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Since the lattice Boltzmann method originally carries out the simulations on the regular Cartesian lattices,
curved boundaries are often approximated as a series of stair steps. The most commonly employed technique
for resolving curved-boundary problems is extrapolating or interpolating macroscopic properties of boundary
nodes. Previous investigations have indicated that using more than one equation for extrapolation or interpolation
in boundary conditions potentially causes abrupt changes in particle distributions. Therefore, a curved-boundary
treatment is introduced to improve computational accuracy of the conventional stair-shaped approximation used
in lattice Boltzmann simulations by using a unified equation for extrapolation of macroscopic variables. This
boundary condition is not limited to fluid flow and can be extended to potential fields. The proposed treatment
is tested against several well-established problems and the solutions order of accuracy is evaluated. Numerical
results show that the present treatment is of second-order accuracy and has reliable stability characteristics.
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I. INTRODUCTION

In recent years, the lattice Boltzmann method (LBM) has
attracted considerable attention as an alternative numerical
method for simulating various physical problems. In contrast
to the conventional computational fluid dynamics (CFD) meth-
ods where macroscopic variables, such as velocity, pressure,
and density, are obtained by solving the Navier-Stokes (NS)
equations, the LBM solves the kinetic equation for particle
distribution functions. The macroscopic variables can then
be obtained by evaluating the hydrodynamic moments of
the distribution functions. In comparison with conventional
numerical approaches, the LBM changes the target equation
from a nonlinear system to a semilinear one, which provides
many distinct advantages such as simple formulation, favor-
able parallel computing structure, and capability in dealing
with complex geometries. This idea allows the LBM to
have great potential not only as a NS solver but also as a
powerful numerical technique in a large variety of scientific
researches and engineering applications [1–5]. However, the
LBM suffers from more unknown variables at boundaries than
the conventional CFD methods. Moreover, the LBM fails to
directly simulate curved boundaries, since a rectangular lattice
is used for simulations.

One of the most often used boundary conditions is the
bounce-back rule [6,7], which makes the LBM suitable for
simulating fluid flows in complicated geometries. Neverthe-
less, the bounce-back scheme is only first-order accurate
[7]. To improve its accuracy, different schemes have been
proposed, such as the halfway bounce-back scheme [7]; the
nonequilibrium bounce-back scheme [8]; local thermohydro-
dynamic equilibrium assumption for the missing distribution
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functions [9]; the extrapolation scheme [10]; the utilization
of the immersed boundary treatments [11–13]; and the re-
construction of the distribution functions from the density,
velocity, and rate of strain [14]. In dealing with complex
geometries, curved boundaries are represented by a series of
stair steps, which are more involved to improve the accuracy
of the stair-shaped approximation. Filippova and Hänel [15]
were the first to present a curved-boundary treatment for
the LBM. Their model enabled curved walls to be treated
with second-order accuracy but was somewhat unstable. To
improve the numerical stability, Mei et al. [16,17] presented an
improved curved-boundary condition based on the Filippova
and Hänel scheme. Bouzidi et al. [18] proposed a method
for treating curved boundaries by combining the bounce-back
rule with an interpolation approach. Lallemand and Luo [19]
applied the same approach to treat moving boundary problems.
Guo et al. [20] extended the method developed by Chen et al.
[10] to propose an alternative treatment for curved walls in
LBM.

In dealing with curved boundaries in the regular Cartesian
grid, the boundary is not necessarily aligned with grid lines.
In most of the previous studies [15–20], two equations are
required to treat the boundary condition according to the
distance of the curved boundary from the boundary nodes,
which has significant impact on the numerical stability and ac-
curacy of simulations [21]. It may also cause abrupt changes in
distribution functions during the switching between equations
[22,23]. Recently, Kao and Young [22] proposed a unified
interpolation-free treatment for modeling curved boundaries
using an appropriate local refinement grid technique with
bounce-back scheme at boundary nodes. Yu et al. [23] also
proposed a unified treatment for curved boundaries following
the concept introduced by Bouzidi et al. [18]. Verschaeve
and Müller [24] extended the no-slip boundary condition
developed by Latt et al. [14] to curved geometries.

Although all mentioned studies [15–20,22–24] provide a
second-order accurate treatment of curved boundaries, they
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suffer from some drawbacks such as unstable regions [15–17]
or instability due to switching between interpolation or extrap-
olation equations [15–20]. Most of these boundary treatments
[15–19,22,23] are based on the bounce-back scheme, which
limits applicability of these boundary treatments to fluid flow
and adiabatic thermal boundaries. Furthermore, since all dis-
tribution functions are not involved in the bounce-back rules,
undesirable slip velocity may happen on boundary nodes [23].
In this paper, a new boundary condition scheme is developed
for handling curved boundaries, while providing second-
order accuracy. This new boundary condition treats curved
boundaries in two steps: extrapolation and implementation.
In the first step, the macroscopic property is extrapolated at
boundary nodes using a unified equation to satisfy the required
condition at curved walls. The extrapolation process is a
geometrical calculation and can be applied to any macroscopic
properties such as velocity, pressure, or temperature. The
next step is the implementation, which describes how we
should define distribution functions at boundary nodes to
satisfy the extrapolated macroscopic property at boundary
nodes. Here we specifically focused on velocity fields and
extended the boundary condition of Zou and He [8] to arbitrary
two-dimensional (2D) geometries. It must be emphasized
that this extension directly provides a no-slip boundary
condition for simple geometries such as straight walls and
corners; however, in combination with the above-mentioned
extrapolation scheme it models curved boundaries. The rest
of the paper is organized as follows: in Sec. II, the lattice
Boltzmann model for flow field is presented. In Sec. III,
a new boundary treatment strategy is discussed for curved
boundaries. In Sec. IV, a new no-slip boundary condition is
proposed based on the Zou and He scheme for the LBM.
In Sec. V, benchmark tests are discussed and, finally, some
conclusions are provided in Sec. VI.

II. THE LATTICE BOLTZMANN METHOD

Although the lattice Boltzmann equation is historically
originated from the lattice gas automata method [25], it can
be viewed as a special finite difference form of the continuous
Boltzmann kinetic equation [26]. The main objective of the
lattice Boltzmann equation is the particle distribution function
f , which corresponds to the probability of finding a particle
at a given location r with a given velocity ξ . According to the
lattice Boltzmann equation, the evolution of the distribution
function f is given by

∂f (r,ξ,t)

∂t
+ ξ · ∇f (r,ξ,t) = �, (1)

where � is the collision operator. In the discrete velocity
space and without affecting the conserved hydrodynamic
moments, the microscopic velocity ξ is discretized into q

lattice vectors{c0, c1, . . . , cq−1}. Consequently, distribution
function f and the collision operator � are also discretized
as follows:

∂fi(r,t)
∂t

+ ci · ∇fi(r,t) = �i (i = 0, 1,..., q − 1) . (2)

In this paper, a nine-velocity 2D lattice, denoted as the
D2Q9 model, has been used. In this model, the discrete velocity

set is given as [27]

ci = w(0,0) (i = 0), (3a)

ci = (cos θi, sin θi)c

(
θi = (i − 1)π

2
, i = 1 − 4

)
, (3b)

ci =
√

2(cos θi, sin θi)c

(
θi = (i − 1)π

2
+ π

4
, i = 1 − 4

)
.

(3c)

In the above equation, c = δx/δt is the particle streaming
speed, δx is the lattice space, and δt is the time step size.
To solve the distribution function numerically, Eq. (2) is
discritized with time step and lattice space into

fi(r + ciδt ,t + δt ) − fi(r,t) = �i. (4)

The most popular model, the lattice Bhatnagar-Gross-
Krook (LBGK) [28] is used in this paper, which approximates
the collision operator as a relaxation of the distribution
function f towards a local equilibrium distribution f eq,

�i = 1

τ

(
f

eq
i (r,t) − fi(r,t)

)
. (5)

In the above equation, τ is a dimensionless relaxation time
and related to the kinetic viscosity of the fluid. The equilibrium
distribution, f eq, is a low Mach number expansion of the
Maxwell-Boltzmann distribution and is written as [26]

f
eq
i = wiρ

[
1 + ci · U

C2
s

+ (ci · U)2

2C4
s

− U2

2C2
s

]
, (6a)

wi = 4/9 (i = 0)

wi = 1/9 (i = 1 − 4) (6b)

wi = 1/36 (i = 5 − 8),

where U is the macroscopic velocity vector, ρ is mass density,
and Cs = c/

√
3 is the speed of sound. The macroscopic

quantities in the LBM such as mass density and velocity are
defined as moments of the distribution function,

ρ =
∑

i

fi, (7)

U = 1

ρ

∑
i

fici . (8)

In simulation of incompressible flows in a low Mach-
number regime, the pressure p can be calculated by the
equation of state of an ideal gas,

p = ρC2
s . (9)

Through the Chapmann-Enskog multiscale analysis, the
kinematic viscosity υ is related to the dimensionless relaxation
time as follows [25]:

υ = (
τ − 1

2

)
C2

s δt. (10)

III. IMPLEMENTATION OF CURVED BOUNDARIES

The LBM scheme, including collision and propagation
steps, is originally defined for equidistant Cartesian grids.
For a curved geometry, this scheme requires approximation
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FIG. 1. The D2Q9-lattice intersected by a curved wall boundary.

of the curved solid boundaries by the nodes nearest the
curved boundaries. Therefore, integrity of geometry cannot
be preserved because a series of stair steps must be simulated
instead of a curved boundary.

In this section, a new scheme is developed to implement
curved boundaries in the regular Cartesian grid. When a
complex geometry is modeled by the LBM, the physical
curved boundaries may not coincide with the lattice points,
as shown in Fig. 1. In this situation, nodes of the lattice can
be divided into two groups: nodes located inside the fluid
domain denoted as “fluid nodes” and nodes located outside
the fluid domain called as “solid nodes.” In order to avoid
any confusion, we will use the word “wall” in referring to the
physical boundary and “lattice link” to designate directions
of lattice velocities. We will also define “boundary nodes”
as nodes located in the solid domain with a lattice link
intersected by the wall. Obviously, from solid nodes, only
boundary nodes affect the fluid domain and must be involved
in the boundary condition scheme. Hereafter, we will use the
subscript “b” to refer to quantities associated with boundary
nodes.

The strategy of the present curved-boundary treatment is
to properly extrapolate macroscopic properties at boundary
nodes to obtain accurate values on the wall. Obviously, at
least two reference points are needed to do the extrapola-
tion, which are commonly taken in the fluid domain (fluid
reference) and on the wall adjust to boundary node (wall
reference).

It is worth mentioning that in all previous studies [15–
20,22–24] both reference points have been selected along
lattice links. Since the normal direction is not necessarily
along with a lattice velocity direction, applying a von Neu-
mann boundary condition in previous studies requires extra
calculations to maintain second-order accuracy.

In this work, reference points are not limited to lattice links
and points as shown in Fig. 2. The intersection point of the wall-
normal vector passing through the boundary node is considered
as the wall reference denoted by Pwall. The fluid reference, Pf ,
is chosen along the wall-normal direction with a distance of
2δx − � from Pwall, where � is “boundary distance” defined
as the distance of the wall reference from the boundary node.
The third reference point Pff can be defined in a similar way,
with distance of 4δx from the boundary node as depicted in
Fig. 2

Wall Pf

Pb

Pff

Pwall

(2δ
x
-Δ

)

(2δ
x
)

Δ

A B

DC

FIG. 2. Layout of reference points corresponding to the boundary
point Pb: wall reference Pwall on the wall and along with the wall-
normal vector; first fluid reference Pf with distance of 2δx − � from
Pwall; second fluid reference Pff with distance of 2δx from Pf .

Calculation of fluid property Mb at the boundary node is
straightforward as follows:

M
(1)
b = 2

2 − �∗ Mwall − �∗

2 − �∗ Mf , (11)

M
(2)
b = 8

(2 − �∗)(4 − �∗)
Mwall − 2�∗

(2 − �∗)
Mf

+ �∗

(4 − �∗)
Mff . (12)

In above equations, M
(1)
b and M

(2)
b are extrapolated macro-

scopic values obtained from linear [Eq. (11)] and quadratic
[Eq. (12)] schemes, respectively, and �* = �/δx is a
dimensionless boundary distance. For a Dirichlet boundary
condition, the fluid property of Mwall at the point Pwall is
given and an estimate of macroscopic property at the fluid
reference, e.g., Mf can also be found by evaluating the bilinear
interpolation between four surrounding fluid nodes of A, B, C,
and D as shown in Fig. 2.

Mf = MC

δ2
x

(xB − xf )(yB − yf ) + MD

δ2
x

(xf − xA)(yA − yf )

+ MA

δ2
x

(xD − xf )(yf − yD)+ MB

δ2
x

(xf − xC)(yf − yC).

(13)

It must be noted that when the x or y value of a reference
point is equal to that of a surrounding fluid node, the
above equation decreases to the interpolation between two
surrounding fluid nodes. In some previous studies [15–20],
since the reference points are enforced to be on a lattice link,
two equations along with a switching scheme were required
to treat the boundary condition. This switching may lead to an
abrupt variation in distribution functions [22,23] or may affect
the accuracy of simulations [21]. However, the present scheme
requires a single equation [Eqs. (11) or (12)] to extrapolate
boundary quantities independent of the wall position. From
Eqs. (11) and (12), the quadratic extrapolation provides more
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accurate results but our numerical experiments showed that
using Eq. (12) may lead to instabilities for �* >1 when the
dimensionless relaxation time is close to τ = 0.6. As a remedy,
we offer the following combination of linear and quadratic
extrapolations to balance between accuracy and stability:

Mb = 2 − �∗2

2
M

(2)
b + �∗2

2
M

(1)
b . (14)

In cases with poor grid resolutions, care must be taken
about choosing lattice space to have δx reasonably smaller than
minimum wall curvature radius. The extrapolation process
as discussed above is a geometrical calculation and can be
used for any macroscopic property such as velocity, pressure,
or temperature. However, simulation of curved boundaries
requires the implementation of the extrapolated macroscopic
value (Mb) at boundary nodes using the lattice Boltzmann
equations. In the next section, this has been done for boundary
velocity Ub as an example.

IV. NO-SLIP BOUNDARY CONDITION

In flow field simulations, one of the most important
properties at boundary nodes is velocity. Simulation of curved
boundaries in flow field requires a boundary treatment to
apply the desirable velocity (Ub = ux î + uy ĵ) on boundary
nodes. Here, we extend the Zou and He [8] scheme to provide
a no-slip boundary condition for arbitrary 2D geometries.
Specification of velocity boundary condition is performed
through distribution functions illustrated in Fig. 3 for a typical
boundary node on a wall in the D2Q9 lattice. Three distribution
functions entering the fluid domain from the solid region,
shown by dashed vectors, are unknown. Boundary condition
treatments in LBM are mainly focused on the calculation of
these typical unknown distribution functions.

The distribution function on each boundary node can be
decomposed into the equilibrium (f eq) and nonequilibrium
(f neq) parts. At a boundary node, the equilibrium parts of
the unknown distribution functions can be obtained from
macroscopic values of ρ and U by Eq. (6). Zou and He [8]
assumed that the bounce-back condition holds only for the
nonequilibrium parts of distribution functions in the direction
normal to the boundary. To determine the nonequilibrium parts
of unknown distribution functions, we extend this idea to all
unknown directions by taking the nonequilibrium parts from
the opposite known directions. Consequently, an approxima-
tion of unknown distribution functions can be constructed by
adding equilibrium and nonequilibrium parts. For example,
this approximation for f2, f5, and f6 at the lower wall, shown

f2 f5f6

f4 f8f7

f1f3

Solid

Fluid

FIG. 3. Layout of distribution functions for a typical boundary
node on a wall in the D2Q9 lattice.

in Fig. 3, leads to the following:

f2 = f
eq
2 + f

neq
4

f5 = f
eq
5 + f

neq
7 (15)

f6 = f
eq
6 + f

neq
8 .

Since f1 and f3 are not included in the above equations,
undesirable slip velocity may occur in tangential direction.
As a remedy, an additional part for distribution functions is
introduced, denoted as hi . The role of hi is to adjust the
boundary node distribution functions such that the no-slip
condition in all directions is satisfied,

Ub = 1

ρ

∑
i

(
f

eq
i + f

neq
i + hi

)
ci . (16)

It must be noted that the introduced function, which will be
called “corrective function” hereafter, should not change the
local mass density, therefore

8∑
i=1

hi = 0. (17)

This zero mass density condition can be simply satisfied
with antisymmetric definition of hi on opposite directions as
follows:

h1 = −h3 = b

h2 = −h4 = a
(18)

h5 = −h7 = c

h6 = −h8 = d.

According to the above equations set, there are four
unknown values to evaluate hi . Definition of velocity provides
two equations,

b + c − d = 0
(19)

a + c + d = 0.

When distribution functions are known in opposite direc-
tions, the equality of the nonequilibrium parts also provides
some equations as

2hi = (fi − fopp(i)) − (
f

eq
i − f

eq
opp(i)

)
, (20)

where the subscript “opp” is used to denote the opposite
direction. Finally, the system of equations can be closed by
setting the remained unknown corrective functions to be zero.
For a boundary node on a lower wall, the corrective functions
can be obtained from the following equation set:

b + c − d = 0

a + c + d = 0
(21)

2b = f1 − f3 − 2
3ρux

a = 0.

It must be noted that we can extrapolate the remained
unknown corrective functions from the nearest fluid nodes
instead of setting them to zero; however, these extrapolations
have negligible effect on the accuracy of the scheme. Setting
them to zero has the benefit of keeping the algorithm local
and is equivalent to applying the pure bounce-back rule to
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nonequilibrium parts. This process is not limited to flat walls;
other geometries such as corners with different number of
unknowns can also be treated in a similar way. The resulting
systems of equations for common geometries are presented in
the Appendix. The implementation of no-slip condition is com-
pleted by adding the corrective functions to Eq. (15) as follows:

fi = f
eq
i + f

neq
opp(i) + hi

→

⎧⎪⎨
⎪⎩

f2 = f
eq
2 + (

f4 − f
eq
4 − h4

) + h2

f5 = f
eq
5 + (

f7 − f
eq
7 − h7

) + h5

f6 = f
eq
6 + (

f8 − f
eq
8 − h8

) + h6

. (22)

The solution of Eq. (21) is then substituted into Eq. (22), to
give the final form as follows:

f2 = f
eq
2 + (

f4 − f
eq
4

)
f5 = f

eq
5 + (

f7 − f
eq
7

) − (f1 − f3 − 2ρux/3) (23)

f6 = f
eq
6 + (

f8 − f
eq
8

) + (f1 − f3 − 2ρux/3),

Note that in the above process, the value of the particle
density ρ has to be computed. As discussed in previous studies
[8,14], the value of density can be determined on straight
walls from the known distribution functions and velocity value.
However, the available information on a boundary node may
not be sufficient for the evaluation of the density on more
complex geometries. In these situations, a common method
is to extrapolate the density from the neighboring fluid node.
However, this extrapolation enforces a zero pressure gradient
along the extrapolation direction and also requires information
from neighboring boundary nodes. Obviously, zero pressure
gradient is not applicable, where the body force has a nonzero
component along the extrapolation direction. Verschaeve and
Müller [24] defined a new function gi , as the equilibrium
distribution with unit density gi = fieq (1,U) to produce several
approximations for local mass density. Using gi , we introduce
a new equation to approximate mass density, which is purely
local to boundary nodes and is independent of boundary shape,
in the presence or lack of body forces. This new mass density
equation is based on the equality of nonequilibrium parts in
opposite directions for unknown distribution functions and can
be expressed as

ρ =
∑

j fj + ∑
k fopp(k)

1 + ∑
k (gopp(k) − gk)

, (24)

where j and k indexes the known and unknown directions,
respectively. It must be considered that it is always possible
to use any other approximation to determine the density of
boundary nodes. To conclude this section, the implementation
of no-slip condition is summarized below:

Step (1): Compute the mass density using Eq. (24) or other
approximations.

Step (2): Compute the equilibrium parts of the unknown
distribution functions by using the mass density obtained from
step (1) and desired boundary velocity Ub.

Step (3): Compute the corrective functions.
Step (4): Construct the value of the unknown dis-

tribution functions by adding equilibrium, nonequilib-
rium, and corrective parts, fi = f

eq
i + f

neq
opp(i) + hi = fopp(i) +

(f eq
i − f

eq
opp(i)) + (hi − hopp(i)).

Δ

Δ

Wall

Wall

p +Δp p

x
y

h

FIG. 4. Layout of the lattice in channel flow simulations with
arbitrary boundary distance �.

V. VALIDATION

In this section, we present the results of benchmark tests
performed to validate the curved-boundary implementation
and no-slip boundary condition outlined above. We considered
the following test cases: pressure-driven channel flows, flow
between two rotating circular cylinders, uniform flow over a
circular cylinder, and the solution of the Laplace equation in a
concentric annulus.

All validation cases are carried out for 2D flows and Eq. (14)
is utilized to extrapolate variables for boundary nodes. To
assess the numerical error of the lattice Boltzmann solutions,
the following relative error is defined:

Er =
√

1

N

∑
N

(RAnalytic − RNum)2, (25)

where RNum and RAnalytic indicate the numerical and analytical
results, respectively, and N is the number of nodes.

A. Pressure-driven channel flow

A fully developed pressure-driven flow in a 2D channel is a
classic case to validate no-slip boundary conditions. Further-
more, it can be used to evaluate the accuracy and stability of
the developed extrapolation scheme. In this problem, the wall
locations are moved from boundary nodes as shown in Fig. 4
and velocity extrapolations in addition to the no-slip boundary
conditions are applied on walls.

The flow is characterized by a constant pressure drop along
the channel, which is applied by using pressure boundary
conditions [8] at the channel inlet and outlet. The analytical
velocity distribution is given by [29]

u

Umax
= 4

y

h

(
1 − y

h

)
, (26)

where h is the channel height and the maximum value of
velocity is defined as Umax = −∇ph2/8μ. In this simulation,
the dimensionless relaxation time τ , is set to 0.75 and the
pressure drop is adjusted to keep the Reynolds number constant
at Re = 5.

In order to assess the stability of the present extrapolation
scheme, the distance of the wall from boundary nodes is
taken in the range of 0–1.25δx . Figure 5 shows the velocity
profile relative error Er(u) variations as a function of lattice
resolution for a number of different boundary distances. The
lattice resolution NR is defined as the number of nodes
along the channel height. Linear fitting of error data indicates
second-order overall accuracy.
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NR
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Δ = 0.25
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FIG. 5. Velocity relative errors as a function of lattice resolution
for several boundary distances for a flat channel flow at Re = 5.

A comprehensive numerical study has been performed to
assess the accuracy of the present scheme wall velocity predic-
tions. In this regard, the predicted wall-slip velocities (uwall)for
a pressure-driven channel flow have been compared with four
commonly used curved-boundary schemes developed by Mei
et al. [16], Bouzidi et al. [18], Yu et al. [23], and Guo et al. [20].
To guarantee an equal treatment, the same boundary distance
and grid resolution (NR = 40) are used for all cases at Re = 5.
Since the velocity profile is parabolic; a second-order extrapo-
lation is adequate to determine wall-slip velocity for all cases.

Figure 6 presents wall-slip velocities as a function of
various dimensionless relaxation time and boundary distance
values for present treatment using Eq. (14). For comparison,
wall velocity predictions related to the above mentioned
schemes are also included.

From Fig. 6(a), it can be observed that the present treatment
is distinctly more accurate than other approaches where wall
coincides with boundary nodes (�* = 0). This is also true
when boundary distance increases to �* = 0.25 in Fig. 6(b).
Furthermore, one can see from Fig. 6(b) that the wall-slip
velocity for previous schemes [16,18,20,23] reaches its
minimum value when the dimensionless relaxation time is
about τ = 0.8 and then increases at higher values of the
dimensionless relaxation time. Clearly, there is no dependency
between wall-slip velocity and dimensionless relaxation time
for the present boundary treatment. This is due to the fact
that, in the present boundary scheme, the boundary nodes are
forced by corrective functions to have the desirable velocity
(Ub) independent of the τ value. For other values of �*, as
shown in Figs. 6(c) and 6(d), the present scheme provides a
better performance over large variations of the dimensionless
relaxation time as compared to other schemes.

It must be emphasized that the accuracy problem of bound-
ary conditions is usually more visible at lower grid resolutions.
Therefore, the accuracy of the present boundary treatment
has been compared with previous schemes [16,18,20,23] for
NR = 17, which is the minimum allowed grid resolution in the
incompressible limit (Ma < 0.3) for the considered Re = 5. In
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FIG. 6. Comparision of wall-slip velocities for different boundary
schemes as a function of dimensionless relaxation time for a flat
channel flow at Re = 5 and NR = 40 for a variety of boundary dis-
tances: (a) �* = 0, (b) �* = 0.25, (c) �* = 0.5, and (d) �* = 0.75.

Fig. 7 the wall-slip velocity has been presented as a function
of various dimensionless relaxation time for a single value of
�* = 0.75 as a sample.

Clearly, the variation trends for all schemes are quite similar
to what are observed in Fig. 6(c), except for an increase of about
an order of magnitude in wall slip velocities, which is expected
due to the lower grid resolution. It is also worth mentioning that
in the examined geometry shown in Fig. 4 all fluid reference
points are exactly located on the top of grid points and, there-
fore, the bilinear interpolation scheme [Eq. (13)] has not been
involved in the simulation process. However, for an inclined
flat channel as shown in Fig. 8, fluid reference points are
nonuniformly distributed among the grid points. As a test case,
the inclination angle is set to be a/b = 1/3 for flow conditions
similar to those of the straight channel for grid resolution of 40.
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FIG. 7. Comparision of wall-slip velocities for different boundary
schemes as a function of dimensionless relaxation time for a flat chan-
nel flow at Re = 5 and NR = 17 for boundary distance of �* = 0.75.

Velocity vectors are presented at some typical locations
along the channel in Fig. 8. It is interesting to note that the
velocity profiles at the inlet and outlet are along the normal
to their cross sections, where applied pressures act. However,
the flow adjusts itself with channel walls and becomes fully
developed shortly after the entrance effects are disappeared.
Clearly, a velocity profile in a cross section normal to the
channel walls in the fully developed region is required for
validation. Figure 9 compares the analytical profile [Eq. (26)]
with numerical velocity profiles in three cross sections of A-A,
B-B, and C-C located in the quarter, half, and three-quarter
channel lengths, respectively, where excellent agreements are
observed for all cross sections.

Figure 10 shows the average wall-slip velocity for the
inclined channel flow as a function of grid resolution, which
indicates the second-order overall accuracy.

B. Flow between two rotating circular cylinders

To demonstrate the capability of the present boundary
treatment for more complex geometries, flow between two
rotating cylinders is simulated for different Reynolds number
Re = Riω(Ro-Ri)/ν of 6, 8, and 10. In these simulations, the
inner cylinder with radius Ri = 1 cm is rotating at a constant
angular velocity of ω and the outer cylinder with radius Ro =
2 cm is kept stationary. This problem is a good benchmark
test to examine the accuracy and efficiency of the proposed
boundary treatment in the simulation of moving and stationary
curved boundaries. Furthermore, simulation of pressure field
is rather complicated in this geometry due to the centripetal
body force, which is completely along the wall-normal vector

p0

C

x

NR

b

y

a

A
p0+Δp

A

B

B

C

FIG. 8. Schematic of the lattice in an inclined flat channel.
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FIG. 9. Comparison between numerical and analytical velocity
profiles for an inclined flat channel flow at three cross sections of
A-A, B-B, and C-C.

and, therefore, extrapolation of density from neighboring fluid
nodes as the most common approximation of density is not
valid anymore. There is an analytical solution to the NS
equations for this flow. The transversal velocity Uθ is given
by [29]

Uθ (r)

U0
= β

1 − β2

(
Ro

r
− r

Ro

)
, (27)

where U0 = Riω is the reference velocity and β = Ri/Ro.
Determining the pressure constant by imposing p(Ro) = 0,
the pressure distribution can be obtained from the following
equation [29]:

p(r)

ρU 2
0

= 1

2

(
β

1 − β2

)2 [
r2

R2
o

− R2
o

r2
− 4 ln

r

Ro

]
. (28)
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FIG. 10. Wall-slip velocity as a function of lattice resolution for
an inclined flat channel flow at Re = 5.
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FIG. 11. Comparison between numerical and analytical profiles for different Reynolds numbers: (a) velocity profiles and (b) pressure
profiles.

In the above equation, r is the radial distance. The
computational domain is modeled using a square mesh where
the radius of inner cylinder consists of NR nodes along lattice
rows.

For validation purposes, the velocity and pressure profiles
are compared with the analytical solutions in Figs. 11(a)
and 11(b), respectively, for different Reynolds numbers. The
dimensionless relaxation time is set to τ = 0.6 and a lattice
resolution of NR = 32 is used for simulations.

To measure the accuracy of the present scheme, relative
errors of the velocity field Er (u) for Re = 10 are plotted
for several lattice resolutions of NR = 8, 16, 32, and 64
in Fig. 12, while their corresponding pressure relative errors
Er (p) are presented in Fig. 13. Also included in these figures are
numerical results of Verschaeve and Müller [24] and Guo et al.

NR

E r(
u)

20 40 60 80
10-5

10-4

10-3

10-2

slope -2
Guo et al. [20]
Verschaeve and Muller [24]
present study

FIG. 12. Comparision of velocity relative errors for different
boundary schemes as a function of lattice resolution at Re = 10
for flow between two rotating cylinders.

[20]. It must be noted that Eq. (25) is used to calculate relative
errors for all fluid nodes and the dimensionless relaxation
time is set to τ = 0.6 for all cases. It can be observed
that the present boundary condition provides a more accurate
performance in velocity prediction as compared to other
schemes.

Clearly, the accuracy of the pressure distribution depends
on the accuracy of the density field. As indicated by Bao
et al. [30], errors in density distribution may be noticeable,
when the body force has nonzero value along the wall-
normal vector. Therefore, simulation of pressure distribu-
tion in this problem is a good challenge for the present
boundary treatment since the body force is centripetal here.
Considering Fig. 13, it can be observed that Eq. (24) provides
acceptable and accurate approximations of density values and,

NR

E r(
p)

20 40 60 80
10-4

10-3

10-2

10-1

slope -1
Guo et al. [20]
Verschaeve and Muller [24]
present study

FIG. 13. Comparision of pressure relative errors for different
boundary schemes as a function of lattice resolution at Re = 10
flow between two rotating cylinders.
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30D

10D

U0
10D ∂U/∂x = 0

10D

FIG. 14. The geometry of flow around a cylinder.

consequently, pressure distributions. The figure indicates at
least first order of accuracy for pressure distribution. The
higher order of accuracy for the pressure field in coarse grids
as shown in Fig. 13 is in accordance with the findings of
Verschaeve and Müller [24] and can be explained with the
fact that in coarse grids the density error is higher than first
order.

C. Uniform flow over a cylinder

Next validation case for the present boundary treatment
is the uniform flow past a circular cylinder, which is a
well-documented problem. The flow geometry is shown in
Fig. 14, where the outer boundary is located at a distance
sufficiently far from the cylinder. The Reynolds numbers of 10,
20, and 40 based on the free stream velocity U0 and cylinder
diameter D are considered, where the flow remains steady. For
all simulations, a domain of 41D by 21D with 30 grid points
for each D is considered. Therefore, 30 × 30 grid points are
used to model the cylinder with 112 boundary nodes. The inlet
boundary condition is given by a uniform velocity profile,
while zero velocity gradients are used at the outlet. Periodic
boundary condition is applied to the upper and lower outer
boundaries, and the present boundary treatment is used on the
circular cylinder.

Figure 15 illustrates the streamlines, where stationary
separation bubbles are observed behind the cylinder in all
cases. The geometrical configurations of the recirculation
regions, such as nondimensional length of recirculation region
and separation angle θs , are compared with published results
in Table I. Here, the nondimensional length of recirculation
region is defined as 2L/D, where L is measured from the
rearmost point of the cylinder. It is seen that present findings
agree reasonably well with those reported in the previous
studies [13,31–37].

It is worth mentioning that the calculation of drag force by
integrating the total stresses on the surface of the cylinder is
relatively simple in the present model. Since the wall-normal
vector is used for extrapolation, the total stress including
shear stress and pressure can be approximated based on fluid
properties of the fluid reference. Considering the transversal
velocity of the fluid reference, calculation of shear stress will
be straightforward as follows:

τ = μ
Uθ(f )

�
. (29)

The pressure is computed on the fluid reference as an
approximation of the wall pressure. In contrast to the previous

(a)
R e = 10

R e = 20

R e = 40

(b)

(c)

FIG. 15. Streamlines of steady flow around a cylinder at
(a) Re = 10, (b) Re = 20, and (c) Re = 40.

problem, there is no body force here and approximation
of density or pressure from the neighborhood is valid. The
hydrodynamic force on the cylinder surface can then be
obtained by integrating the shear stress and pressure over
the entire boundary nodes. The drag coefficient, CD =
FD/(0.5ρU0

2), is calculated for three different Reynolds
numbers and compared with the results of previous studies
in Table II, where reasonable agreements are observed.

In addition to the drag coefficient, the pressure coefficient
Cp = (pwall − p∞)/(0.5ρU 2

0 ) along the cylinder surface is
illustrated in Fig. 16 and compared with the numerical results
of He and Doolen [38] and Park et al. [39] for Re = 40. It can

TABLE I. Comparison of nondimensional length of recirculation
region and separation angles with previous studies.

Re = 10 Re = 20 Re = 40

2L/D θ s 2L/D θ s 2L/D θ s

Fornberg [32] – – 1.82 – 4.48 –
Guo and Zhao [34] 0.486 28.13 1.824 43.59 4.168 53.44
Wu and Shu [35] – – 1.86 – 4.62 –
Tuann and Olson [36] 0.5 29.7 1.8 44.1 4.2 54.8
Shu et al. [13] – – 1.8 – 4.40 –
Nieuwstadt and 0.434 27.96 1.786 43.37 4.357 53.34

Keller [37]
Zhou et al. [31] – – 1.84 – 4.40 –
Ding et al. [33] 0.504 30 1.86 44.1 4.4 53.5
Present study 0.51 28.1 1.86 42.5 4.58 53.1
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TABLE II. Comparison of drag coefficient with previous studies.

CD

Re = 10 Re = 20 Re = 40

Guo and Zhao [34] 3.049 2.048 1.475
Ding et al. [33] 3.07 2.18 1.173
Fornberg [32] – 2.0001 1.498
Tuann and Olson [36] 3.177 2.253 1.675
Nieuwstadt and Keller [37] 2.828 2.053 1.550
Present study 2.888 2.077 1.561

be seen from Fig. 16 that the present results agree well with
those in the literature.

D. Solution of Laplace equation in a concentric annulus

In this section, we use the LBGK model presented by
Servan Camas and Tsai [40] to solve the Laplace equation in
a concentric annulus bounded by two cylinders with different
potential values on each cylinder. Laplace equation is one of
the simplest elliptic partial differential equations, which is
important in many fields of science. This problem is chosen to
verify the accuracy and efficiency of the proposed boundary
treatment in simulation of curved boundaries for potential
fields. In cylindrical coordinates, the Laplace equation is
written as follows:

∇2φ = 1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2
+ ∂2φ

∂z2
= 0. (30)

The lattice Boltzmann evolution equation for potential φ

on 2D discrete lattices can be written as [40]

gi(r + ciδt ,t + δt ) − gi(r,t) = 1

τφ

(
g

eq
i (r,t) − gi(r,t)

)
.

(31)

The corresponding equilibrium distribution of geq on the
D2Q9 discrete lattice takes the following form:

g
eq
i =

{
φw′

i(1/k) i > 0

φ − ∑
i �=0 g

eq
i i = 0

, (32)

where w′
1−4 = 1/3 and w′

5−8 = 1/12 are weight factors and k is
a numerical parameter to control the dimensionless relaxation

θ

C
p

0 30 60 90 120 150 180
-1

-0.5

0

0.5

1 He & Doolen [38]
Park et al. [39]
present study

FIG. 16. Comparision of pressure coefficient variations along the
cylinder surface for Rey = 40.
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E r(
φ)
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10-3

10-2 slope -2
α = 0.25
α = 0.5
α = 0.75

FIG. 17. Relative error of the potential field as function of lattice
resolution for different values of potential on the inner and outer
cylinders.

time τφ , defined as

τφ = k
δt

δ2
x

+ 1

2
. (33)

The macroscopic potential is then calculated as φ =∑8
i=0 gi . In this problem, the potential values on the surface

of the inner and outer cylinders are set to be φi and φo,
respectively. Consequently, the Laplace equation, Eq. (30),
has the following analytic solution:

φ

φo

= 1 − α

log(Ro/Ri)
log

r

Ro

+ 1, (34)

where Ri and Ro are inner and outer cylinder radii, respec-
tively, and α = φo/φi . For modeling, NR = 5, 10, 20, 40 nodes
are considered for inner cylinder radius along lattice rows.
Figure 17 shows the dependence of the potential relative error
Er (φ) on lattice resolution. It is clear that the present boundary
treatment satisfies the integrity of the curved boundary to the
second order of accuracy.

VI. CONCLUSION

In the present study, a simple curved-boundary treatment
based on a new extrapolation framework is developed, which
requires only one equation for extrapolation of macroscopic
variables at boundary nodes. Compared with the existing
curved-boundary conditions, the proposed treatment is not
limited to fluid flow simulations and can simply be extended
to potential fields. In particular, an extension of Zou and
He [8] boundary scheme is developed by introducing a
corrective function for flow simulation, which can be ap-
plied to arbitrary 2D boundaries. This corrective function
can be easily computed and applied at boundary nodes
to enforce the no-slip condition. A series of benchmark
test is conducted to validate the accuracy and examine the
stability of the proposed boundary condition in simulation
of curved boundaries. Numerical results indicate a second
order of accuracy for the velocity and potential fields, while
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FIG. 18. Boundary configurations for 12 boundary types in a 2D
geometry.

at least a first order of accuracy is obtained for the pressure
field.

APPENDIX

In the present boundary treatment, a series of correc-
tive functions is employed to satisfy the no-slip condi-
tion in all directions for boundary nodes. According to
Eq. (18), there are four unknowns to evaluate corrective
functions. In this appendix, a system of equations, which
is required to determine these functions, is provided for
12 types of boundaries in a 2D configuration as shown in
Fig. 18.

Boundary nodes with three unknown distribution functions
are denoted by A, B, C, and D in Fig. 18. For these nodes, the
definition of velocity provides two equations and the equality
of the nonequilibrium parts in known opposite directions
provides the third one. Finally, the system of equations can be
closed by setting the remaining unknown corrective function
to be zero as follows:

Node type of A →
2b = f1 − f3 − 2ρux/3
a = 0
c = −(a + b)/2
d = −(a − b)/2

(A1)

Node type of B →
2a = f2 − f4 − 2ρuy/3
b = 0
c = −(a + b)/2
d = −(a − b)/2

(A2)

Node type of C →
2d = f6 − f8 − ρ(uy − ux)/6
c = 0
a = −c − d

b = −c + d

(A3)

Node type of D →
2c = f5 − f7 − ρ

(
uy + ux

)
/6

d = 0
a = −c − d

b = −c + d.

(A4)

Boundary nodes with two unknown distribution functions
are denoted by E, F, G, and H in Fig. 18. For these nodes,
definition of velocity provides two equations and the equality
of the nonequilibrium parts in known opposite directions
provides the remaining ones as follows:

Node type of E →
2b = f1 − f3 − 2ρux/3
2d = f6 − f8 − ρ(uy − ux)/6
c = d − b

a = b − 2d

(A5)

Node type of F →
2b = f1 − f3 − 2ρux/3
2c = f5 − f7 − ρ(uy + ux)/6
d = c + b

a = −b − 2c

(A6)

Node type of G →
2a = f2 − f4 − 2ρuy/3
2d = f6 − f8 − ρ(uy − ux)/6
c = −a − d

b = a + 2d

(A7)

Node type of H →
2a = f2 − f4 − 2ρuy/3
2c = f5 − f7 − ρ(uy + ux)/6
d = −a − c

b = −a − 2c.

(A8)

For boundary nodes with one unknown distribution func-
tion, evaluation of corrective functions is similar to nodes with
two unknown distribution functions.
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