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Tensor renormalization group study of classical XY model on the square lattice
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Using the tensor renormalization group method based on the higher-order singular value decomposition, we
have studied the thermodynamic properties of the continuous XY model on the square lattice. The temperature
dependence of the free energy, the internal energy, and the specific heat agree with the Monte Carlo calculations.
From the field dependence of the magnetic susceptibility, we find the Kosterlitz-Thouless transition temperature
to be 0.8921(19), consistent with the Monte Carlo as well as the high temperature series expansion results. At
the transition temperature, the critical exponent δ is estimated as 14.5, close to the analytic value by Kosterlitz.
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The continuous XY model has attracted great interest in
the study of statistical and condensed matter physics [1]. In
particular, great efforts have been devoted to the investigation
of topological phase transition in this model in two dimensions.
At zero temperature this system exhibits a ferromagnetic
long-range order. In high temperatures the magnetic order
is melted by the thermal fluctuation and the system is in a
paramagnetic phase. At low but finite temperature Stanley
and Kaplan [2] showed with series expansion that this model
possesses a singularity with divergent magnetic susceptibility,
indicating the existence of a finite temperature phase tran-
sition. This phase transition is peculiar since, as shown by
Mermin and Wagner [3], the conventional Landau type of
phase transition associated with a spontaneous breaking of
continuous symmetry is not allowed at finite temperature in
two dimensions.

In the early 1970s Kosterlitz and Thouless (KT) [4]
explored this model using the renormalization group method.
They found that the topological vortex excitations play an
important role in this system. There are two kinds of topologi-
cal excitations, vortices and antivortices. In high temperatures
vortices and antivortices are short-range correlated and the
system is disordered. In low temperatures a vortex forms a
bound state with an antivortex. These vortex-antivortex pairs
begin to condense into a quasi-long-range ordered phase below
a critical temperature, leading to a topological phase transition
without breaking the O(2) symmetry of the XY model. This
transition is called the KT transition. Furthermore, they found
that the low temperature topological phase is critical and the
correlation length diverges.

To understand the mechanism of the KT transition [4,5],
extensive investigations have been done to determine the
transition temperature and the critical exponents for the two-
dimensional XY model [6–18]. Based on the Monte Carlo
simulations on the square lattice up to the length L = 2048
and L = 65536, and on the finite size scaling technique,
Hasenbusch and Pinn [6] and Komura and Okabe [11]
found the transition temperature to be Tc = 0.89294(8) and
Tc = 0.89289(5), respectively. Using the high temperature
expansion up to the 33rd order of the inverse temper-
ature, Arisue [13] estimated that the transition tempera-
ture is Tc = 0.89286(8), consistent with the Monte Carlo
result.

In this work we study the thermodynamic properties of the
two-dimensional XY model using the tensor renormalization
group method based on the higher-order singular value
decomposition (abbreviated as HOTRG), which was proposed
in Ref. [19]. For more about the tensor renormalization group
method, you are referred to Refs. [20,21]. This method can
evaluate the thermal quantities in the nearly infinite lattice limit
and does not have the errors inherent in extrapolations from
finite size calculations. It has already been used for studying
the classical and quantum spin models with discrete physical
degrees of freedom [19,22–24]. For the three-dimensional
Ising model, the critical temperature and the critical exponents
determined with this method have already reached or even
exceeded the accuracy of the most accurate Monte Carlo results
published [19]. This is the first time the HOTRG is applied
to a continuous model. We have evaluated the temperature
dependence of the internal energy and other thermodynamic
quantities and determined the critical temperature from the
singularity of the magnetic susceptibility. For comparison,
we have also evaluated the temperature dependence of the
free energy, the internal energy, and the specific heat using
the Monte Carlo simulation on the 256 × 256 lattice.

The XY model is defined by the Hamiltonian

H = −J
∑
〈ij〉

cos(θi − θj ) − h
∑

i

cos θi, (1)

where 〈ij 〉 denotes the summation over the nearest neighboring
sites and θi is the angle of the spin at site i. J is the coupling
constant between neighboring spins, which is set to 1 for
simplicity. h is the applied magnetic field in unit of J/μ,
where μ is the magnetic moment of each spin also set as 1.

The tensor renormalization group [19,22–26] starts by
expressing the partition function or the ground state wave
function as a tensor network state, which is a product of
local tensors defined on the lattice sites. For the XY model,
the normal way of constructing local tensors fails because
each spin has infinite degrees of freedom [22]. Recently
we proposed a novel scheme [27] to construct the tensor
representation for the XY or other continuous models by
utilizing the character expansions [28]. Here we briefly
describe the key steps in this scheme and define the local
tensors for the XY model.
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The partition function of the XY model is given by

Z =
∫ ∏

i

dθie
β

∑
〈ij 〉 cos(θi−θj )+βh

∑
i cos θi , (2)

where β is the inverse temperature 1/T , and the temperature
T is in the natural unit J/kB , kB is the Boltzmann constant. To
find its tensor representation, we take the character expansion
for the Boltzmann factor [28]

eβ cos θ =
∞∑

n=−∞
In(β)einθ , (3)

where In(β) is the modified Bessel function of the first kind.
The partition function can then be written as

Z =
∫ ∏

i

dθi

∏
nij ,mi

Inij
(β)Imi

(βh)einij (θi−θj )+imiθi . (4)

By integrating out the physical degrees of freedom θi , we can
define [27] a tensor on each lattice site

Tl,r,u,d =
√

Il(β)Ir (β)Iu(β)Id (β)Il+u−r−d (βh), (5)

where indices (l,r,u,d) denote the four legs of the tensor.
The length of each leg, called bond dimension, is infinite
in principle from the high temperature expansion formula.
However, as shown in Fig. 1, the series expansion coefficient
In(β) decreases exponentially with increasing n. Thus we
can truncate the series and approximate Tl,r,u,d by a tensor
with finite bond dimension D with high precision. This leads
to a finite-dimensional tensor representation for the partition
function

Z = Tr
∏

i

Tli ,ri ,ui ,di
. (6)

A bond links two local tensors. The two bond indices defined
from the two end points are implicitly assumed to take the
same values. For example, if the bond connecting i and j

along the x direction, then ri = lj . The trace is to sum over all
bond indices.

To evaluate the partition function we use the HOTRG to
contract iteratively all local tensors [19]. The HOTRG is
a coarse-graining scheme of real space renormalization. As

FIG. 1. (Color online) Variation of the modified Bessel function
of the first kind In(β) at three different temperatures on the logarithmic
and linear (the inset) scale.

sketched in Fig. 1 of Ref. [19], each coarse-graining step along
one direction (say y axis) is to contract two neighboring tensors
into one, with expanded bond dimensions in the perpendicular
direction (x axis). This defines a new tensor

M
(n)
l,r,u,d =

∑
i

T
(n)
l1,r1,u,iT

(n)
l2,r2,i,d

, (7)

where l = l1 ⊗ l2 and r = r1 ⊗ r2 are the two expanded bond
indices with a dimension D2. One can then renormalize this
tensor by multiplying a unitary matrix U (n) on each horizontal
side to truncate the expanded dimension from D2 to D,

T
(n+1)
l′,r ′,u,d =

∑
l,r

U
(n)
l,l′ M

(n)
l,r,u,dU

(n)
r,r ′ , (8)

where U (n) is determined by the higher-order singular value
decomposition of the expanded tensor M . The superscript n

denotes the nth coarse-graining step. A new tensor with a
reduced bond dimension is thus obtained, and the lattice size
is reduced by half. Naturally the truncation introduces errors,
which can be reduced by increasing the bond dimension D.

Iterating the above process along the X and Y directions
alternately, we can finally obtain the value of the partition
function and the free energy. Considering the translation
invariance, the internal energy and the magnetization can
be determined by evaluating the expectation values of the
local Hamiltonian and the local magnetization, respectively.
A detailed discussion on this is given in Refs. [19,22]. From
the derivatives of these quantities, we can further calculate the
specific heat and the magnetic susceptibility.

The HOTRG can deal with very large lattice size, because
each coarse-graining renormalization step reduces the lattice
size by half and the number of total steps is log2 N with
N the lattice size. In the calculation we terminate the
coarse-graining procedure after the investigated quantity has
converged. Usually this takes about 40 steps, accordingly the
system size is 240, approximately the thermodynamic limit.

Figure 2 shows the temperature dependence of the free
energy and the internal energy obtained by the HOTRG with

FIG. 2. (Color online) Temperature dependence of the free en-
ergy (dotted black line) and the internal energy (solid blue line)
obtained by the HOTRG with D = 40. The free energy (black
squares) and the internal energy (blue circles) obtained by the Monte
Carlo simulation on the N = 256 × 256 lattice are also shown for
comparison.
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FIG. 3. (Color online) The entropy (dotted black line) and the
specific heat (solid blue line) versus temperature from the HOTRG
with D = 40. Correspondingly, the black squares and the blue circles
are from the Monte Carlo simulations with N = 256 × 256 for
comparison.

D = 40 and h = 0. For comparison, these quantities obtained
by the Monte Carlo simulation are also shown in this figure.
The HOTRG results agree with the Monte Carlo calculation.
The difference is less than 10−4 even at low temperature T =
0.1. Both the internal and free energies increase smoothly
from −2 to 0 with increasing temperature from 0 to infinite,
and do not show any singularity at finite temperatures. But the
internal energy has more rapid increments around T ∼ 1.0,
indicating the existence of a transition between the low and
high temperature phases.

From the internal energy and the free energy, the temper-
ature dependence of the entropy is deduced and depicted in
Fig. 3. Near temperature T = 1.0 there is a saddle-shaped
intersection. In the same figure the HOTRG result of the
specific heat, which is obtained from the temperature derivative
of the internal energy, is also shown. For comparison, the
Monte Carlo result is also included, which is calculated directly
from the statistical average and free from any derivative.
The results of the HOTRG and the Monte Carlo calculations
agree with each other. Only the location of the round peak is a
little shifted: Tpeak = 1.04 for the HOTRG and Tpeak = 1.03 for
the Monte Carlo. These peak temperatures are consistent with
the Monte Carlo result (Tpeak = 1.02) obtained by Tobochnic
and Chester on the N = 30 × 30 and 60 × 60 lattices [9].

In our Monte Carlo calculations, the spin configurations are
created with the software written by Bernd Berg [29], and 106

configurations are used for each temperature. Because of the
thermalization time, a typical saved length is 8 × 105.

Figure 4 shows the temperature dependence of the magneti-
zation in two applied magnetic fields. A continuous transition
is clearly seen near T ∼ 1.0. At low temperature it approaches
the maximum value 1, when all spins are parallel. With
increasing temperature the topological vortex and antivortex
pairs are excited from the condensed phase according to the
scenario of Kosterlitz and Thouless [4]. These excitations
reduce the spin-spin correlations as well as the magnetic
long-range order. The magnetization drops very quickly above
T ∼ 0.9 and approaches zero in the high temperature limit,
apparently due to the thermal fluctuation.

FIG. 4. (Color online) Magnetization versus temperature with
D = 40 under two applied magnetic fields h = 1 × 10−4 (black dots)
and 2 × 10−4 (red squares). The magnetic susceptibility (blue circles)
is obtained from the two magnetization curves using Eq. (9).

From the magnetization the magnetic susceptibility can be
evaluated using the formula

χ = �m

�h
= m(h2) − m(h1)

h2 − h1
, (9)

where m(h) is the magnetization in an applied field h. The
result is shown in Fig. 4. Using a finite bond dimension
D for simulations, and applying an external magnetic field,
there is no singularity in the magnetic susceptibility and
the critical divergence is replaced by a sharp peak. When
h ∼ 1.5 × 10−4, the peak appears at Tp = 0.980. Above
this temperature the magnetic susceptibility decays to zero
exponentially, indicating the absence of any magnetic order in
high temperatures. In the extremely weak or zero field case it
is difficult to determine the peak position because of the strong
fluctuation of the magnetization near the critical region. Thus
the critical temperature Tc is obtained by extrapolating the
peak temperature with respect to the applied magnetic field
to the limit h = 0. Figure 5 shows the peak temperature as a

FIG. 5. (Color online) The peak temperature of the magnetic
susceptibility versus the external magnetic field for D = 40. The
curve is a power fit to the peak temperature with Eq. (10). The critical
temperature is extrapolated to be 0.8921(19).
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FIG. 6. (Color online) Power-law fit for the field dependence of
the magnetization at Tc with formula (11).

function of h obtained by the HOTRG with D = 40, and a fit
well matching the data, as also plotted in Fig. 5, is in a power
form as

Tp − Tc = ahb, (10)

yielding a = 0.4209, b = 0.1768, and Tc = 0.8921(19). From
extrapolation this Tc is corresponding to the divergent temper-
ature of the magnetic susceptibility at the zero magnetic field
limit. It seems a little far from the lowest point Tp = 0.9172
at h = 1.5 × 10−7, because the parameter b is small in the
power term in Eq. (10), which can make a considerable
difference with a small h change. This estimate agrees within
the error bar with the critical temperature obtained by the
Monte Carlo simulation Tc = 0.89294(8), and by the high
temperature expansion Tc = 0.89286(8).

Exactly at Tc the magnetization m scales with the applied
field h in a power law [5]

m ∼ h1/δ. (11)

We have determined the value of this critical exponent δ by
fitting the field h dependence of the magnetization m at the
above estimated Tc. Figure 6 shows the power-law fitting curve
from which we find that δ ≈ 14.5, consistent with the result
suggested by Kosterlitz [5], δ = 15.

In summary, we have studied the thermodynamic properties
of the continuous XY model using the HOTRG on the
square lattice. From the field dependence of the magnetic
susceptibility we find that the critical temperature is about
Tc = 0.8921(19), consistent with the Monte Carlo [6] and the
high temperature series expansion [13] results. The magnetic
critical exponent δ at Tc is found to be 14.5, also in good
agreement with the analytic result obtained by Kosterlitz [5].
In this work though we use a relatively small bond dimension
D = 40, the results are comparable to those from other
methods. According to the tensor network states ansatz,
increasing D could improve the calculation precision and the
estimate. The analysis on the convergence in terms of D is to
be continued.
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