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Impact of contrarians and intransigents in a kinetic model of opinion dynamics
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In this work we study opinion formation on a fully connected population participating of a public debate with
two distinct choices, where the agents may adopt three different attitudes (favorable to either one choice or to
the other, or undecided). The interactions between agents occur by pairs and are competitive, with couplings that
are either negative with probability p or positive with probability 1 − p. This bimodal probability distribution
of couplings produces a behavior similar to the one resulting from the introduction of Galam’s contrarians in
the population. In addition, we consider that a fraction d of the individuals are intransigent, that is, reluctant to
change their opinions. The consequences of the presence of contrarians and intransigents are studied by means of
computer simulations. Our results suggest that the presence of inflexible agents affects the critical behavior of the
system, causing either the shift of the critical point or the suppression of the ordering phase transition, depending
on the groups of opinions to which the intransigents belong. We also discuss the relevance of the model for real
social systems.
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I. INTRODUCTION

Models of opinion formation have been studied by physi-
cists since the 1980s and are now part of the new branch
of physics called sociophysics [1]. This recent research area
uses tools and concepts of statistical physics to describe
some aspects of social and political behavior [2]. From the
theoretical point of view, opinion models are interesting to
physicists because they present order-disorder transitions,
scaling and universality, among other typical features of
physical systems [2].

Following the success of the Ising model to capture the
essential physics of complex systems, several opinion models
have been proposed based on ±1 (i.e., spin-1/2) state variables
[2]. The first paper that considered the Ising model to describe
a social system was proposed by Galam [3]. The spin-spin
coupling of the Ising Hamiltonian represents the agent-agent
interaction, whereas the magnetic field represents the effects
of propaganda. Moreover, local (or individual) fields are in-
troduced that reflect agent preference toward each orientation
(or opinion). Depending on the strength of the local fields,
the system may reach full consensus toward one of the two
possible opinions +1 or −1, or a state in which both opinions
coexist. In the last 30 years many other opinion models based
on Ising variables have been proposed [1,2]. Among them,
we highlight the voter model [4,5], the majority-rule models
[6–8], the Sznajd model [9], and the Continuous Opinion and
Discrete Actions (CODA) model [10]. Besides the affinity by
either one of two distinct opinions or attitudes, one can also
consider the possibility that individuals may remain undecided
[11,12]. This more realistic situation, that we will consider
here can be associated to spin-1 systems, in which the state
variables can assume also a null value besides ±1.

To make the models even more realistic, other psychosocial
ingredients can be taken into account. The so-called contrari-
ans are agents who always have the opposite opinion to that of
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the majority of the surrounding agents [6]. The consideration
of such agents affects opinion dynamics, and their impact on
opinion formation has been studied in a series of models
[11–17]. Another category of agents are the intransigents,
whose stubbornness or inflexibility makes them reluctant to
change their opinions. This class of agents was first introduced
in Ref. [18] and they received later the name inflexible agents
or just inflexibles in Ref. [19]. After these works, many other
papers considered the effect of inflexibles in opinion dynamics
[20–24].

In this work we study a three-state kinetic model of
opinion formation, in which the dynamics evolves according
to pairwise competitive interactions and where both contrarian
and inflexible features are considered. Our results suggest that
the presence of inflexible agents affects the critical behavior of
the system, causing either the shift of the critical point or the
suppression of the phase transition, depending on the opinion
group to which the intransigents belong.

This work is organized as follows. In Sec. II we present the
microscopic rules that define the model. The numerical results
are discussed in Sec. III, and our conclusions are presented in
Sec. IV.

II. MODEL

Our model is based on kinetic exchange opinion models
[11,25]. A population of N agents is defined on a fully
connected graph, i.e., each agent can interact with all others,
which characterizes a mean-field-like scheme. Each individual
i (i = 1,2, . . . ,N ) carries one of three possible opinions or
attitudes at a given time step t , represented by oi(t) = +1, − 1,
or 0. This scenario mimics any polarized public debate, for
example, an electoral process with two different candidates A

and B, where each agent (or elector) votes for the candidate
A (opinion +1), for the candidate B (opinion −1), or remains
undecided (opinion 0). In addition, there is a fraction d of
agents that are averse to change their opinions, the so-called
inflexible agents.
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Each interaction occurs between two given agents i and j ,
such that j will influence i. The following rules govern the
dynamics.

(1) A pair of agents (i,j ) is randomly chosen.
(2) If i is an inflexible agent nothing occurs, because he or

she cannot be persuaded to change their opinion.
(3) On the other hand, if i is not an inflexible agent, his

or her opinion in the next time step t + 1 will be updated
according to

oi(t + 1) = sgn[oi(t) + μij oj (t)] , (1)

where the sign function is defined such that sgn(0) = 0 and the
couplings {μij } are given by the discrete bimodal probability
distribution

F (μij ) = p δ(μij + 1) + (1 − p) δ(μij − 1). (2)

Notice that the above rules impose that for an agent to
shift from state oi = +1 to oi = −1 or vice versa it must
pass by the intermediate state oi = 0. The above process
is repeated N times, which defines one time step in the
simulations. The pairwise couplings may be either negative
(with probability p) or positive (with probability 1 − p), such
that p represents the fraction of negative couplings [11]. In
other words, a disorder is introduced in the system, and we
will consider that the stochastic random variables μij can be
either quenched (fixed in time) or annealed (changing with
time), as in Res. [11,12]. The influence of one individual over
another does not need to be reciprocal (i.e., not necessarily
μij = μji), however, whether interactions are symmetric or
not does not affect the results. The intransigents (a fraction
d of the population) are randomly selected at the beginning
of the simulation, maintaining that character throughout the
dynamics, as considered in the Galam model [19].

In the absence of intransigents, there is a nonequilibrium
order-disorder phase transition at a critical fraction pc = 1/4
[11]. For p < pc one of the extreme opinions +1 or −1
dominates the system, with consensus states occurring only
for p = 0, i.e., in the absence of negative interactions. On
the other hand, for p � pc the system is in a disordered
“paramagnetic” phase characterized by the coexistence of the
three opinions, with the fraction of each opinion being 1/3.
Furthermore, it has already been argued [11,12] that negative
couplings produce a similar effect to that of the introduction
of the Galams’ contrarians [6] since the main consequence of
such negative couplings is such that interacting agents with
the same opinions move to the undecided state (opinion 0). In
this sense, our model contains both contrarian and inflexible
features.

In the simulations, we have considered two kinds of
random couplings {μij }, quenched and annealed, as well as
two kinds of updating schemes, synchronous (or parallel)
and asynchronous (or sequential) updates. The systems were
prepared in fully disordered initial states, i.e., we started all
simulations with an equal fraction of each opinion (1/3 for
each one). In the next section we will present our results.

III. RESULTS

We analyze the critical behavior of the system, in analogy
to magnetic spin systems, by computing the order parameter

O =
〈

1

N

∣∣∣∣∣
N∑

i=1

oi

∣∣∣∣∣
〉

, (3)

where 〈 . . . 〉 denotes a disorder or configurational average.
It is sensitive to the unbalance between extreme opinions.
Notice that O plays the role of the “magnetization per
spin” in magnetic systems. In addition, we also consider the
fluctuations χ of the order parameter (or “susceptibility”)

χ = N (〈O2〉 − 〈O〉2) (4)

and the Binder cumulant U , defined as [26]

U = 1 − 〈O4〉
3 〈O2〉2

. (5)

We analyzed three distinct cases, according to whether the
inflexible agents are (i) chosen independently of their initial
opinions; (ii) chosen only among the agents with extreme (±1)
opinions; or (iii) restricted to a given group of opinion (o = +1
or −1 or 0). In the following subsections, we will present each
case separately.

A. Uniformly distributed inflexible agents

In this case, the fraction d of inflexible agents is randomly
selected at the beginning of the simulation, independently of
their opinions. In Fig. 1 we exhibit the results for the order
parameter, Eq. (3), versus the fraction p of negative couplings
for typical values of d. We display, as examples, the out-
comes for annealed variables {μij } with synchronous updates
[Fig. 1(a)], and quenched variables {μij } with asynchronous
updates [Fig. 1(b)], for a population of N = 1000 agents. Note
the strong impact of the change of the parameter d on the
behavior of the order parameter O. Furthermore, given a fixed
value of d, the curve of O is not affected by the nature of
the random variables μij nor by the kind of update scheme
used. Consensus states are obtained only in a very specific
case: In the absence of both intransigents (d = 0) and negative
interactions (p = 0). In other words, the maximal value of the
order parameter O is smaller than one for all values of d > 0,
independently of p. In real systems, full consensus, with
O = 1, occurs in particular situations where a government
exerts a social control through propaganda or policies that lead
to a full acceptance of the status quo, while collective states
with O < 1 represent more “democratic” frequently observed
situations [20,27]. Thus, in this sense the inclusion of inflexible
agents makes the model more realistic.

For sufficiently large d the system is always found in
a disordered (paramagnetic) phase, but for small values of
d the system orders at specific points that depend on d.
To locate the critical points pc(d) numerically, we have
performed simulations for different population sizes N . Thus,
the transition points pc(d) are estimated, for each value of
d, from the crossing of the Binder cumulant curves for the
different sizes [26]. In addition, a finite-size scaling (FSS)
analysis was performed to obtain an estimate of the critical
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FIG. 1. (Color online) Order parameter O versus p for typical values of the density d for the case where the inflexibility is independent
of the agent opinion. For comparison, we also exhibit the result for the model in the absence of inflexible agents [11] (d = 0.0). The pairwise
interactions {μij } and the update scheme used are annealed, (a) synchronous and quenched and (b) asynchronous, respectively. The population
size is N = 1000 and data are averaged over 100 simulations.

exponents β, γ , and ν, by means of the usual FSS equations

O(d,N ) ∼ N−β/ν, (6)

χ (d,N ) ∼ Nγ/ν, (7)

U (d,N ) ∼ constant, (8)

pc(d,N ) − pc(d) ∼ N−1/ν, (9)

which are valid in the vicinity of the transition.

As an illustration, we exhibit in Fig. 2 the behavior of the
quantities of interest as well as the scaling plots for d = 0.2
quenched random couplings and asynchronous updates. Our
estimates for the critical exponents coincide with those for the
original model (d = 0), i.e., we obtained β ≈ 0.5, γ ≈ 1.0,
and 1/ν ≈ 0.5. These exponents are robust: They are the same,
within error bars estimated from the FSS analysis, for all values
of d, independently of the update scheme considered and of
the kind of random couplings {μij } (quenched or annealed).
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FIG. 2. (Color online) (a) Binder cumulant, (b) order parameter, and (c) susceptibility for the case where the inflexibility is independent of
the agent opinion for d = 0.2 and different population sizes N (main plots). The corresponding scaling plots are shown in the respective insets.
Data are for quenched random variables {μij } and asynchronous update scheme. The best data collapse was obtained for pc = 0.196, β = 0.5,
γ = 1.0, and 1/ν = 0.5.
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FIG. 3. (Color online) (a) Phase diagram of the model in the plane p versus d for the case where the inflexibility is independent of the
agent opinion. We exhibit results for quenched and annealed couplings {μij } and synchronous and asynchronous updates. The dashed line is
a qualitative description of the phase boundary given by Eq. (11), as discussed in the text. (b) Maximal values of the order parameter as a
function of the population size N , in the log-log scale, for values of d near the critical density dc ≈ 0.5 are shown.

Taking into account the FSS analysis for typical values of
d, we exhibit in Fig. 3(a) the phase diagram of the model in
the plane p versus d. The symbols are the numerical estimates
for the critical points pc(d). Based on the analytical results of
the annealed version of a similar model [12], where the critical
points are given by a ratio of two first-order polynomials, we
propose the following qualitative form for the critical frontier:

pc(d) = x d + 1

y d + 4
, (10)

where x and y are real numbers, and we have taken into account
the analytical result of the model in the absence of inflexible
agents pc(d = 0) = 1/4 [11]. Fitting the numerical values of
pc(d) with Eq. (10), we obtained

pc(d) = 2 d − 1

4.5 d − 4
. (11)

Equation (11) is plotted in Fig. 3(a) together with the
numerical results. One can see that the curve describes
qualitatively well the phase boundary between the ordered
and the disordered phases, and the simulation data agree within
error bars with Eq. (11). Based on Eq. (11) one can estimate
the critical density dc above which the system cannot order.
This critical value is dc ≈ 0.5, and above it the three opinions
+1, −1, and 0 coexist in the population (1/3 on average
for each one), which is a characteristic of the disordered
phase of this kind of model [11,12]. To test the validity of
Eq. (11) and the estimated value of dc, we simulated the
system for p = 0 and different population sizes N and we
measured the order parameter O(p = 0). One can see in
Fig. 3(b) that for d < 0.5 the values of O(p = 0) remain
almost constant for increasing sizes. Nonetheless, for d > 0.5
the values of O(p = 0) decrease as a power law of N , which
indicates that we have O(p = 0) = 0 in the thermodynamic
limit. Thus, these results suggest that the system will be in
a disordered paramagnetic phase for d > 0.5. As discussed
above, the critical exponents are the same for all values of d,
indicating a universality on the order-disorder frontier. Thus,

for sufficiently large values of the fraction of inflexible agents
the order-disorder transition is eliminated.

B. Inflexible agents restricted to the extreme opinions

We consider a variant of the model considered in the
previous section. Instead of selecting as intransigent agents
a fraction d of the population totally at random, one can
restrict the inflexibility to agents that initially have one of
the extreme opinions ±1. In other words, with probability d an
agent is set as inflexible only if this agent has an initial opinion
either o = +1 or o = −1. This is also a realistic case since in
some countries there are intransigents supporting two extreme
opinions, while the remaining individuals are undecided or
intend to nullify their votes. In this case, these “neutral” agents
can be persuaded by the decided individuals and adopt one of
the extreme opinions (e.g., left or right candidate).

As in the previous case, we first studied the behavior of the
order parameter O as a function of the fraction p of negative
interactions for typical values of the density d. In Fig. 4
we exhibit a representative example for the case where the
random couplings {μij } are quenched variables and the states
are updated in an asynchronous way. One can see that the
qualitative behavior is similar to the one presented in Sec. IIIA,
i.e., we observe order-disorder transitions at different values pc

that depend on d. However, there are qualitative differences
and a comparison to Fig. 1(b) shows that the increase
of d affects the order parameter less in the case where the
intransigents are restricted to agents with the extreme opinions
±1. As a consequence, the values of pc(d) are different from
those observed in the previous subsection. This fact can be
easily understood. The agents with extreme opinions (be they
inflexible or not) can provoke a change of the 0 opinions to
+1 or −1, which does not happen if the undecided agents are
allowed to be intransigents. This fact favors the ordering in the
system, and so the magnetization per spin in the actual case
presents greater values than in the case where the inflexibility
is not restricted and can be a characteristic of the individuals
independently of their opinions. Once again, the nature of
{μij } and the update scheme used do not affect the results.
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FIG. 4. (Color online) Order parameter O versus p for typical
values of d for the case where the inflexibility is associated with
agents carrying the extreme opinions (o = ±1). For comparison, we
also exhibit the result for the model in the absence of inflexible agents
[11] (d = 0.0). The pairwise interactions {μij } and the update scheme
used are quenched and asynchronous, respectively. The population
size is N = 1000 and data are averaged over 100 simulations.

As in the previous section, we performed an FSS analysis
to obtain the critical points pc(d) and the critical exponents
β, γ , and ν. In Fig. 5(a) we exhibit the phase diagram of the
model in the plane p versus d. The symbols are the numerical
estimates for the critical points pc(d). Again, we propose the
qualitative form of Eq. (10) for the order-disorder frontier.
Fitting the data, we obtained

pc(d) = 1.67 d − 1

3.4 d − 4
. (12)

In other words, we have a similar frontier as in the previous
case, but with different parameters. Equation (12) is plotted
in Fig. 5(a) together with the numerical results. One can see
that the curve describes qualitatively well the phase boundary
between the ordered and the disordered phases, and the
simulation data agree within error bars with Eq. (12).

Based on Eq. (12) one can estimate the critical density dc

above which the system cannot order. This critical value is

dc ≈ 0.6. Thus, for sufficiently large values of the fraction of
inflexible agents, the order-disorder transition is eliminated.
Notice that the critical density in this case (dc ≈ 0.6) is greater
than the critical density of the previous case (dc ≈ 0.5), where
the intransigent agents may be chosen independently of their
opinions. The origin of this difference is again related to the
agents with o = 0 opinions, as discussed in the beginning of
this section. In fact, as the presence of noninflexible agents
with o = 0 opinions favors the ordering in the system, as
discussed above, the critical fraction pc becomes larger in
the present case than in the case where the inflexibility is not
restricted and can be a characteristic of a given individual
independently of his opinion. As in the previous section,
we performed simulations for the system with p = 0.0 and
different population sizes N to test the validity of the estimated
value of dc. One can see in Fig. 5(b) that for d < 0.6 the values
of O(p = 0) remain almost constant for increasing sizes.
Nonetheless, for d > 0.6 the values of O(p = 0) decreases as
a power law of N , which indicates that we have O(p = 0) = 0
in the thermodynamic limit. Thus, these results reinforce the
idea that the system will be in a disordered paramagnetic phase
for d > 0.6. It is important to say that we obtained the usual
exponents β ≈ 0.5, γ ≈ 1.0, and 1/ν ≈ 0.5 for all values of
d considered in Fig. 5(a), which indicates that the universality
class of the model is not affected when we consider inflexible
agents only among the individuals with the extreme opinions
o = ±1.

C. Inflexible agents restricted to a given opinion

Finally, we also study another variant of the model
considered in Sec. IIIA. Instead of selecting the d N inflexible
agents at random, one can restrict the selection to a given
opinion group. In other words, with probability d an agent
becomes inflexible, but now only if this agent has initial
opinion either o = +1 or o = −1 or o = 0. This can also be a
realistic situation since in some countries there is only a certain
point of view (or opinion) that is shared by an intransigent
group.

We can first consider the case where the intransigents are
chosen among the agents with opinion o = 0. We exhibit in
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FIG. 5. (Color online) (a) Phase diagram of the model in the plane p versus d for the case where the inflexibility is associated with the
extreme opinions (o = ±1). We exhibit results for quenched and annealed couplings {μij } and synchronous and asynchronous updates. The
dashed line is a qualitative description of the phase boundary given by Eq. (12), as discussed in the text. (b) Maximal values of the order
parameter as a function of the population size N , in the log-log scale, for values of d near the critical density dc ≈ 0.6.
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FIG. 6. (Color online) Results for the case where the intransigents are chosen among the agents with opinion o = 0. (a) Order parameter
as a function of p for typical values of d for population size N = 1000. The inset shows the maximal value of the order parameter for a given
value of d that occurs for p = 0. Fitting the data, we obtained O(p = 0) = 1 − d/3. (b) Binder cumulant for d = 1.0 and different sizes N ,
showing a crossing at pc ≈ 0.25. In both cases the interactions {μij } are quenched random variables and we have considered asynchronous
updates.

Fig. 6(a) the results for the order parameter as a function of
p for typical values of d. One can see that the maximal value
of the order parameter (for p = 0) decreases for increasing
values of d. This result is expected since the initial condition
is fully disordered (1/3 of each opinion) and a fraction d of
the agents with opinion o = 0 are selected as intransigents at
t = 0. In this case, the maximum of the order parameter should
be Omax = O(p = 0) = 1 − d/3, which is confirmed by the
simulations [see the inset of Fig. 6(a)]. Although the values
of the order parameter for p < pc are different for distinct
values of d, the order-disorder transition occurs at the same
point. An example is given in Fig. 6(b), where we exhibit the
Binder cumulant as a function of p for the maximum of the
density of intransigents d = 1.0. One can observe a crossing of
the curves at pc ≈ 0.25. We also performed an FSS analysis
(not shown), which confirms the same exponents observed
in the previous sections, i.e., we have β ≈ 0.5, γ ≈ 1.0, and
1/ν ≈ 0.5. These results are independent of d, which indicates
that the universality class of the model is not affected when
we consider inflexible agents only among the individuals with
opinion o = 0.

In the case where the intransigents are restricted to agents
with opinion o = +1,1 the results are different from the
previous case. We have observed that the order parameter
decays with increasing values of p, as usual, but the lower
values of O are not so small as usual [see Fig. 7(a)].

In addition, the order parameter curves, as well as the
susceptibility ones, do not depend on the system size (see
Fig. 7), as usually occurs in phase transitions [28,29]. These
results suggest that there is no phase transition when we
consider inflexible agents only among agents with one of the
extreme opinions o = +1 or o = −1. To confirm this picture,
we plot in Fig. 8 the Binder cumulant for two different values
of d, namely d = 0.3 [Fig. 8(a)] and d = 0.6 [Fig. 8(b)], and
different sizes N . We can observe that in both cases the Binder
cumulant curves do not cross, indicating that there is no phase
transition [26]. Notice also from Fig. 8 that the absence of
the phase transition is more pronounced for higher values of
d. Thus, one can conclude that there is a crossover in the

1The behavior of the model in the case where they are restricted to
agents with opinion o = −1 is identical to the case o = +1.
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FIG. 7. (Color online) Results for the case where the inflexible agents are chosen among the agents with opinion o = +1 for d = 0.3. (a)
Order parameter and (b) susceptibility as functions of p for different population sizes N . Notice that there is no dependence of the results on
the system size. In both cases the interactions {μij } are quenched random variables and we have considered asynchronous updates.
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FIG. 8. (Color online) Binder cumulant for the case where the intransigents are chosen among the agents with opinion o = +1 for different
population sizes N . (a) d = 0.3 and (b) d = 0.6. Notice the absence of the crossing of the curves. In both cases the interactions {μij } are
quenched random variables and we have considered asynchronous updates.

population, i.e., the order parameter decreases when we rise the
fraction of negative interactions p, but there are no divergences
associated with this crossover, suggesting the absence of a
phase transition.

Summarizing this section, our results show that when
we consider the inflexible agents distributed only among
the agents carrying a given opinion, the critical behavior is
identical to that of the model in the absence of intransigents
(d = 0) [11] when the considered opinion is o = 0, i.e., we
have a transition at pc = 1/4. On the other hand, if the
inflexibility is related to the extreme opinions o = +1 or
o = −1, the phase transition is suppressed.

IV. FINAL REMARKS

In this work, we have studied a discrete-state opinion
model where each agent carries one of three possible opinions
or attitudes, represented by the variables +1, −1, and 0.
The microscopic rules define that agents with the extreme
opinions ±1 should pass by the intermediate (undecided)
state 0 before adopting the opposite extreme opinion. We
have considered a population of N agents in the mean-field
limit, where each individual can interact with all others. The
competitive interactions, ruled by negative (with probability
p) and positive (with probability 1 − p) couplings, produce
an effect similar to Galam’s contrarians. Moreover, a fraction
d of the population is constituted by intransigents, averse to
changing their opinions. In this sense, our model takes into
account both contrarians and intransigents in the process of
opinion formation.

The subset of inflexible agents (a fraction d of the
population) is randomly selected at the beginning of the
simulation, keeping the inflexible character throughout the
dynamics. This is a realistic social feature. Indeed, intransigent
individuals usually do not change their attitude with time.

We have analyzed cases where the inflexibility is not
restricted to a given opinion group, as well as cases where
inflexibility is associated with the extreme (±1) opinions
or with a given group supporting one of the three possible
attitudes. Moreover, we have also considered that the agents’
states (opinions) are updated by means of either sequential
(asynchronous) or parallel (synchronous) schemes.

In the first formulation of the model, the inflexible agents
are chosen independently of their opinions. By analyzing the
quantities of interest (magnetization per spin, susceptibility,
and Binder cumulant), we have found that the system ex-
hibits continuous nonequilibrium phase transitions between
an ordered phase and a disordered one. The transition points
depend on the density d of intransigents, similarly to what
happens in other models [19,21]. The simulations show that
the values of pc(d) decrease for increasing values of d, hence
the disordered phase broadens with increasing d. Numerical
outcomes suggest that there is a critical density dc ≈ 0.5
above which the system cannot order, i.e., the system is in
a fully disordered (paramagnetic) state for all values of p. The
critical exponents on the order-disorder frontier are the same,
β = 1/2, γ = 1, and ν = 2, independently of d, which means
a universality in the model. These results are not affected by
the update scheme used (synchronous or asynchronous) nor by
the nature of the random couplings (quenched or annealed).

In the second formulation of the model, the inflexible agents
are chosen only among the agents with (initially) extreme
opinions. In this case, the model behavior is qualitatively
similar to the previous one. However, the critical density in this
case is greater, dc ≈ 0.6. Thus, the ordered phase is larger when
the agents with o = 0 opinions are free to interact, which is the
main fact responsible for the observed differences. However,
the critical behavior of the model is robust with respect to
the selection of the inflexible agents. In fact, the critical
exponents on the order-disorder frontier are the same as in the
previous case, β = 1/2, γ = 1, and ν = 2, independently of d.
This confirms the universal behavior of that phase transition.
Again, this result is not affected by the update scheme used
(synchronous or asynchronous) nor by the nature of the random
interactions (quenched or annealed).

We have also considered the case where the inflexible
agents are chosen among the individuals with a given initial
opinion. For the case where this opinion is o = 0, the critical
behavior of the system is not affected by the presence of
the intransigent agents, i.e., the phase transition occurs at
pc = 1/4 for all values of d. On the other hand, when the
intransigents are chosen among the agents with opinion o =
+1 (or alternatively, o = −1), the phase transition does not
occur anymore. This conclusion was supported by the behavior
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of the quantities of interest. In fact, the order parameter and
the susceptibility curves do not depend on the system size,
and the Binder cumulant curves for different population sizes
do not cross. All these features suggest the absence of the
order-disorder transition [28,29].

Notice that in the cases where the phase transition occurs,
the critical exponents are always the same, β = 1/2, γ = 1,
and ν = 2. This is an expected result since we are dealing with
a mean-field formulation of the model, where each agent can
interact with all others. Observe that the values of β and γ are
the same as the mean-field exponents of the Ising model, but the
exponent ν presents a different value. As discussed in Ref. [11],
interpreting ν as ν

′
D where D is the effective dimension in this

long-ranged model and considering this effective dimension
as D = 4, then the value of the effective correlation length
exponent becomes ν

′ = 1/2, which coincides with the mean-
field value.

Our results also show that the particular nature of the
random couplings μ, as well as of the update scheme, does not
affect the results. This may seem an obvious result, however,
in other variants of the kinetic exchange opinion model,
we observed that the results can be affected by numerical
considerations like the fluctuation or not of the pairwise
interactions μ (annealed and quenched versions, respectively),
or the synchronous or asynchronous update schemes, as was
recently shown in Ref. [12].

Despite the simplicity of our model, it can be relevant for
the description of real social systems. In our model, o = 1
represents a favorable opinion and o = −1 an unfavorable

one, while o = 0 means indecision. The order parameter
considered corresponds to the overall rating and an ordered
state means there is a clear-cut decision made. A disordered
state means the absence of a decision. Thus, the contrarian
effect, quantified by the parameter p, induces a disordered
phase for sufficiently large p. In addition, the inclusion of
inflexible agents, quantified by the parameter d, makes this
effect more pronounced since the critical points pc decrease
for increasing values of d. Thus, the presence of such two
effects, contrarians and intransigents, favors the disordered
state, indicating that in the presence of extremists it is more
difficult to reach a final decision in a public debate, which is
a realistic feature of the model. In addition, the results show
that the consensus states are never obtained when inflexible
agents are present. This is also realistic in elections or public
debates in general. In fact, the occurrence of consensus states
with the order parameter O = 1 occurs in very particular
situations, whereas the states with partial order (O < 1) are
more common [20,27].

We hope that theoretical opinion models considering
realistic individuals like contrarians and intransigents may also
guide proper new experiments (such as inquiries or surveys)
to be conducted for improving the construction of agent-based
models, as well as for the validation of such models.
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