space magnetic permeability, and εo = 1

μoc2
o

(F/m) is the free space
electric permittivity.

6Field quantities exhibiting purely spatial dependence have calli-
graphic script and are denoted spatial quantities.

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

 
 

 

 

  

FIG. 1. Layer M contains the source point r′ = (x ′,y ′,z′) and
layer L contains the observation point r = (x,y,z). The dipole source
L can be either electric or magnetic.

tively), as well as impressed volumetric electric and (equiv-
alent) magnetic charge densities ρv and ρm (respectively),
write as7

∇ × E = iωμ̄c · H − M (2.2)

∇ × H = J − iωε̄c · E (2.3)

∇ · (ε̄c · E) = ρv (2.4)

∇ · (μ̄c · H) = ρm. (2.5)

After multiplying Eq. (2.2) by ∇ × μ̄−1
c · and using Eq. (2.3),

one has [29]:[∇ × (
μ̄−1

c · ∇×) − ω2ε̄c · ]
E = iωJ − ∇ × μ̄−1

c · M.

(2.6)

Alternatively, defining the tensor-valued vector wave operator
as

Ā = ∇ × μ̄−1
r · ∇ × −k2

o ε̄r (2.7)

one can reexpress Eq. (2.6) as

Ā · E = ikoηoJ − ∇ × μ̄−1
r · M, (2.8)

where ko = ω
√

εoμo (m−1) and ηo = √
μo/εo (�) are the

wave number and wave impedance of free space (respectively).

7i is the unit-magnitude imaginary number, ω = 2πf (rad/sec) is
the angular frequency at which the source radiates, and the time
convention exp(−iωt) is assumed and suppressed.
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Now, define a three-dimensional Fourier Transform (FT)
pair as8:

Ẽ(k) =
∫∫∫ +∞

−∞
E(r) e−ik·r dx dy dz, (2.9)

E(r) =
(

1

2π

)3 ∫∫∫ +∞

−∞
Ẽ(k) eik·r dkx dky dkz (2.10)

with r = (x,y,z) and k = (kx,ky,kz), and similarly for all
other field and source quantities. Now, assuming an electric
or magnetic dipole source (respectively), one has9 J =
âJoδ(r − r′) or M = âMoδ(r − r′) in the space domain
and J̃ = âJo or M̃ = âMo in the Fourier domain. To de-
termine the spectral-domain fields, we first write the in-
verse of ˜̄A as inv( ˜̄A) = adj( ˜̄A)/ det( ˜̄A), where adj( ˜̄A) is
the adjugate matrix (not the conjugate-transpose matrix)
[30]. The determinant det( ˜̄A) = go(kz − k̃1z)(kz − k̃2z)(kz −
k̃3z)(kz − k̃4z), where go = εzzk

2
o(τxyτyx − τxxτyy), is a fourth-

order polynomial in kz.10 Next, define the spectral Green’s
dyad operators ˜̄Gee(k; r′) = e−ik·r′

inv( ˜̄A) and ˜̄Gem(k; r′) =
e−ik·r′

inv( ˜̄A) · ∇̃× that (respectively) map electric and mag-
netic sources to the spectral electric field as follows: Ẽ(k) =
ikoηo

˜̄Gee · J̃ and Ẽ(k) = − ˜̄Gem · μ̄−1
r · M̃.

In a homogeneous medium, the integral along kz in
Eq. (2.10) can be performed analytically using the residue
theorem. The vector-valued residues are the four supported
eigenmode electric fields having propagation constants corre-
sponding to the four roots of det( ˜̄A), in terms of which we have
the following generic expression for the space-domain (direct)
electric field Ed (r):11

Ed (r) = i

(2π )2

∫∫ +∞

−∞

[
u(z − z′)

2∑
n=1

ãnẽne
ik̃nz(z−z′)

+u(z′ − z)
4∑

n=3

ãnẽne
ik̃nz(z−z′)

]

×eikx (x−x ′)+iky (y−y ′) dkx dky, (2.11)

where the {ẽn(kx,ky)} are eigenmode electric field vectors
and the {ãn(kx,ky)} are (source-dependent) modal amplitudes

associated with the four eigenvalues [i.e., poles of inv( ˜̄A)]
{k̃nz}. In the multilayer case, with r′ in layer M and r
in layer L, a scattered-field contribution E s

L(r) is added to
Ed (r) so that the total electric field in layer L writes as

8Field quantities (besides k) exhibiting purely spectral dependence
have an over-tilde and are denoted spectral quantities. Furthermore,
modal (nonmodal) spectral field quantities appear in lower (upper)
case.

9δ(r − r′) = δ(x − x ′)δ(y − y ′)δ(z − z′) is the three-dimensional
Dirac delta function.

10τ̄ r = μ̄−1
r

11u(·) represents the Heaviside unit-step function.

EL(r) = δLMEd (r) + E s
L(r), where

E s
L(r) = i

(2π )2

∫∫ +∞

−∞

[
(1 − δLN )

2∑
n=1

ãs
L,nẽL,ne

ik̃L,nzz

+ (1 − δL1)
4∑

n=3

ãs
L,nẽL,ne

ik̃L,nzz

]

×eikx (x−x ′)+iky (y−y ′) dkx dky (2.12)

an additional subscript is introduced to denote the layer number
(e.g., L in this case), δpq denotes the Kronecker delta, and the
{ãs

L,n(kx,ky)} represent the (source-dependent) scattered-field
modal amplitudes. The four modal terms inside both the direct
and scattered-field integrals above can be classified into two
upward and two downward propagation modes, distinguished
according to the signs of {Im(k̃L,nz)}.12

To expedite propagating the source fields to r, which
requires enforcing continuity of the tangential EM field
components throughout the environment, instead of working
with Eqs. (2.11)–(2.12) directly it is more convenient to work
with a 4×1 vector composed of the four tangential EM field
components (see Ref. [24]): V = [Ex Ey Hx Hy]. The two
longitudinal field components can be subsequently obtained
from the transverse components [24]. Equations analogous to
Eqs. (2.11)–(2.12) thus arise, with EL replaced by VL, which
writes as

VL(r) = i

(2π )2

∫∫ +∞

−∞
WL(kx,ky ; z)eikx (x−x ′)+iky (y−y ′) dkxdky.

(2.13)

III. INTEGRAND MANIPULATIONS

For some (kx,ky) that defines the transverse phase variation
exp[ikx(x − x ′) + iky(y − y ′)] common to all the plane wave
modes within the environment, one desires the total modal
contribution WL(kx,ky ; z)exp[ikx(x − x ′) + iky(y − y ′)] at r.
Assuming this transverse phase variation exp[ikx(x − x ′) +
iky(y − y ′)], Maxwell’s equations for a homogeneous medium
can be manipulated [24] to yield the state matrix shown in
Eq. (3.2). After substituting in a given layer’s constitutive
properties, its solution yields the four modal state vectors
supported in that layer along with the corresponding modal
(axial) propagation constants; this process, repeated for all
N layers, is the starting point of procuring WL(kx,ky ; z).13

Subsequently, knowledge of the transverse modal fields in each
layer combined with enforcement of tangential field continuity
across layer interfaces allows one to propagate the radiated

12The eigenvalues {k̃L,1z,k̃L,2z,k̃L,3z,k̃L,4z} correspond to the prop-
agation constants of the (respectively) Type I up-going, Type II
up-going, Type I down-going, and Type II down-going plane wave
modes of layer L, and so on for the other N − 1 layers [24].

13The form of Eq. (3.2) differs slightly from formula (2.10.10)
in Ref. [24]. The −i factor on both sides of Eq. (3.2), which is
embedded into ˜̄H on the left side and explicitly shown on the
right side, facilitates an eigenvalue/eigenvector problem in which
the propagation constants {km,nz} are the sought-after values rather
than the {ikm,nz} values procured in Ref. [24].
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fields to r in layer L. Note that given the transverse EM fields
of the nth mode, the complete six-component, z-independent
modal field vector {ẽn h̃n} is completely determined [24].

A. Modal eigenvectors and eigenvalues

The characteristic plane wave modes for an arbitrarily
anisotropic layer m are summarily described by the four eigen-
values (k̃m,1z, k̃m,2z, k̃m,3z, k̃m,4z) and the four corresponding
4 × 1 eigenvectors [s̃m,1 s̃m,2 s̃m,3 s̃m,4] of the 4 × 4 state matrix
˜̄H = ˜̄H(kx,ky). Defining the nth eigenvector as

s̃m,n = s̃m,n(kx,ky) =

⎡
⎢⎢⎣

ẽm,nx

ẽm,ny

h̃m,nx

h̃m,ny

⎤
⎥⎥⎦ (3.1)

and noting that the corresponding nth characteristic solution
vm,n to

˜̄H · vm,n = −i
∂

∂z
vm,n (3.2)

has the form vm,n = s̃m,ne
ik̃m,nz(z−z∗), one can show that the

eigenmode problem ˜̄H · s̃m,n = k̃m,nzs̃m,n results.
To facilitate accurate and rapid numerical eigenmode com-

putation, the following relations comprise analytical changes
made to the canonical eigenmode formulations for isotropic
media [24], reciprocal, electrically uniaxial media [28], and
generally anisotropic media (i.e., via the state matrix ˜̄H) [24]:

kx → ko(kx/ko) = kokxr ,

ky → ko(ky/ko) = kokyr , (3.3)

ωμo → koηo, and ωεo → ko/ηo.

Accurate computation of the eigenvectors and eigenvalues is
of paramount importance to achieving high-precision results.
This is because, as will be seen throughout this section,
every mixed-domain field quantity is dependent upon the
eigenvectors and/or eigenvalues.

B. Intrinsic reflection and transmission matrices

We next calculate the 2 × 2 intrinsic reflection and trans-
mission matrices.14 If down-going incident fields in layer m

are phase referenced15 to z = zm, then R̄m,m+1 and T̄m,m+1 are
easily procured [24] (see Fig. 2 below for an illustration of
the scattering problem for downward incident modal fields);
similar holds for R̄m+1,m and T̄m+1,m.

C. Generalized reflection and three-layer transmission matrices

With the intrinsic reflection and transmission matrices now
available, we derive the generalized reflection matrices (GRM)
and three-layer transmission matrices (3TM). The 3TM yields
the total down-going (up-going) fields in the slab layer of the

14“Intrinsic” refers to reflection and transmission matrix quantities
associated with only two media present (see Fig. 2)

15Fields “phase-referenced” to z∗ possess a exp[ik̃z(z − z∗)] type of
z dependence.

m 

 

 

 
 

 

  

  

    

  

FIG. 2. The incident modes (i,I and i,II subscripts), Type I/II
reflected modes due to the incident Type I (sI,I and sI,II subscripts)
and Type II modes (sII,I and sII,II subscripts), and Type I/II
transmitted modes due to the incident Type I (tI,I and tI,II subscripts)
and Type II modes (tII,I and tII,II subscripts) are shown.

canonical three-layer medium problem for incident downward
(upward) fields, while the GRM yields the reflected fields in
the top (bottom) layer (see Fig. 3).

The GRM assuming down-going incident fields can be
determined by looking down into the three bottom-most layers
of an N layer medium [respectively labeled as 1′ (top), 2′
(middle), and 3′ (bottom) in Fig. 3] and assuming that the
scattered fields in region 2′ and down-going incident fields
in region 1′ are phase referenced to z2′ and z1′ (respectively).
Following Ref. [24], one imposes two constraint conditions
that result in two matrix-valued equations16

�̄
−
2′ (z1′ − z2′) · ã−

2′

= T̄ 1′2′ · ã−
1′ + R̄2′1′ · �̄

+
2′ (z1′ − z2′) · R̄2′3′ · ã−

2′ , (3.4)

˜̄R1′2′ · ã−
1′ = R̄1′2′ · ã−

1′ + T̄2′1′ · �̄
+
2′ (z1′ − z2′ ) · R̄2′3′ · ã−

2′ .

(3.5)

16The up-going mode eigenvalues are block represented as the 2 × 2
diagonal matrix �̄

+
m(z) = exp(diag[ik̃m,1zz, ik̃m,2zz]), while the down-

going mode eigenvalues are block represented as the 2 × 2 diagonal
matrix �̄

−
m(z) = exp(diag[ik̃m,3zz, ik̃m,4zz]).

 

l  

 

 
 

2’ 

    

 

3’ 

 

  

   

FIG. 3. Schematic depicting the canonical three-layer medium
for which the corresponding GRM and 3TM, associated with down-
going incident fields in region 1

′
, are calculated.
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By rearranging Eqs. (3.4) and (3.5), one has17

˜̄M = [Ī2 − �̄
−
2′ (z2′ − z1′ ) · R̄2′1′ · �̄

+
2′ (z1′ − z2′ ) · R̄2′3′ ] (3.6)

and the 3TM

˜̄T1′,2′ = ˜̄M
−1 · �̄

−
2′ (z2′ − z1′) · T̄1′2′ (3.7)

with which one has

ã−
2′ = ˜̄T1′,2′ · ã−

1′ . (3.8)

Substituting the right-hand side of Eq. (3.8) for ã−
2′ in Eq. (3.5),

one obtains the GRM
˜̄R1′2′ = R̄1′2′ + T̄2′1′ · �̄

+
2′ (z1′ − z2′ ) · R̄2′3′ · ˜̄T1′,2′ . (3.9)

This procedure can be repeated for layers N − 3, N − 2, and
N − 1 by labeling them as layers 1′, 2′, and 3′ (respectively)
and replacing R̄2′3′ in Eq. (3.9) with ˜̄R2′3′ [24]. The process
is recursively performed up to the top three layers. A similar
procedure can be used to find the GRM and 3TM looking
up into each interface, whose expressions are found by
using Eq. (3.8) and Eq. (3.9), labeling the bottom, middle,
and top layers as 1′, 2′, and 3′ (respectively), and making
the following two variable interchanges in the modified
GRM/3TM relations:

�̄
+
2′ (z1′ − z2′) ↔ �̄

−
2′ (z2′ − z1′), (3.10)

ã+
m′ ↔ ã−

m′ (m = 1,2,3). (3.11)

While the procedure above is analytically exact, to avoid the
risk of numerical overflow one should shift the reference
depth of the slab’s transmitted fields to the observation point
depth z when the slab contains r. This avoids propagating
downward the up-going modes (or vice versa) at the final
stage of assembling the total mixed-domain field WL(kx,ky ; z).
Otherwise, exponentially increasing propagators would be
present, which may cause numerical overflow. To find the
numerically stable 3TM and GRM expressions, we perform
similar manipulations as before to obtain:

˜̄M = [Ī2 − �̄
−
2′ (z − z1′) · R̄2′1′ · �̄

+
2′ (z1′ − z2′)

·R̄2′3′ · �̄
−
2′ (z2′ − z)], (3.12)

ã−
2′ = ˜̄M

−1 · �̄
−
2′ (z − z1′) · T̄1′2′ · ã−

1′ = ˜̄T1′,2′ · ã−
1′ , (3.13)

˜̄R1′2′ = R̄1′2′ + T̄2′1′ · �̄
+
2′ (z1′ − z2′) · R̄2′3′

·�̄−
2′ (z2′ − z) · ˜̄T1′,2′ . (3.14)

D. Direct field modal amplitudes

We next procure the direct field modal amplitudes. For sim-
plicity, the layer-number notation is omitted in this subsection
with the understanding that all field quantities are associated
with layer M .

If the eigenvalues are unique, we first obtain H̃ from Ẽ to
form the four-component vector Ṽ = [Ẽx Ẽy H̃x H̃y]. With

17The n × n identity matrix is denoted Īn.

this, we perform the analytic kz integration of Ṽeik·r to obtain

eikx (x−x ′)+iky (y−y ′)2πi

l2∑
l=l1

[
(kz − k̃lz)Ṽeikz(z−z′)]∣∣

kz=k̃lz
.

(3.15)
Equivalently, by setting Ṽ′ = Ṽeikz(z∗−z′), one obtains

eikx (x−x ′)+iky (y−y ′)2πi

l2∑
l=l1

[
(kz − k̃lz)Ṽ′eikz(z−z∗)

]∣∣
kz=k̃lz

,

(3.16)

where the sum runs over the two up-going modes [denoted by
the substitutions (l1,l2) → (1,2) and z∗ → z∗

M−1] or two down-
going modes [denoted by the substitutions (l1,l2) → (3,4)
and z∗ → z∗

M ], z∗
M−1 = δ1Mz′ + (1 − δ1M )zM−1, and z∗

M =
δNMz′ + (1 − δNM )zM . Note that Eq. (3.15) was redefined as
Eq. (3.16) to facilitate subsequently calculating reflected and
transmitted fields.

Next, defining for up-going mode l (l = 1,2) the tangential
fields, obtained after kz integration followed by suppression of
the propagators, as

ũ∗
l = ũ∗

l (kx,ky) = [(kz − k̃lz)Ṽ]
∣∣
kz=k̃lz

, (3.17)

ũl = ũl(kx,ky) = [(kz − k̃lz)Ṽ′]
∣∣
kz=k̃lz

, (3.18)

one can define the amplitudes ã∗
l,D and ãl,D (the D subscript

stands for direct), corresponding to this mode, which satisfy18

ũ∗
l = ã∗

l,D
˜̂sl , (3.19)

ũl = ãl,D
˜̂sl . (3.20)

If the eigenvalues are degenerate (i.e., when layer M is
isotropic), one instead uses the analytically simplified spectral
Green’s dyads devoid of double poles [29,31,32] when
employing Eqs. (3.15)–(3.20). Since the resulting degenerate
field is a linear combination of the TEz and TMz modes, one
follows its evaluation with a TEz-TMz modal decomposition.
One decomposition example is[

ẽI+
x ẽII+

x

ẽI+
y ẽII+

y

][
ãI+

D

ãII+
D

]
=

[
ẽ+
x

ẽ+
y

]
, (3.21)

where ãI+
D and ãI I+

D are the up-going TEz and TMz modal
amplitudes (respectively). If using the transverse components
leads to an ill-conditioned system, one can use relations in
Ref. [24] to find ẽI+

z ,ẽI I+
z and then solve Eq. (3.21) using ẽx

and ẽz (or ẽy and ẽz). Note that since Eq. (3.21) is a second-
rank linear system, its inversion is trivial; therefore, only the
system’s conditioning limits the accuracy of the computed
amplitudes [33].

E. Scattered mode calculation and field transmission

Now, the total field impinging upon the interfaces z = zM−1

and z = zM must be calculated; this is done via exhibiting and
solving the vectorial generalization of relations in Ref. [24]
accounting for arbitrary anisotropy (i.e., including intermode

18Unit-magnitude vectors have an over-hat symbol.
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coupling at planar interfaces). All field quantities exhibited
below through Eq. (3.27) are associated with layer M .

Define ã+
D = (ãI+

D ,ãII+
D ), ã+

S1, and ã−
S1 as 2 × 1 vectors

containing (respectively) the amplitudes of the direct up-going,
scattered up-going, and scattered down-going modes phase
referenced to z = zM−1. Similarly, define ã−

D = (ãI−
D ,ãII−

D ),
ã+

S2, and ã−
S2 for the same modes but phase-referenced to z =

zM . With this, one defines the following quantities:19

f+
D(kx,ky ; z) = ˜̄S

+
M · �̄

+
M (z − zM−1) · ã+

D,

f−
D(kx,ky ; z) = ˜̄S

−
M · �̄

−
M (z − zM ) · ã−

D, (3.22)

f+
S1(kx,ky ; z) = ˜̄S

+
M · �̄

+
M (z − zM−1) · ã+

S1,

f+
S2(kx,ky ; z) = ˜̄S

+
M · �̄

+
M (z − zM ) · ã+

S2, (3.23)

f−
S1(kx,ky ; z) = ˜̄S

−
M · �̄

−
M (z − zM−1) · ã−

S1,

f−
S2(kx,ky ; z) = ˜̄S

−
M · �̄

−
M (z − zM ) · ã−

S2. (3.24)

Subsequently, in layer M we can represent the tangential fields
WM (kx,ky ; z) as

WM (kx,ky ; z) =
{

f+
D + f+

S1 + f−
S1, z > z′

f−
D + f+

S2 + f−
S2, z < z′ . (3.25)

Armed with relations Eqs. (3.22)–(3.25), one now imposes
two constraint conditions [24] that yield the relations (i) ã−

S1 =
˜̄RM,M−1 · (ã+

D + ã+
S1) and (ii) ã+

S2 = ˜̄RM,M+1 · (ã−
D + ã−

S2).
Using these two constraints along with (i) ã+

S1 = �̄
+
M (zM−1 −

zM ) · ã+
S2 and (ii) ã−

S2 = �̄
−
M (zM − zM−1) · ã−

S1, which arise
from enforcing continuity of the scattered fields at z = z′,

upon performing algebraic manipulation one has ã+
S1 and ã−

S2
as functions of ã+

D and ã−
D:

˜̄M1 = �̄
−
M (zM − zM−1) · ˜̄RM,M−1,

˜̄M2 = �̄
+
M (zM−1 − zM ) · ˜̄RM,M+1, (3.26)

ã+
S1 = [Ī2 − ˜̄M2 · ˜̄M1]−1 · ˜̄M2 · [ã−

D + ˜̄M1 · ã+
D],

ã−
S2 = [Ī2 − ˜̄M1 · ˜̄M2]−1 · ˜̄M1 · [ã+

D + ˜̄M2 · ã−
D]. (3.27)

For L �= M , one then uses the sum ã+
D + ã+

S1 (ã−
D + ã−

S2) and
the 3TM matrices to find ã+

L (ã−
L ) for L < M (L > M), which

write as (respectively)

ã+
L = ˜̄TL+1,L · · · [

�̄
+
M−2

(
zM−3 − zref

M−2

) · ˜̄TM−1,M−2
]

· [�̄+
M−1

(
zM−2 − zref

M−1

) · ˜̄TM,M−1
] · (ã+

D + ã+
S1),

(3.28)

ã−
L = ˜̄TL−1,L · · · [

�̄
−
M+2

(
zM+2 − zref

M+2

) · ˜̄TM+1,M+2
]

· [�̄−
M+1

(
zM+1 − zref

M+1

) · ˜̄TM,M+1
] · (ã−

D + ã−
S2),

(3.29)

where for some intermediate layer m �= L, zref
m is the user-

defined phase-reference depth.20 Given ã+
L (ã−

L ) for L < M

(L > M), one then finds ã−
L (ã+

L ) as (respectively)

ã−
L = �̄

−
L (z − zL−1) · ˜̄RL,L−1 · �̄

+
L (zL−1 − z) · ã+

L, (3.30)

ã+
L = �̄

+
L (z − zL) · ˜̄RL,L+1 · �̄

−
L (zL − z) · ã−

L. (3.31)

With the above in mind, we have the following expressions
when L < M (L > M) (respectively):

WL(kx,ky ; z) = (�̄
+
L ([z − z1]δL1) · ˜̄S

+
L + (1 − δL1) ˜̄S

−
L · �̄

−
L (z − zL−1) · ˜̄RL,L−1 · �̄

+
L (zL−1−z)) · ã+

L, (3.32)

WL(kx,ky ; z) = (�̄
−
L ([z − zN−1]δLN ) · ˜̄S

−
L + (1 − δLN ) ˜̄S

+
L · �̄

+
L (z − zL) · ˜̄RL,L+1 · �̄

−
L (zL − z)) · ã−

L. (3.33)

If L = M , then for N < M < 1, one instead obtains ã−
S1 and

ã+
S2 and propagates these to z. Note that this method obviates

propagating downward (upward) ã+
S1 (ã−

S2), thereby preventing
another potential source of numerical overflow. The up-going
(down-going) direct fields, as phase-referenced to z′, can be
propagated to z for z > z′ (z < z′). Now recall Eq. (3.19)
and define ã+∗

D = (ã∗
1,D,ã∗

2,D) and ã−∗
D = (ã∗

3,D,ã∗
4,D). Then for

z > z′ (z < z′), WL(kx,ky ; z) writes as (respectively)

WL(kx,ky ; z) = ˜̄S
+
L · �̄

+
L (z − z′) · ã+∗

D

+ ˜̄S
+
L · �̄

+
L (z − zL) · ã+

S2

+ ˜̄S
−
L · �̄

−
L (z − zL−1) · ã−

S1, (3.34)

19The up-going mode eigenvectors are block represented as the 4 ×
2 matrix ˜̄S

+
m = [˜̂sm,1

˜̂sm,2], while the down-going mode eigenvectors

are block represented as the 4 × 2 matrix ˜̄S
−
m = [˜̂sm,3

˜̂sm,4].

WL(kx,ky ; z) = ˜̄S
−
L · �̄

−
L (z − z′) · ã−∗

D

+ ˜̄S
+
L · �̄

+
L (z − zL) · ã+

S2

+ ˜̄S
−
L · �̄

−
L (z − zL−1) · ã−

S1. (3.35)

If L = M = 1 or L = M = N , one uses ã−
D or ã+

D (respec-

tively) to find ã+
S2 = ˜̄R1,2 · ã−

D or ã−
S1 = ˜̄RN,N−1 · ã+

D (respec-
tively). Subsequently, the up-going (down-going) reflected
fields are propagated to z. Furthermore, ã+∗

D (ã−∗
D ) is propa-

gated to z when z > z′ (z < z′). With this, for M = 1 (M = N )

20If layer L corresponds to a slab, we compute the 3TM ˜̄TL+1,L in
(3.28) according to the numerically stable 3TM and GRM formulation
presented in Sec. III C. If instead layer L corresponds to the top layer,
˜̄TL+1,L reduces to the intrinsic transmission matrix. Similar holds for
˜̄TL−1,L in (3.29).
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we have (respectively)

WL(kx,ky ; z) = u(z − z′) ˜̄S
+
L · �̄

+
L (z − z′) · ã+∗

D

+u(z′ − z) ˜̄S
−
L · �̄

−
L (z − z′) · ã−∗

D

+ ˜̄S
+
L · �̄

+
L (z − z1) · ã+

S2, (3.36)

WL(kx,ky ; z) = u(z − z′) ˜̄S
+
L · �̄

+
L (z − z′) · ã+∗

D

+u(z′ − z) ˜̄S
−
L · �̄

−
L (z − z′) · ã−∗

D

+ ˜̄S
−
L · �̄

−
L (z − zN−1) · ã−

S1. (3.37)

Note that in all expressions obtained throughout this section,
no exponentially rising terms are present since down-going
(up-going) modes are always propagated downward (upward),
leading to a stable numerical implementation.

IV. INTEGRATION METHODOLOGY

In the numerical evaluation of Eq. (2.13), one repeats the
steps in Sec. III for every sampled (kx,ky) point, approximating
Eq. (2.13) as the double sum

VL(r) 	 i

(2π )2

P2∑
p=−P1

Q2∑
q=−Q1

WL(kxq,kyp; z)

× eikxq (x−x ′)+ikyp(y−y ′) w(kxq) w(kyp). (4.1)

In Sec. IV A, we describe an efficient methodology to
compute the contribution from the pre-extrapolation region
−ξ1 < Re(kx) < ξ1 (see Fig. 4). In Sec. IV B, we detail an
adaptive implementation of the MWA [14,20,26] tailored for
this problem to compute the contribution from the extrapola-
tion region |kx | > |ξ1| [20].

A. Pre-extrapolation region

The presence of critical points (i.e., branch points, branch
cuts, and slab- and interface-guided mode poles) near the
Re(kx) axis in the pre-extrapolation region requires a detoured
contour to yield a robust numerical integration [24]. Further-
more, the oscillatory nature of WL(kx,ky ; z)exp[ikx(x − x ′) +
iky(y − y ′)] and the potentially close proximity of critical
points to the detoured contour warrants adaptively integrating
to ensure accurate results [19,20] (see Fig. 4).

First we discuss the integration path’s initial subdivision and
parametrization. Similar to Ref. [19], we define: a maximum
detour height dx , the two points bounding the detour as kx =
±Pk , and the two points within which one adaptively integrates
as kx = ±ξ1. All these points are indicated in Fig. 4. The detour
path can be parameterized, using the real-valued variable
r , as kx = r − i sin (πr/Pk) and dkx = (∂kx/∂r) dr , where
∂kx/∂r = 1 − i(π/Pk) cos (πr/Pk) and −ξ1 � r � ξ1 [19].

To compute ±Pk , we adapt the procedure described in
Ref. [19] to arbitrarily anisotropic media. For a layer p

(p = 1,2, . . . ,N ), we calculate the three eigenvalues of its
relative material tensors ε̄r,p and μ̄r,p ({εpi}, {μpi}, i = 1,2,3),
find

√
εpiμpj for i,j = 1,2,3, and take the pth layer effective

refractive index np (p = 1,2, . . . ,N ) to be the
√

εpiμpj value
having the real part with the largest magnitude but with
imaginary part below a user-defined threshold T . Subsequently
we compute n+ = max(|Re({np})|), which yields a worst-case

scenario for the maximum magnitude of the real part of
any poles or branch points near the Re(kx) axis. Finally,
we set Pk = loko(n+ + 1), where lo � 1 is a user-defined
pre-extrapolation region magnification constant.

Furthermore, defining �x = |x − x ′|, �y = |y − y ′|, and
�z = |z − z′|, we compute the following integration path
parameters [19]:

dx =
{

1
�x

, �x > 1

1, otherwise
, (4.2)

�ξx =
{

π
�x

, �x > 1

π, otherwise
, (4.3)

ξ1 =
(

Int

(
Pk

�ξx

)
+ 1

)
�ξx, (4.4)

where Int(·) truncates its argument to an integer number. Next,
we splice the regions (0,Pk) and (−Pk,0) each into P regions.
Letting T1 and T2 be two user-defined constants, one has

�k =
⎧⎨
⎩

π
T1max(�x,�z) , �x + �z > 0

π
T1�y

, otherwise
, (4.5)

Nnode = Int

(
Pk

�k

)
+ 1, (4.6)

resulting in P = Int(1 + Nnode/T2). This empirical method-
ology for parameterizing and splicing the pre-extrapolation
region relies upon the conservative assumption of equidistant
sampling.

We utilize a nested Patterson-Gauss quadrature scheme
[19] throughout the pre-extrapolation region. Such schemes
sacrifice algebraic degrees of precision, yielding only 3n + 1

Im( )

Re( )-

BP
Map

Radiation
BC Map

Program
BC Map

Slab Mode
Poles

BP
Map

Radiation
BC Map

Program
BC Map

Slab Mode
Poles

FIG. 4. (Color online) Typical kx plane features present when
evaluating Eq. (2.13). “Radiation BC Map” and “Program BC Map”
refer to the branch cuts associated with the radiation condition
at infinity and the computer program’s square root convention
(respectively). The encircled “X” symbols represent the branch points
and the red “X” symbols represent slab- and interface-guided mode
poles. For K extrapolation intervals used, the red contour represents
the integration path extending to kx = ±ξK+1.
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(3n + 2) degrees of precision for n odd (even) when adding on
n + 1 nested quadrature nodes [34,35], in contrast to 4n + 1
degrees of precision for a (2n + 1)-point Gauss quadrature
formula [36]. However, considering the extensive calcula-
tions involved at each sampled (kx,ky) node (see Sec. III),
a Patterson-Gauss scheme significantly reduces the overall
computation time [37].

Finally, one folds the integral results from (0,ξ1) and
(−ξ1,0) to yield I ′

x0 = I ′
x0(ky).

B. Extrapolation region

Subsequently, one must approximate the integral over the
path’s tails (ξ1,∞) and (−∞, − ξ1) along the Re(kx) axis. For
a robust computation, so that both approximation error and
convergence rate are good for different geometries and ranges
of layer constitutive properties, an integral extrapolation (i.e.,
acceleration) technique is required. Here we adopt the MWA
[14,20,26]21 and briefly summarize below the extensions and
adaptations made to our problem:22

(i) Splice the path (ξ1,ξ1 + N�ξx) into N subintervals23

with bounding breakpoints ξxn = ξ1 + (n − 1)�ξx [19,20,26].
(ii) Integrate each subinterval using (for example) a 15- or

20-point Legendre-Gauss quadrature rule [19,26].
(iii) Store the these results as I+′

xp (p = 1,2, . . . ,N ).
(iv) Repeat steps 1-3 for the path (−ξ1 − N�ξx, − ξ1) to

procure I−′
xp .

(v) Fold I+′
xp and I−′

xp together to form I ′
xp = I+′

xp + I−′
xp (p =

1,2, . . . ,N ).
(vi) Obtain cumulative integrals I ′

xp,c via update: I ′
xp,c =

I ′
xp + I ′

x(p−1),c (p = 2,3, . . . ,N ) (Note: I ′
x1,c = I ′

x1).
(vii) Use the {I ′

xp,c} to estimate the nontruncated tail
integral I t ′

x as I t ′(N)
x .

(viii) Compute the complete kx integral I ′
x = I ′

x(ky) =
I t ′(N)
x + I ′

x0.
The MWA accelerates convergence of integrals like

Eq. (2.13) via estimating the tail integral’s truncation error
followed by combining two or more estimates, exemplified by

I t ′(N)
x =

∑n=N
n=1 wnI

′
xn,c∑n=N

n=1 wn

(4.7)

to accelerate the truncation error’s decay. First, denote the
true truncation error of I ′

xn,c as Rxn such that I t ′
x = I ′

xn,c +
Rxn. Then, defining γ1,2 = w2/w1 and setting N = 2, one can
rewrite Eq. (4.7) as [20,26]:

I t ′(2)
x = w1

[
I t ′
x − Rx1

] + w2
[
I t ′
x − Rx2

]
w1 + w2

= I t ′
x − Rx2

Rx1
Rx2

+ γ1,2

1 + γ1,2
. (4.8)

21More specifically, we employ the the Mosig-Michalski algorithm
variant of MWA [38] (MMA for short).

22It is assumed that (1) one has detoured sufficiently far past any
branch points or poles near to the Re(kx) axis [19,20,26] and (2)
as |kx | → ∞, ik̃z(z − z′) → −f (kx)�z, where f (kx) = f (−kx) and
Re(f (kx)) > 0.

23This N is unrelated to the number of layers.

Next, setting γ1,2 = −Rx1/Rx2 yields I t ′(2)
x = I t ′

x despite using
only two finite-length tail integrals. However, in reality one
must estimate the {Rxn} (thus yielding estimated error ratios
{−γ

est(1)
n,n+1}) via approximation of the truncation error integral’s

asymptotic behavior [20]. By folding the asymptotic form of
the kx integral’s tail section one has∫ ∞

ξ1

kq
x e−f (kx )�zeikx (x−x ′)dkx+

∫ −ξ1

−∞
kq
x e−f (kx )�zeikx (x−x ′)dkx

=
∫ ∞

ξ1

2kq
x

{
cos kx(x − x ′)

i sin kx(x − x ′)

}
e−f (kx )�zdkx (4.9)

with the sine (cosine) factor for q odd (even). Furthermore, the
factor e−f (kx )�zk

q
x above can be rewritten as (e−f (kx )�zk

q+1
x )/kx

to conservatively ensure that in the multilayer case, one can
satisfy the assumption [20] that the integrand has the form
h(kx ; z,z′) = g(kx ; z,z′)p(kx), where p(kx) is an oscillatory
function with period 2T = 2π/�x and (asymptotically) g(kx)
has the form

g(kx ; z,z′) ∼ e−f (kx )�z

kα
x

[
C + O

(
k−1
x

)] ∼ e−f (kx )�z

kα
x

∞∑
l=0

cl

kl
x

.

(4.10)

Adapted to our problem, the analytic remainder
estimate takes the form (for �x > 0) Rest(1)

xn =
(−1)ne−f (kx )�zξ

q+1
n+1 , where Rxn has the asymptotic form

Rxn,a ∼ Rest(1)
xn

∑∞
l=0 alξ

−l
n+1 [20]. Subsequently, assuming

that Rxn/Rx(n+1) has the asymptotic form Rxn/Rx(n+1) =
R′

xn,a ∼ (Rest(1)
xn /R

est(1)
x(n+1))[1 + O(ξ−2

n+1)] one can insert R′
x1,a

and γ
est(1)
1,2 = −R

est(1)
x1 /R

est(1)
x2 (in place of γ1,2) into Eq. (4.8)

to obtain [20]

I t ′(2)
x = I t ′

x + Rx2

[
1 + O

(
ξ−2

2

)] − 1

1 + 1/γ
est(1)
1,2

= I t ′
x + Rx2

O
(
ξ−2

2

)
1 + 1/γ

est(1)
1,2

= I t ′
x − R

(2)
x1 (4.11)

with remainder R
(2)
x1 = −Rx2O(ξ−2

2 )/(1 + 1/γ
est(1)
1,2 ). It is seen

that R
(2)
x1 is asymptotically equal to Rx2 except for being scaled

by the factor ξ−2
2 ; similarly, its corresponding remainder

estimate R
est(2)
x1 is also scaled by ξ−2

2 [20,26]. The above
procedure can be applied recursively to estimate I t ′

x using N

cumulative integrals [20,26]. By defining

γ
est(r−1)
n,n+1 = γ

est(1)
n,n+1(ξn+2/ξn+1)2(r−2) (r = 3,4, . . . ,N + 1),

(4.12)

I t ′(1)
xn,c = I ′

xn,c (n = 1,2, . . . ,N ), (4.13)

I
t ′(N)
x1 = I t ′(N)

x , (4.14)

the following expression is obtained in place of Eq. (4.11)
[20,26]:

I t ′(r)
xn,c = I t ′(r−1)

xn,c + I
t ′(r−1)
x(n+1),cγ

est(r−1)
n,n+1

1 + γ
est(r−1)
n,n+1

, 2 � r � N,

1 � n � N − r + 1. (4.15)
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Note from Eq. (4.3) that as |x − x ′| increases, �ξx is
reduced. This is done to keep the interval breakpoints at the
extrema (nulls) of the cosine (sine) function in Eq. (4.9) [20],
as well as sample the integrand at an adequate rate. However,
simultaneously shrinking the region (ξ1,ξN+1) may cause
an undesirable degradation in accuracy. This can be solved
via adaptive integration of the tail integral, using additional
extrapolation intervals combined with successively higher-
order weighted average schemes until convergence ensues.

For implementing an adaptive version of the MMA, one
could in principle utilize an N -tier recursive function call
chain to evaluate Eq. (4.15). However, this is not efficient
since the number of active, simultaneous calls to the function
carrying out extrapolation would peak at N (N + 1)/2. Instead,
precomputing the weights for each desired N -tier scheme prior
to integration such that one can simply compute I t ′(N)

x = I
t ′(N)
x1

as

I
t ′(N)
x1 =

n=N∑
n=1

wn,NI ′
xn,c, (4.16)

where wn,N is the nth weight24 (n = 1,2, . . . ,N ) of the tier-N
MMA scheme, is preferred. The three advantages of this
strategy are that it (i) obviates extensive recursive function
calls, (ii) eliminates the redundancy of recomputing tier N

weights for each new ky node (this is markedly important
for 2D integration), and (iii) requires only one weighted
average [i.e., Eq. (4.16)], thereby drastically reducing the
arithmetic operations associated with each of the {I ′

xn,c} to one
multiplication and one final summation versus O(2N−1) total
multiplications and additions required to compute I

t ′(N)
x1 via the

recursive function call chain approach. Assuming Nmax > 1
tiers are sought, the precomputation of the weights proceeds
as follows (N = 2,3, . . . ,Nmax):

(i) In computing wn,N (1 < n � N ), admit n intermediate
values {w(1)

n,N ,w
(2)
n,N , . . . ,w

(n)
n,N }, where w

(1)
N,N = 1.

(ii) Recall Eq. (4.15) and set r = 2. Comparing this with
Eq. (4.16), we find w1,2 = 1/(1 + γ

est(1)
1,2 ) and w2,2 = 1/(1 +

1/γ
est(1)
1,2 ). We also set w

(1)
2,2 = 1 and w

(2)
2,2 = w2,2.

(iii) Recursively compute the {w1,N } as w1,m =
w1,m−1

1+γ
est(m−1)
1,2

(m = 3,4, . . . ,Nmax).

(iv) To compute wn,N (2 � n � N , N > 2), first note the
{w(m)

n,N } initially update as

w
(m)
n,N = w

(m)
n,N−1

1 + γ
est(N+m−n−1)
n−m+1,n−m+2

(m = 1,2, . . . ,n; n �= N ),

(4.17)

w
(1)
n,N = 1,w

(2)
n,N = w

(3)
n,N = . . . = w

(N)
n,N = 0 (n = N ).

(4.18)

24For a given N , these weights are related to the weights shown in
Eq. (4.7) via the relation wn,N = wn/

∑n=N

n=1 wn, where the {wn} here
tacitly exhibit dependence on N .

(v) Update the {w(m)
n,N } again as

w
(m)
n,N = w

(m)
n,N + w

(m−1)
n,N

1 + 1/γ
est(N+m−n−1)
n−m+1,n−m+2

(m = 2,3, . . . ,n)

(4.19)
set wn,N = w

(n)
n,N to obtain the desired weight, and store

the intermediate values for recursive reapplication of steps
(iv)–(v).

To clarify steps (iv)–(v), let us take a simple example
and outline the process of obtaining the third cumulative
integral’s weights corresponding to the three-tier, four-tier, and
five-tier MMA (i.e., w3,3, w3,4, and w3,5). Starting with N = 3
and noting that n = N = 3, we apply Eq. (4.18) to obtain
w

(1)
3,3 = 1 and w

(2)
3,3 = w

(3)
3,3 = 0. Second, we apply Eq. (4.19)

to obtain w
(2)
3,3 = 0 + w

(1)
3,3/(1 + 1/γ

est(1)
2,3 ) and use this up-

dated w
(2)
3,3 value to compute w3,3 = w

(3)
3,3 = 0 + w

(2)
3,3/(1 +

1/γ
est(2)
1,2 ), yielding one of our desired weights. Third, we

use these three updated intermediate values as the input to
another application of step (iv) with N = 4, using Eq. (4.17)
to obtain w

(1)
3,4 = w

(1)
3,3/(1 + γ

est(1)
3,4 ), w

(2)
3,4 = w

(2)
3,3/(1 + γ

est(2)
2,3 ),

and w
(3)
3,4 = w

(3)
3,3/(1 + γ

est(3)
1,2 ). Finally, use Eq. (4.19) to obtain

w
(2)
3,4 = w

(2)
3,4 + w

(1)
3,4/(1 + 1/γ

est(2)
2,3 ) and w3,4 = w

(3)
3,4 = w

(3)
3,4 +

w
(2)
3,4/(1 + 1/γ

est(3)
1,2 ), giving the second desired weight.

The above procedure lends two practical improvements to
the original MMA by (i) significantly reducing the operation
count involving the {I ′

xn,c} and (ii) devising a numerically
stable scheme to efficiently update the weights. After the tail
integral has converged, one computes I ′

x = I
t ′(N)
x1 + I ′

x0 to yield
the final result.

V. RESULTS

We now present a series of numerical results using the
formulation presented above for the analysis of well-logging
induction (resistivity) tools for geophysical prospection (com-
pared against Refs. [1–3]) and the field pattern generated
by electric current sources supported on grounded dielectric
substrates (compared against Ref. [39]). The layers are
numbered starting with the layer at the highest elevation and
zB contains the interface depth values.

Induction tools are generally composed of a system of
transmitter and receiver loop antennas that can be modeled
as Hertzian magnetic dipoles. The parameter Lm denotes the
separation between the transmitter and mth receiver (if all
receivers are colocated, then L = L1).

The environmental parameter of interest is the resistivity
of the surrounding Earth media, which can exhibit electrical
anisotropy and planar-stratified inhomogeneity. Earth layers
exhibiting reciprocal, electrical uniaxial anisotropy possess
different resistivities on and transverse to their respective
bedding planes, which are equal to Rhn = 1/σhn and Rvn =
1/σvn in layer n (respectively). Furthermore, each such layer
has a bedding plane with arbitrary misalignment with respect
to the z axis, which for layer n is characterized by a dip angle
and a strike angle that are denoted as αn and βn (respectively).
α (β) refers to the tool’s polar (azimuthal) rotation relative to
the z axis; see Ref. [2] for the formation dip and strike angle
convention, which is the same as the tool dip and strike angle
convention.
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FIG. 5. (Color online) Phase-apparent resistivity log comparison with Fig. 2 of Ref. [3] (homogeneous medium): Rh = 10 � m,

β = 0◦,f = 2 MHz,L1 = 25 in,L2 = 31 in. In Figs. 5(a)–5(f) the respective tool dip angles are as follows: 0◦,30◦,45◦,60◦,75◦,90◦.
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FIG. 6. (Color online) Magnitude-apparent resistivity log comparison with Fig. 3 of Ref. [3] (homogeneous medium): Rh = 10 � m,

β = 0◦,f = 2 MHz,L1 = 25 in,L2 = 31 in. In Figs. 6(a)–6(f) the respective tool dip angles are as follows: 0◦,30◦,45◦,60◦,75◦,90◦.
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FIG. 7. (Color online) Apparent conductivity log comparison with Fig. 2 of Ref. [1] (homogeneous medium). κ = √
5,Rh = 1 � m,

β = 0◦,f = 25 kHz,L = 1 m.

Note that for homogeneous formations characterized by
this type of anisotropy, we use the variable α to refer to the
tool inclination angle relative to the z-directed optic axis or
the tilting of the optic axis relative to the z axis (with a z-
directed tool) interchangeably; these definitions are equivalent
in homogeneous formations exhibiting isotropy or reciprocal,
electrical uniaxial anisotropy [6].

When displacement currents are non-negligible compared
to induction currents, the anisotropy ratio of layer n, κn, is
defined as

κn = √
(koεhn,r + iηoσhn)/(koεvn,r + iηoσvn), (5.1)

where εhn,r (εvn,r ) is the complex-valued dielectric constant
parallel (orthogonal) to the layer’s bedding plane [3]. This
reduces to κn = √

Rvn/Rhn = √
σhn/σvn [2] when displace-

ment currents are negligible compared to induction currents
(i.e., at sufficiently low frequencies). For later reference, we
also state the approximate formula predicting the formation
resistivity estimated by a standard coaxial induction tool in a
homogeneous, uniaxial medium [6]:

Rap = κRh√
sin2 α + κ2 cos2 α

. (5.2)

A. Arrayed coaxial sonde

The first logging scenario simulated here is an arrayed,
coaxial induction sonde with one transmitter and two receivers
immersed in a homogeneous, uniaxial medium with z-directed
optic axis [3]. We vary (i) α and (ii) κ (i.e., fix Rh,εh and vary
Rv,εv).

To extract effective, homogeneous-medium resistivity in-
formation from the observed magnetic field data, we follow
the approach explained in Ref. [3], which we summarize here.
First define the ratio of the two axial-directed magnetic field25

values, observed at the two receiver loop antennas spaced at
distances L1 and L2 from the transmitter loop antenna (i.e.,
Hz1 and Hz2, respectively), as g12 = Hz1/Hz2. Also, for some
complex-valued phasor quantity F , define its phase as ∠F and
its magnitude as |F |. Phase-apparent resistivity Rap,Ph is ob-
tained by first generating a lookup table of ∠g12, at a specified

25That is, the magnetic field component directed along the sonde
axis, normal to the area of the coaxial receiver loop antenna.

transmitter radiation frequency, as a function of conductivity
present in a homogeneous, isotropic medium. Subsequently,
when the sonde is immersed in a heterogeneous environment
that may contain anisotropic media, one compares the actual
observed ∠g12 to the lookup table and extracts the effective
conductivity. This is finally inverted to obtain phase-apparent
resistivity. Similar applies for magnitude-apparent resistivity
Rap,Amp, except now working with |g12| rather than ∠g12.

We see that throughout Figs. 5–6, agreement is consistently
strong. Note that in Figs. 5(a) and 6(a), where α = 0◦, the
sensed resistivity is insensitive to κ . This is because when
α = 0◦ in a homogeneous, uniaxial medium, the coaxial sonde
produces only H -mode plane wave spectra with electric field
confined to the bedding plane [28]. Furthermore, since the
anisotropy ratio κ is swept by keeping Rh and εh constant
while varying Rv and εv , it is expected that the received signal
is independent of κ .

B. Triaxial induction sonde

The next logging scenarios involve a triaxial induction
sonde with three mutually orthogonal, co-located transmitters
and, spaced apart by a distance L, three mutually orthogonal,
co-located receivers (see Ref. [4] and Fig. 1 of Ref. [1]). To
invert apparent conductivity from the received magnetic field,
formula (18) of Ref. [5] is used.

Figure 7 corresponds to the sonde in a homogeneous,
uniaxial medium with varying α; agreement is excellent.
Figure 8 corresponds to a thirteen-layer environment with
α = β = 0◦. Note that our depth convention here corresponds
to the halfway depth between the transmitters and receivers.
Excellent agreement is observed between the results. For the
coil separation used, L = 0.4m, we notice that the coaxial
(σa,z′z′ ) and coplanar (σa,x ′x ′ ) measurements provide marked
resolution of even the thinnest bed present (0.2m thick); see
the first spike and first valley from the left edge of Figs. 8(a)
and 8(b) (respectively).

C. Coaxial sonde and cross-bedding anisotropy

The next logging scenario simulated corresponds to a
2MHz coaxial sonde vertically traversing inhomogeneous
environments. We compare our results against those presented
in Ref. [2]. It is important to note that there is an ambiguity in
the resistivity inversion method and data postprocessing used
in Ref. [2] and hence only a qualitative comparison is made
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FIG. 8. (Color online) Apparent conductivity log comparison with Fig. 3 of Ref. [1]. {κn} = √
5 and {αn} = {βn} = 0◦ in all beds; f =

25 kHz, L = 0.4 m, σh ={1.0, 0.1, 1.0, 0.1, 1.0, 0.1, 1.0, 0.1, 1.0, 0.1, 1.0, 0.1, 1.0}S/m, zB ={0.0, 0.2, 4.2, 4.7, 8.7, 9.7, 13.7, 15.7, 19.7, 22.7,
26.7, 31.7}m.
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FIG. 9. (Color online) Magnitude-apparent resistivity log comparison with Fig. 6 of Ref. [2]: κ1 = 1,κ2 = √
20,Rh1 = 2 � m,Rh2 =

0.5 � m,β2 = 0◦,f = 2 MHz,L = 40 in,zB = 0 ft. In Figs. 9(a)–9(b) the respective dip angles of the bottom formation are 0◦ and 60◦.
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FIG. 10. (Color online) Magnitude-apparent resistivity log comparison with Fig. 7 of Ref. [2]: κ1 = 1,κ2 = √
20,Rh1 = 2 � m,Rh2 =

25 � m,β2 = 0◦,f = 2 MHz,L = 40 in,zB = 0 ft. In Figs. 10(a)–10(b) the respective dip angles of the bottom formation are 0◦ and 60◦.
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FIG. 11. (Color online) Magnitude-apparent resistivity log comparison with Fig. 8 of Ref. [2]: κ1 = 1,κ2 = √
20,Rh1 = 100 � m,Rh2 =

0.5 � m,β2 = 0◦,f = 2 MHz,L = 40 in,zB = 0 ft. In Figs. 11(a)–11(b) the respective dip angles of the bottom formation are 0◦ and 60◦.

here. Since the inversion method was not stated explicitly
in Ref. [2], we tried different inversion methods and found
that the method corresponding to magnitude-apparent effective
resistivity, specified in Ref. [3] and summarized above in
Sec. V A, produced the best matching results with Ref. [2].
Also, Ref. [2] does not specify the depth convention in their
plots (e.g., the transmitter depth). To render our data symmetric
with respect to zero depth (D = 0ft) in this case, we define the
depth D as midway between the receiver and transmitter.

In Fig. 9, where there is a low resistivity contrast of
Rh1 = 4Rh2, observe that the agreement between the two
data sets is good. Note that for Figs. 9(a)–9(b), the effective
resistivity in the top isotropic half space levels off to that of the
half space’s actual resistivity, as is expected. Furthermore, note
in Fig. 9(a) that deep within the bottom uniaxial half space,
the effective resistivity levels off to Rh2 ∼ 0.5� m, which
is consistent with Eq. (5.2). This is because the transmitter
antenna produces a primary (i.e., if σ̄ = 0̄) φ̂’-oriented electric
field.26 Being oriented perpendicular to the uniaxial medium’s
bedding plane, the loop only produces H -mode plane wave

26The prime denotes the tool system [4].

spectra [28] and thus induces azimuthal currents parallel to
the bedding plane possessing intensity affected solely by
Rh2 and the top formation’s resistivity. On the other hand,
when α2 = 60◦, the transmitter loop’s primary electric field
now induces currents both parallel and perpendicular to the
bedding plane. As a result, now the induced current and sensed
resistivity Rap,Amp is also affected by Rv2 = κ2

2 Rh2, leading to
a higher value of Rap,Amp [as qualitatively corroborated by
Eq. (5.2)].

In Fig. 10, where there is a high resistivity contrast of
Rh2 = 12.5Rh1, we notice a greater level of discrepancy.
This is particularly so just beneath the interface at zB = 0 ft,
where the reflected fields are strongest. In the well-logging
community, one refers to the phenomenon where conductive
formations adversely reduce the apparent resistivity sensed in
their resistive neighbors as the shoulder bed effect [40].

In Fig. 11, we again note a high resistivity contrast of Rh1 =
200Rh2. Comments dual to those made on Fig. 10 apply here
regarding (1) the resistivity log’s notable deviation in the top
isotropic region from the true resistivity of 100 � m and (2)
the greater disagreement versus [2].

In Fig. 12, the resistivity contrast is low (Rh1 = 4Rh2). Akin
to Fig. 9, we note that there is excellent agreement.
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FIG. 12. (Color online) Magnitude-apparent resistivity log comparison with Fig. 9 of Ref. [2]: κ1 = 1,κ2 = √
20,Rh1 = 100 � m,Rh2 =

25 � m,β2 = 0◦,f = 2 MHz,L = 40 in,zB = 0 ft. In Figs. 12(a)–12(b) the respective dip angles of the bottom formation are 0◦ and 60◦.
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FIG. 13. (Color online) Magnitude-apparent resistivity log comparison with Fig. 11 of Ref. [2]: κ1 = κ3 = 1,κ2 = 5,Rh1 = Rh3 =
40 � m,Rh2 = 2 � m,β2 = 0◦,f = 2 MHz,L = 40 in,zB = {2.5,−2.5} ft. In Figs. 13(a)–13(f) the respective dip angles of the center formation
are as follows: 0◦,45◦,60◦,70◦,80◦,90◦.

Now we comment upon Figs. 13–14. The data from Ref. [2]
suggest a very strong shoulder bed effect present in the top
and bottom isotropic half spaces when α2 = 0◦, leading to
notable disagreement for Figs. 13(a) and 14(a). There is also
notable discrepancy in modeling the formation interface horns
and resistivity valleys [see, in particular, the infinite-resistivity
spike in Fig. 13(f)]. However, the data sets in Ref. [2] are not
free of infinite-resistivity spikes either (see Figs. 14 and 23
in Ref. [2]), suggesting that the resistivity inversion and data
postprocessing methods used (and their differences between
here and Ref. [2]) are causing the observed discrepancies.

These quantitative discrepancies aside, however, we notice
excellent qualitative agreement in modeling the shoulder bed
effect, as well as the interface horns and valleys due to the
high-dipping-angle uniaxial bed.

D. Dipole fields near a PEC-backed microwave substrate

The last validation result concerns a y-directed Hertzian
electric dipole on top of a dielectric substrate supported by
a metallic ground plane [39]). The ground is modeled as
a semi-infinite layer with conductivity σ = 109 S/m. We
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FIG. 14. (Color online) Magnitude-apparent resistivity log comparison with Fig. 13 of Ref. [2]: κ1 = κ3 = 1,κ2 = 5,Rh1 = Rh3 =
40 � m,Rh2 = 2 � m,β2 = 0◦,f = 2 MHz,L = 40 in,zB = {10, − 10} ft. In Figs. 14(a)–14(f) the respective dip angles of the center formation
are as follows: 0◦,45◦,60◦,70◦,80◦,90◦.

compute the radiated Hx , Hz, and Ey components. This
environment is meant to highlight the algorithm’s ability to
simulate magnetic fields produced by an electric, rather than
magnetic, source and thus (from the duality theorem) its
ability to compute magnetic and electric fields from both
electric and magnetic sources. By simulating a case with
4λo � |x − x ′| � 14λo (λo = 37.5 m), we also provide here
an example of the general-purpose nature of the algorithm
in regards to the r − r′ geometry. We emphasize that this

flexibility is primarily attributed to the adaptive extension of
the original MMA as discussed in Sec. III.

Figure 15(b) below shows excellent agreement, in the range
4.25λo � |x − x ′| � 13.6λo, with the available data from
Ref. [39]. Figures 15(a) and 15(c) show similar results for the
other two components. The oscillatory behavior results from
interference effects caused by the ground plane. To facilitate
easier comparison with Ref. [39] and exhibit the three field
magnitude variations on identical scales, all three data sets
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FIG. 15. (Color online) Field component intensities from a y-directed horizontal electric dipole (HED), which is radiating at f = 8 MHz
(λo = 37.5m), centered at the origin, and supported on a grounded dielectric substrate 4λo thick with free space above. The substrate’s dielectric
constant is εr = 3.3(1 + 0.01i), while y − y ′ = 0 m and z − z′ = 3 m. Only |Hz| reference data were published in Ref. [39].

were scaled such that their maximum magnitudes correspond
to the maximum magnitude of Hz in Ref. [39].

VI. CONVERGENCE CHARACTERISTICS

To characterize our numerical formulation’s ability to
converge towards the field solution, we present two case
studies concerning the z-directed magnetic field component
Hz produced by a z-directed magnetic dipole radiating at
f = 2MHz in free space. The first case comprises a benign
scenario in which r − r′ = (1,1,1)m, while the second case
represents a much more challenging scenario where r − r′ =
(500,500,1)m in which the integrand oscillates on the order
of 500 times more rapidly than the first case. For both cases,
we choose x − x ′ = y − y ′ to ensure the code faces the same
convergence challenges when evaluating both the kx and ky

integrals. Furthermore, we set the pre-extrapolation region
magnification factor lo (see Sec. IV A) equal to ten and
artificially set ξ1 = 2Pk to facilitate characterization of the
interval subdivision factor h, with which one quantifies the
subinterval lengths after full interval subdivision, as hξ1.

For each case, we present results related to both the
pre-extrapolation and extrapolation domain characteristics.
To avoid mixing the numerical formulation’s handling of
the pre-extrapolation and extrapolation region sections of the
kx and ky integration paths, the pre-extrapolation domain
(termed “Region 1” below) refers to the region (−ξ1 <

k′
x < ξ1) ∪ (−ξ1 < k′

y < ξ1). Similarly, the extrapolation do-
main (termed “Region 2” below) refers to the region (k′

x >

ξ1) ∪ (k′
x < −ξ1) ∪ (k′

y > ξ1) ∪ (k′
y < −ξ1). Since one can-

not obtain closed-form solutions to the pre-extrapolation
and extrapolation domain contributions, reference field val-
ues from which one measures accuracy must be chosen;
their computation details are provided in Figs. 16 and 17
below.

For the pre-extrapolation domain study, we exhibit the ac-
curacy obtained versus (h) and the Patterson-Gauss quadrature
order (p) used to integrate each subinterval. We notice that for
both cases, there is the expected increase in accuracy both as
one reduces h and increases p.

For the extrapolation domain contribution, we make the
typical assumption [19–21] that the integrand is well behaved
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FIG. 16. (Color online) Convergence towards the solution comprising the field contribution from “Region 1”. The reference field values are
computed using p = 31 for both figures, as well as− log2(h) = 9 for Fig. 16(a) and − log2(h) = 11 for Fig. 16(b). The reference field values
computed for Figs. 16(a) and 16(b) use different h because in the latter scenario, Hz converges more slowly and thus necessitates smaller h

values in the nonreference field results to show a meaningful decay in error. As a result, one also requires an even smaller h for the reference
field result from which the relative error is computed.
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FIG. 17. (Color online) Convergence towards the solution comprising the field contribution from “Region 2”. The reference field values
are computed using LGQ = 30 for both figures, as well as B = 150 for Fig. 17(a) and B = 1000 for Fig. 17(b). The reference field values
computed for Figs. 17(a) and 17(b) use different B. This is because in the latter scenario, as can be observed, Hz converges more slowly;
indeed, while Hz in case two levels off more rapidly than in case one, it fails to reach accuracy near to machine precision within the same range
of B exhibited for both cases. Thus similar reasoning applies as that behind using smaller h for the reference and nonreference field results in
Fig. 16(b) [versus Fig. 16(a)].

in this portion of the spectral domain and thus do not
perform interval subdivision. Instead, we set the kx and ky

plane extrapolation region interval lengths to be half the
spectral period of the Fourier kernels exp[ikx(x − x ′)] and
exp[iky(y − y ′)] (respectively), as suggested in Ref. [20], and
examine the variation of accuracy versus the number of extrap-
olation region intervals employed (B) and the Legendre-Gauss
quadrature order used (LGQ) to integrate each interval.27 For
the extrapolation domain field contribution, we notice that as
one increases LGQ and B there is the expected decay in error.
In particular, for small B (B ∼ 3 for both cases) we notice that
tail integral truncation effects dominate the region two error.
On the other hand, after a certain value of B (B ∼ 10 for case
1 and B ∼ 6 for case 2), we find that aliasing (i.e., inadequate
sampling) effects dominate the error.

Note that for Figs. 16–17, errors below −150 dB were
coerced to equal −150 dB. This is because error levels below
approximately −150 dB do not represent error levels attained
due to the convergence characteristic of the formulation itself,
but instead represent instances wherein the given and reference
answers are equal in all the digits available using finite, double-
precision arithmetic.

27B intervals are used in both the k′
x > 0 and k′

x < 0 integration
path half tails; the same applies for the ky path half tails.

VII. CONCLUSION

We have presented a general-purpose and efficient pseudo-
analytical formulation to compute electromagnetic fields from
dipole sources in planar-stratified environments with arbitrary
anisotropy, loss, and r − r′ geometries. The formulation is
based on embedding spectral Green’s function kernels within
Fourier-type integrals to compute the space-domain fields.
Some of the salient features that are combined here to yield a
robust algorithm are: (a) judicious selection of a numerically
robust integration path, (b) recasting of critical formulas to
facilitate accurate field computations and obviate numerical
overflow, (c) adaptive integration along the pre-extrapolation
region of the integrals, and (d) adaptive extension of the
original MMA, applied to environments containing media
with anisotropy and loss, both to accelerate the tail integral’s
convergence and to endow error control to its evaluation. The
formulation’s accuracy has been validated through four sets of
numerical data and its convergence properties characterized.
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