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Modeling of nonlinear optical activity in propagation of ultrashort elliptically polarized laser pulses
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We propose a general model of third-order nonlinear optical susceptibility of isotropic gyrotropic medium
with frequency and spatial dispersion. Our model allows for the description of the propagation of ultrashort
(several oscillations) elliptically polarized laser pulses in such a medium and does not require smallness of the
characteristic nonlocality dimension, unlike the conventional phenomenological model. We implemented our
model numerically by means of a modified finite-difference time-domain method with an auxiliary differential
equation. We have validated the correctness of our model by the comparison of the results obtained in our
numerical simulations with generally known effects observed experimentally and described earlier theoretically
for the monochromatic radiation or within the slowly varying envelope approach. We investigated effects
accompanying the propagation of ultrashort (several oscillations) light pulses in nonlinear isotropic gyrotropic
medium with frequency and spatial dispersion of cubic nonlinearity.
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I. INTRODUCTION

The effect of nonlinear optical activity, being understood
as the intensity-dependent polarization plane rotation for the
linearly polarized light in a medium with cubic nonlinearity,
was predicted almost 50 years ago by Akhmanov and Zharikov
[1]. Initially it was explained solely by the spatial dispersion
of the nonlinear optical response of the medium. Later it was
shown [2] that it can be caused also by the anisotropic nonlinear
dissipation in a crystal, i.e., by the dependence of the nonlinear
absorption on the mutual orientation of the crystal symmetry
axes and the polarization plane of the propagating light.

At the earlier stage the phenomenon of nonlinear optical
activity was unjustifiably opposed to the self-rotation of
the polarization ellipse [3], which became stronger with the
increase of the polarization ellipse ellipticity degree in the
incident plane wave, and completely disappears for the linearly
polarized light (zero ellipticity). Both these effects, responsible
for the polarization ellipse rotation and deformation in a plane
wave approximation, are described by the nonlinear cubic sus-
ceptibility tensor χ̃

(3)
ijmn(ω,k; ω,k,ω,k,−ω,−k) which in the

first-order approximation on the spatial dispersion parameter
d/λ (where d is the characteristic scale of the nonlocality of
optical response of a medium; ω, k, and λ are the frequency, the
wave vector, and the wavelength of the propagating radiation)
can be presented as follows:

χ̃
(3)
ijmn(ω,k; ω,k,ω,k,−ω,−k)

≈ χ
(3)
ijmn(ω; ω,ω,−ω) + iγ

(3)
ijmnp(ω; ω,ω,−ω)kp, (1)

where the fourth-rank tensor χ̂ (3) is responsible for the local
contribution and the fifth-rank tensor γ̂ (3) is responsible for
the nonlocal contribution of the medium.

In the middle of 70 s the first experimental evidence of the
nonlinear optical activity [4] came to light, giving the impulse
to the development of the corresponding phenomenological
theory [5–9]. The subsequent theoretical and experimental
investigations assure that the polarization self-action and
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interaction of waves are fine and widespread phenomena in
nonlinear optics. Owing to the appearance of metamaterials in
optics (artificial media with high-efficiency nonlinearity and
optical activity, and also media with negative refraction), many
fascinating phenomena which earlier required complicated
experimental setups to be detected, now can be readily
reproduced and studied. In particular, recently giant nonlinear
optical activity was experimentally observed in a plasmonic
metamaterial [10].

However, all results of [5–9] were obtained within
the framework of slowly varying envelope approximation
(SVEA), which is not suitable for the description of ultrashort
pulses. In this case the evolution of the electric field strength
vector can be described in terms of the changes of its modulus
and orientation in space. In the description of ultrashort pulses
the Stokes parameters have no physical meaning, as well, as
the orientation and the ellipticity degree of the polarization
ellipse well known in “conventional” nonlinear polarization
optics. In this case, the description of the polarization state of
the ultrashort pulse can be given in the frequency spectrum
domain, when the polarization state can be attributed to each
Fourier harmonic with certain frequency value [11], or one
should directly consider the hodograph of the electric field
vector. However, in this case it is impossible to discuss any
changes of polarization along the pulse in the spatiotemporal
domain, although sometimes it could be tempting to compare
its behavior with one of the longer pulses.

The finite-difference time-domain method (FDTD method)
[12–17] is currently the most popular and probably the
most efficient tool for the direct integration of the Maxwell
equations along with material equations of an arbitrary type
for the propagation of ultrashort pulses. In Ref. [18] it was
the first time, when the FDTD method with the auxiliary
differential equation (ADE) [17] was used for the description
of the propagation of ultrashort laser pulses in linear media,
possessing both frequency and spatial dispersion. It was shown
that the changes of the direction of the electric field vector
oscillations in the course of the propagation of the ultrashort
pulse in a medium with spatial dispersion is far from the
well-known linear polarization plane rotation for the long
pulse.
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In the present work the modification of the FDTD method
with ADE was used in our study of the propagation of the
ultrashort elliptically polarized pulse in a medium with fre-
quency dispersion and spatial dispersion of cubic nonlinearity.
The results obtained for the ultrashort pulses are essentially
different from those predicted by the analytical formulas for
the evolution of the intensity-dependent ellipticity degree and
the orientation of the polarization ellipse within the framework
of SVEA.

II. FORMULATION OF THE PROBLEM:
MAIN EQUATIONS

A. Physical model

Let us consider plane electromagnetic wave propagating
along the z axis of the coordinate system in a medium
with frequency dispersion and spatial dispersion of cubic
nonlinearity. In this case Maxwell equations and the ma-
terial equations connecting the x and y components of the
strength and the induction of the electric [E(z,t) and D(z,t)]
and magnetic [H(z,t) and B(z,t)] fields can be written as
follows:

1

c

∂Bx

∂t
= ∂Ey

∂z
, −1

c

∂By

∂t
= ∂Ex

∂z
,

(2)
1

c

∂Dx

∂t
= −∂Hy

∂z
,

1

c

∂Dy

∂t
= ∂Hx

∂z
,

Di = Ei + 4π
(
P L

i + P NL
i

)
, Bi ≡ Hi. (3)

Here c is the velocity of light in vacuum, i,j = x,y. The most
general relations between electric field strength E(z,t) and
linear PL and nonlinear PNL polarization of the medium are
the following (see [19]):

P L
i (t,r) =

∫
dr1

∫ ∞

0
χ

(1)
ij (t1,r,r1)Ej (t − t1,r1)dt1, (4)

P NL
i (t,r) =

∫∫∫
dr1dr2dr3

∫ ∞

0

∫ ∞

0

∫ ∞

0

×χ
(3)
ijmn(t1,t2,t3,r,r1,r2,r3)Ej (t − t1,r1)

×Em(t − t2,r2)En(t − t3,r3)dt1dt2dt3, (5)

where
∫

dr1 and
∫∫∫

dr1dr2dr3 indicates the integration on
the whole space by one (x1,y1,z1) or three coordination sets.
The explicit views of χ

(1)
ij (t1,r,r1) and χ

(3)
ijkl(t1,t2,t3,r,r1,r2,r3)

describing the dielectric properties of the medium remain
rather unknown yet. For infinite homogeneous medium
possessing arbitrary symmetry, these tensors should depend
on the difference r − r1,2,3 (instead of r,r1,2,3) and rapidly
decrease to zero with the increase of |r − r1,2,3|. After we
proceed to the spatial and temporal Fourier representations
of electric induction, strength, and medium polarization in
Eqs. (3)–(5), when the explicit forms of χ

(1)
ij (t1,r,r1) and

χ
(3)
ijkl(t1,t2,t3,r,r1,r2,r3) within the first-order approximation

on d/λ are expected to provide the following expression (very

well known in nonlinear optics [5,6,9,19]):

Di(ω = ω1 + ω2 + ω3,k = k1 + k2 + k3)

= [
εij (ω) + iγ

(1)
ijm(ω)km + · · · ]Ej (ω,k)

+ 4π
[
χ

(3)
ijmn(ω; ω1,ω2,ω3) + iγ

(3,1)
ijmnp(ω; ω1,ω2,ω3)k1p

+ iγ
(3,2)
ijmnp(ω; ω1,ω2,ω3)k2p

+ iγ
(3,3)
ijmnp(ω; ω1,ω2,ω3)k3p + · · · ]

×Ej (ω1,k1)Em(ω2,k2)En(ω3,k3). (6)

Here and further we assume the summation by the indices,
which appear twice in each term in the right part of the
expression. At the same time each tensor in Eq. (6) has to
possess “correct” internal and external permutation symmetry
(which is in agreement with the symmetry of the medium and
physical meaning of the tensor). In the case of the propagation
of linearly polarized light (if we assume that the polarization
remains unchanged) in the absence of spatial dispersion, tensor
χ

(3)
ijkl(t1,t2,t3,r,r1,r2,r3) must be in accordance with the well-

known model for the nonlinear (third order) optical response of
the medium [17], accounting for instant electron response, as
well as for the effects of Raman scattering. And, finally, after
the substitution of the explicit form of χ

(3)
ijkl(t1,t2,t3,r,r1,r2,r3)

in Eq. (5), the expression for the P NL
i (t,r) should remain

unchanged after simultaneous permutations of indices j ↔
k and arguments r1 ↔ r2, t1 ↔ t2 (or indices j ↔ l and
arguments r1 ↔ r3, t1 ↔ t3; indices k ↔ l and arguments
r2 ↔ r3, t2 ↔ t3).

When considering the plane electromagnetic wave (one-
dimensional case) propagating along the z axis, expressions
(4) and (5) become simpler:

P L
i (t,z) =

∫ ∞

−∞
dz1

∫ ∞

0
χ

(1)
ij (t1,z,z1)Ej (t − t1,z1)dt1, (7)

P NL
i (t,z) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dz1dz2dz3

∫ ∞

0

∫ ∞

0

∫ ∞

0

×χ
(3)
ijmn(t1,t2,t3,z,z1,z2,z3)Ej (t − t1,z1)

×Em(t − t2,z2)En(t − t3,z3)dt1dt2dt3. (8)

If we assume the medium to be in a half-space z > 0 and to
possess symmetry group ∞∞ (isotropic gyrotropic medium),
when the following form of the tensor will satisfy to all the
abovementioned requirements for z1 > 0:

χ
(1)
ij (t1,z,z1) = g(1)(t1)[δij + γ1(δxiδyj − δxj δyi)(z − z1)]

× exp
[−(z − z1)2/d2

1

]/
(
√

πd1). (9)

Here δij is the Kronecker symbol and γ1 and d1 are the
parameters characterizing linear gyrotropy of the medium.
Here [in Eq. (9)] and further i,j = x,y. When the frequency
dispersion is one of the Lorentz type [17], then

g(1)(t1) = [
(ε∞ − 1)δ(t1) + ω2

0(εS − ε∞)
(
ω2

0 − δ2
0

)−1/2

× exp(−δ0t1) sin
([

ω2
0 − δ2

0

]1/2
t1

)]/
4π, (10)
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where εS , ε∞, ω0, δ0 are constants, and δ(t1) is a delta function.
For z1 < 0, χ

(1)
ij (t1,z,z1) ≡ 0. The substantiation of choice of

such a form of χ
(1)
ij (t1,z,z1) is given in Ref. [18], where the

expressions (7), (9), and (10) were used for the study of the
propagation of ultrashort (about several oscillations of the light
field) laser pulses in a linear medium with both frequency

and spatial dispersion by means of integration of Maxwell
equations by the FDTD method with ADE.

The reasonable generalization of this model for the
nonlinear isotropic gyrotropic medium with frequency
dispersion and spatial dispersion of cubic nonlinearity
χ

(3)
ijkl(t1,t2,t3,z,z1,z2,z3) could be the following (z1,2,3 > 0):

χ
(3)
ijkl(t1,t2,t3,z,z1,z2,z3) = aδ(t1)δ(t2)δ(t3)δ(z1)δ(z2)δ(z3)[δij δkl + δikδjl + δilδjk]

+ δ(t1)δ(t2 − t3)g3(t3)δ(z − z1)δ(z2 − z3)[bδij δkl + c(δikδjl + δilδjk)

+ γ3(z − z3)(δxiδyj − δyiδxj )δkl] exp
[−(z − z3)2/d2

3

]/
(
√

πd3)

+ δ(t2)δ(t1 − t3)g3(t1)δ(z − z2)δ(z1 − z3)[bδikδjl + c(δij δkl + δilδjk)

+ γ3(z − z1)(δxiδyk − δyiδxk)δjl] exp
[−(z − z1)2

/
d2

3

]/
(
√

πd3)

+ δ(t3)δ(t1 − t2)g3(t2)δ(z − z3)δ(z1 − z2)[bδilδjk + c(δij δkl + δikδjl)

+ γ3(z − z2)(δxiδyl − δyiδxl)δjk] exp
[−(z − z2)2

/
d2

3

]/
(
√

πd3), (11)

and χ
(3)
ijkl(t1,t2,t3,z,z1,z2,z3) ≡ 0 at z1,2,3 < 0. Here a, b, and

c determine the cubic nonlinearity of the medium, and γ3 and
d3 determine its spatial dispersion. Indices i, j , k, and l take
values of x and y. Such a choice of the coordinate dependence
(exponential) is prescribed only by the requirement of rapid
decay of χ

(3)
ijkl(t1,t2,t3,z,z1,z2,z3) to zero with the increase of

|z − z1,2,3| and also by its similarity with χ
(1)
ij (t1,z,z1). Terms

g(3)(t1,2,3) in Eq. (11) we take as

g(3)(t̃) = (
τ 2

1 + τ 2
2

)(
τ1τ

2
2

)−1
exp(−t̃/τ2) sin(t̃/τ1), (12)

which was thoroughly substantiated in Ref. [19] and references
therein. Here τ1,2 are the relaxation time constants, b/a and c/a

determine the relative contributions of Kerr-type and Raman-
type nonlinearities. Substituting (9)–(12) into (3), (7), and (8)
with γ1,3 = d1,3 = 0 (in the absence of spatial dispersion) it is
easy to obtain the following:

Di(ω = ω1 + ω2 + ω3,k = k1 + k2 + k3)

= ε0(ω)δijEj (ω,k) + 4π (α̃1(ω1,ω2,ω3)δij δmn

+ α̃2(ω1,ω2,ω3)δimδjn + α̃3(ω1,ω2,ω3)δinδjm)

×Ej (ω1,k1)Em(ω2,k2)En(ω3,k3), (13)

which also follows from (6) in the case of ∞∞m medium
symmetry (isotropic nongyrotropic medium). Constants ε0 and
α̃1,2,3 in Eq. (13) can be expressed through the parameters of
our model by the following way:

ã1,2,3 = a + bg̃3(ω2,1,1 + ω3,3,2) + c(g̃3(ω1,2,1 + ω3,3,3)

+ g̃3(ω1,1,2 + ω2,2,3)),

ε0(ω) = ε∞ − ω2
0(εs − ε∞)/

(
ω2 − ω2

0 + 2iδ0ω
)
,

where g̃3(ω) = −(τ−2
1 + τ−2

2 )(ω2 − τ−2
1 − τ−2

2 + 2iω/τ2)−1.
Dependencies (9)–(11) not only satisfy all the abovementioned
requirements for χ

(1)
ij (t1,z,z1) and χ

(3)
ijkl(t1,t2,t3,z,z1,z2,z3), but

also allow for a thin (of the order of max{d1,d3}) surface layer
with transient dielectric properties. Actually, the border of
the medium represents not an abrupt but, rather, a smooth

(although fast enough) change in optical properties (from one
medium to another). This smooth change can be treated also
as an additional layer on the medium surface with transient
properties (see, for example, [20]). This fact can be neglected
in many problems, but if one is considering nonlocal spatial
response, this may cause additional features of radiation-
matter interaction [20], because in this case the thickness
of such a layer should not be less than the characteristic
nonlocality dimension.

However, one should take into account not only the fact that
the response of the homogeneous medium with sharp boundary
will be different near the surface of the medium and in its
bulk, but also that the properties of the medium (the dielectric
permittivity and the nonlinear susceptibility) are different near
the surface of the medium and in its bulk. Our model does not
account for this. Apart from that, we do not consider a number
of complicated phenomena on the border of the medium with
spatial dispersion in the vicinity of frequency resonances [21],
e.g., appearance of so-called additional waves.

It is also worth noticing that the models of frequency and
spatial dispersion of linear and nonlinear optical suscepti-
bilities of the medium we use in our work, indeed, do not
account for a number of effects, which are described by a
Debye model. However, in our work we prefer to use another
model, which represents itself the generalization (for the case
of spatial dispersion) of a widely used and efficiently working
dispersion model.

In the case of the propagation of the tightly focused ultra-
short light pulse with broad frequency and spatial spectra, there
become possible the second-order processes [sum-frequency
generation, difference frequency generation (SFG), second
harmonic generation (SHG)] of nonlinear interaction between
its noncollinear components with different frequencies, which
may result in considerable modification of the frequency and
spatial spectrum of the propagating pulse.

In our work we do not take into account second-order
nonlinear processes. Therefore, it would be correct to consider
our results under conditions of absence or smallness of the
second-order response, i.e., in centrosymmetric medium with

013306-3



GRYAZNOV, MAKAROV, PEREZHOGIN, AND POTRAVKIN PHYSICAL REVIEW E 89, 013306 (2014)

spatial dispersion of cubic nonlinearity, or when the effective
quadratic optical susceptibility value is negligibly small, or
when the phase-matching condition cannot be satisfied, for
example, in the case of the plane-wave propagation in the
isotorpic gyrotropic medium.

B. Auxiliary definitions and difference approximation
of expressions

Numerical model. After substitution of (9)–(12), formulas
(7) and (8) can be written as follows:

P L
x (t,z) =

∫ ∞

0
g1(t ′)f1(t − t ′,z)dt ′

+ ζxγ1

∫ ∞

0
g1(t ′)f4(t − t ′,z)dt ′, (14a)

P L
y (t,z) =

∫ ∞

0
g1(t ′)f2(t − t ′,z)dt ′

+ ζyγ1

∫ ∞

0
g1(t ′)f3(t − t ′,z)dt ′, (14b)

P NL
x (t,z)

= 3aEx(t,z)
(
E2

x(t,z) + E2
y(t,z)

)

+ 6cEx(t,z)
∫ ∞

0
g3(t ′)f5(t − t ′,z)dt ′

+ 6cEy(t,z)
∫ ∞

0
g3(t ′)f7(t − t ′,z)dt ′

+ 3bEx(t,z)
∫ ∞

0
g3(t ′)[f5(t − t ′,z) + f6(t − t ′,z)]dt ′

+ 3ζxγ3Ey(t,z)
∫ ∞

0
g3(t ′)f8(t − t ′,z)dt ′, (15a)

P NL
y (t,z)

= 3aEy(t,z)
(
E2

x(t,z) + E2
y(t,z)

)

+ 6cEy(t,z)
∫ ∞

0
g3(t ′)f6(t − t ′,z)dt ′

+ 6cEx(t,z)
∫ ∞

0
g3(t ′)f7(t − t ′,z)dt ′

+ 3bEy(t,z)
∫ ∞

0
g3(t ′)[f5(t − t ′,z) + f6(t − t ′,z)]dt ′

+ 3ζyγ3Ex(t,z)
∫ ∞

0
g3(t ′)f8(t − t ′,z)dt ′, (15b)

where ζx = 1, ζy = −1, and

f1(t,z) =
∫ ∞

−∞
exp

[−z2
1

/
d2

1

]/
(
√

πd1)Ex(t,z − z1)dz1,

(16a)

f2(t,z) =
∫ ∞

−∞
exp

[−z2
1

/
d2

1

]/
(
√

πd1)Ey(t,z − z1)dz1,

(16b)

f3(t,z) =
∫ ∞

−∞
z1 exp

[−z2
1

/
d2

1

]/
(
√

πd1)Ex(t,z − z1)dz1,

(17a)

f4(t,z) =
∫ ∞

−∞
z1 exp

[−z2
1

/
d2

1

]/
(
√

πd1)Ey(t,z − z1)dz1,

(17b)

f5(t,z) =
∫ ∞

−∞
exp

[−z2
1

/
d2

3

]/
(
√

πd3)E2
x(t,z − z1)dz1,

(18a)

f6(t,z) =
∫ ∞

−∞
exp

[−z2
1

/
d2

3

]/
(
√

πd3)E2
y(t,z − z1)dz1,

(18b)

f7(t,z) =
∫ ∞

−∞
exp

[−z2
1

/
d2

3

]/
(
√

πd3)Ex(t,z − z1)

×Ey(t,z − z1)dz1, (19)

f8(t,z) =
∫ ∞

−∞
z1 exp

[−z2
1

/
d2

3

]/
(
√

πd3)
(
E2

x (t,z − z1)

+E2
y (t,z − z1)

)
dz1. (20)

Here functions

Fs(t,z) = ω2
0(εS − ε∞)(
ω2

0 − δ2
0

)1/2

∫ ∞

0
exp(−δ0t1)

× sin
([

ω2
0 − δ2

0

]1/2
t1

)
fs(t − t1,z)dt1, (21)

Fh(t,z) = τ 2
1 + τ 2

2

τ1τ
2
2

∫ ∞

0
exp(−t1/τ2) sin(t1/τ1)fh(t − t1,z)dt1,

(22)

(s = 1,2,3,4, and h = 5,6,7,8) satisfy the system of ordinary
differential equations,

d2

dt2
Fs + 2δ0

d

dt
Fs + ω2

0Fs = ω2
0 (εs − ε∞) fs, (23)

d2

dt2
Fh + 2

τ2

d

dt
Fh +

(
1

τ 2
1

+ 1

τ 2
2

)
Fh =

(
1

τ 2
1

+ 1

τ 2
2

)
fh,

(24)

with zero initial conditions. Furthermore they can be used in
the new form of the material equation (3):

Dx = Ex + (ε∞ − 1)(f1 + γ1ζxf4) + (F1 + γ1ζxF4)

+ 12π
{
aEx(t,z)

[
E2

x(t,z) + E2
y(t,z)

]
+ bEx(t,z) (F5 + F6) + 2cEx(t,z)F5 + 2cEy(t,z)F7

+ γ3ζxEy(t,z)F8
}
. (25a)

Dy = Ey + (ε∞ − 1)(f2 + γ1ζyf3) + (F2 + γ1ζyF3)

+ 12π
{
aEy(t,z)

[
E2

x(t,z) + E2
y(t,z)

]
+ bEy(t,z) (F5 + F6) + 2cEy(t,z)F6

+ 2cEx(t,z)F7 + γ3ζyEx(t,z)F8
}
. (25b)
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For numerical solution of (2) and (23)–(25) we used uni-
form grid zm = mz, tn = nt , where m = 0,1,2, . . . ,M −
1, n = 0,1,2, . . . ,N − 1. Values of M and N were determined
by the distance traversed in a medium by the pulse, and
by the interval of time it took for a pulse to propagate.
Functions f1,2,...,8 in Eqs. (21), (22), and (25), and also
in difference schemes of (23) and (24), were taken as the
following difference expressions:

f1,2(tn,zm) =
M−1∑
l=0

exp
[−(m − l)2(z)2

/
d2

1

]
√

πd1

×Ex,y(nt,lz)z = f
n,m
1,2 , (26)

f3,4(tn,zm) =
M−1∑
l=0

exp
[−(m − l)2(z)2

/
d2

1

]
√

πd1

×Ex,y(nt,lz)(m − l)(z)2 = f
n,m
3,4 , (27)

f5,6(tn,zm) =
M−1∑
l=0

exp
[−(m − l)2(z)2

/
d2

3

]
√

πd3

×E2
x,y(nt,lz)z = f

n,m
5,6 , (28)

f7(tn,zm) =
M−1∑
l=0

exp
[−(m − l)2(z)2

/
d2

3

]
√

πd3

×Ex(nt,lz)Ey(nt,lz)z = f
n,m
7 ,

(29)

f8(tn,zm) =
M−1∑
l=0

exp
[−(m − l)2(z)2

/
d2

3

]
√

πd3

[
E2

x(nt,lz)

+E2
y (nt,lz)

]
(m − l)(z)2 = f

n,m
8 . (30)

The substitution of these difference approximations into (23)
and (24) allows one to find the values of F1,2,...,8(tn+1,zm), and,
finally, to obtain the system of 2M nonlinear equations for
the electric field strength vector components Ex,y(tn+1,zm) =
En+1,m

x,y from (25):

Dn+1,m
x,y = Dx,y(tn+1,zm)

= �m
x,y

(
En+1,0

x ,En+1,1
x , . . . ,En+1,s

x , . . . ,En+1,M−1
x ,

En+1,0
y ,En+1,1

y , . . . ,En+1,s
y , . . . ,En+1,M−1

y

)
. (31)

In Eq. (31) and further index s takes values 0,1,2, . . . ,

m, . . . ,M − 1, and the overall look of functions �m
x,y is

determined from (25) for each m [also taking into account
(26)–(30)].

In this algorithm in each step at the first stage one
determines the strength of the magnetic field at the time step
tn + t/2 from the strength of the electric field at the previous
time step tn, and then the induction of the electric field Dn+1,m

x,y

at the time step tn + t . At the final stage we solve the equation
system (31) by the iteration method of the Newton type, in
which at each step we find the next element of {En+1,m

x,y }k
sequence, converging to the electric field strength En+1,m

x,y .
Numerical value of each {En+1,m

x,y }k was found as a result of

the solution of the following system of linear equations:

J
m,l
ij

[{
E

n+1,l
j

}
k
− {

E
n+1,l
j

}
k−1

]
= D

n+1,m
i − �m

i

({
En+1,0

x

}
k−1,

{
En+1,1

x

}
k−1, . . . ,{

En+1,s
x

}
k−1, . . . ,

{
En+1,M−1

x

}
k−1,

{
En+1,0

y

}
k−1,{

En+1,1
y

}
k−1, . . . ,

{
En+1,s

y

}
k−1, . . . ,

{
En+1,M−1

y

}
k−1

)
. (32)

In Eq. (32) i,j = x,y, and we assume the summation by
the indices j and l = 0,1,2, . . . ,m, . . . ,M − 1 which appear
twice in this expression. The elements of block matrix J

m,l
ij =

∂�m
i /∂E

n+1,l
j having dimension 2M × 2M are calculated for

E
n+1,l
j = {En+1,l

j }k−1. If the medium parameters d1,3 are such
that max{d1,d3} is much less than the propagation path of the
pulse L, then J

m,l
ij is a sparse matrix, in which the nonzero

elements number is of the order of max{d1,d3}L/(z)2. In
this case for the solution of the linear algebraic equations (32)
and (33) we can use the generalized minimal residual method
(GMRES) [22].

C. Representation of results

It is well known that the polarization state of the monochro-
matic radiation can be wholly described by a set of four
independent quantities [23]. Apart from the Stokes parameters,
one is able to use the intensity Ĩ = A2

x + A2
y , the ellipticity

degree of the polarization ellipse M̃ = 2AxAy sin /(A2
x +

A2
y), the angle of orientation of the polarization ellipse

�̃ = 0,5 arctg[2AxAys cos /(A2
x − A2

y)], and the parameter,
characterizing the orientation of the electric field vector at
fixed timing. In the formulas above Ax,y are the real-valued
amplitudes of harmonic (sinusoidal) oscillating Cartesian
components of the electric field strength vector;  is the
difference of their oscillation phases. Now different modifi-
cations of the SVEA are widely used for the description of the
propagation of long pulse. In this method Ax,y are treated as
slowly varying quantities with respect to changes of z and/or
t . In this case for the fixed time value, the spatial (or temporal)
distribution of the electric field in a pulse is attributed to
the set of a relatively big amount of the polarization ellipses
characterizing the polarization state of radiation in different
points in space (or at different moments in time). The ellipticity
degree M ′(z,t) and the angle of orientation � ′(z,t) for each of
these ellipses at certain z can be found by the same formulas
with Ax,y(z,t) instead of Ax,y and (z,t) instead of . The
analysis of M ′(z,t) and � ′(z,t) gives us the information about
the polarization changes during pulse propagation.

When proceeding to the shorter pulses (including those
we call ultrashort, thus indicating several-oscillation pulses)
the ellipticity degree and the angle of orientation of the
polarization ellipse defined as above have no physical meaning.
This also concerns any other sets of four parameters, describing
the intensity and the polarization of the propagating radiation
in such a case, because we cannot average along the set
of almost identical ellipses as earlier. In the domain of
ultrashort pulses it would be correct to speak in terms
of the changes of modulus of the electric field strength
vector I

1/2
1 (z,t) = (E2

x(z,t) + E2
y(z,t))1/2 and the angle
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�(z,t) = arctg(Ey/Ex) it composes with the x axis of the
coordinate system. These two values wholly characterize the
propagating pulse. Additionally, one can define quantities
M(z,t) and �(z,t), which, at certain degree, can be treated
as M ′(z,t) and � ′(z,t) defined for the slowly varying envelope
and will carry the information on the predominant orientation
of the electric field vector. It is necessary to provide that
these newly defined quantities M(z,t) and �(z,t) would tend
to M ′(z,t) and � ′(z,t) correspondingly when increasing the
duration of a pulse, and turned into M and � in the extreme
case of the plane monochromatic wave. The need for definition
of M(z,t) and �(z,t) is justified solely by the necessity of
the comparison of results obtained numerically in the present
work as Ex,y(z,t) with intensity and polarization data obtained
within the framework of SVEA for long pulses.

In the course of the solution of the one-dimensional problem
of pulse propagation in a medium with spatial dispersion of
cubic nonlinearity by the FDTD method it is reasonable to
define M(z,t) and �(z,t) as the following discrete functions
satisfying the abovementioned conditions:

|M(z̃m,tn)| = 21/2I
1/2
1 (z̃m,tn) · [I1(z̄m,tn) + I1(z̄m+1,tn)]1/2

I1(z̃m,tn) + [I1(z̃m,tn) + I1(z̃m+1,tn)]/2
,

(33)

�(z̃m,tn) = −arctg[Ex(z̃m,tn)/Ey(z̃m,tn)]. (34)

These dependencies are defined only in a number of points
z = z̃m, where I

1/2
1 (zm,tn) achieves local maximum value.

In Eqs. (33) and (34) z̄m are the points of local minima of
I

1/2
1 (zm,tn), numbered in such a way that z̄m � z̃m � z̄m+1.

The sign of M(z̃m,tn) is determined by the direction of rotation
of the electric field vector. In the case of a relatively long
pulse the interpolation of M(z̃m,tn) and �(z̃m,tn) gives M ′(z,t)
and � ′(z,t). The definitions (33) and (34) also have some
limitation: it is meaningful to use them until the oscillations of
the electric field Cartesian components still can be considered
as something similar to harmonic oscillations (even for several-
oscillation pulses). Some examples will be discussed below.

III. THE DISCUSSION OF RESULTS

Let us consider elliptically polarized light pulse with the
Gaussian envelope, which propagates in vacuum towards the
plane boundary z = 0 of the medium with frequency dis-
persion and spatial dispersion of cubic nonlinearity (medium
symmetry group ∞∞). We assume that at t = 0 the Cartesian
components of the electric field in the pulse do not depend on
x and y and are expressed by the following formulas:

Ex(z,t = 0) =
(
PI0

2

(
1 −

√
1 − M2

0

))1/2

exp

(
− (z − z0)2

w2
0

)

× sign(M0) · sin

(
2π (z − z0)

λ

)
, (35)

Ey(z,t = 0) =
(
PI0

2

(
1 +

√
1 − M2

0

))1/2

exp

(
− (z − z0)2

w2
0

)

· cos

(
2π (z − z0)

λ

)
, (36)

where λ is the wavelength in vacuum corresponding to the
central frequency of the spectrum of the incident pulse. For
relatively big values of w0 in Ex,y(z,t), the terms standing
before sine in Eq. (35) and cosine in Eq. (36) can be treated
as slowly varying envelopes. In this case the dimensionless
intensity I = (E2

x + E2
y)/I0 achieves its maximum value P in

z = z0. Using (33) and (34) it is easy to show that for all values
of z and t the incident pulse has the ellipticity degree of the
polarization ellipse, which is equal to M0, and the main axis
of the polarization ellipse is parallel to the y axis (we always
can choose the coordinate axes in such a way for a medium
with ∞∞ symmetry).

A. Medium with local optical response

Comparison with SVEA for the long pulses. As in
Refs. [17,18], we consider a value of ω equal to 8.61 ×
1014 rad s−1 (λ ≈ 2.19 μm), which means that for w0 = 100λ

the effective duration of the pulse in vacuum is ≈730 fs.
Let us assume that at t = 0 the maximum of the intensity
of the elliptically polarized pulse (M0 = 0.1) is located at
400 wavelength distance from the medium border, and the
medium is described by the following parameters: εs = 5.25,
ε∞ = 2.25, δ0 = 1.64 × 10−5ω, ω0 = 0.46ω, τ1 = 10.5/ω

(≈12.2 fs), τ2 = 27.6/ω (≈32 fs), which are analogous to
those used in Refs. [17,18]. Within the SVEA the self-action
of the long pulse, in which the spectrum does not cover
the resonance frequencies of the isotropic nonlinear medium
response, will be affected only by two components of tensor
χ̂ (3) (see, for example, [5]; p. 1362): χ (3)

xyxy = a + bg̃3(0) +
c(g̃3(0) + g̃3(2ω)) and χ (3)

xxyy = a + bg̃3(2ω) + 2cg̃3(0). For
purely Kerr nonlinearity (b = c = 0) the following takes place
χ (3)

xyxy = χ (3)
xxyy . And for a purely Raman nonlinear response

(a = 0), χ (3)
xyxy/χ

(3)
xxyy depends on b, c, τ1, τ2, and ω. Different

mechanisms of nonlinearity (Kerr or Raman) identically affect
propagation of the pulse in terms of SVEA, if they yield the
same values of χ (3)

xyxy and χ (3)
xxyy . Let us check whether the same

statement is true within the framework of our model.
Figure 1 shows the z dependencies of the intensity (a) and

the intensity-dependent angle of rotation of the polarization
ellipse (b) for the pulse traversed about 200 wavelengths
in a medium without spatial dispersion (γ1,3 = 0, d1,3 = 0),
which were calculated in the present work by means of the
algorithm described above. This distance is much less than
the dispersion length of the pulse under consideration for the
chosen values of linear optical response parameters. Therefore,
the influence of linear optical response on the intensity profile
of the propagating pulse in this case can be neglected.

Solid lines in Fig. 1 correspond to a = 2 × 10−4 × I−1
0 ,

b = 0, c = 0, dashed lines correspond to a = 0, b = 1 ×
10−4 × I−1

0 , c = 1 × 10−4 × I−1
0 . These values of a, b, and

c characterizing the cubic nonlinearity of the medium are
chosen in such a way that their substitution in Eq. (11) and
subsequent calculation of χ

(3)
ijmn(ω; ω1,ω2,ω3) [which presents

in Eq. (6)] for given τ1 and τ2 (chosen above) would yield
equal values for χ (3)

xxyy(ω; −ω,ω,ω) and χ (3)
xyxy(ω; −ω,ω,ω).

But in the first case this will be achieved solely by the Kerr
contribution to the nonlinear response, while in the second
case this will be a purely Raman (retarded) response without
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FIG. 1. The dependencies of the intensity I (a) and the angle
of polarization ellipse rotation � (b) on the propagation coordinate
z/λ for the pulse traversed approximately 200 wavelengths in the
nonlinear medium. The medium parameters are as follows: εs = 5.25,
ε∞ = 2.25, γ1 = 0, d1 = 0, δ0 = 1.64 × 10−5ω, ω0 = 0.46ω, γ1,3 =
0, d1,3 = 0, τ1 = 10.5/ω, τ2 = 27.6/ω; a = 2 × 10−4 × I−1

0 , b = 0,
c = 0 (for solid-line dependencies) and a = 0, b = 1 × 10−4 × I−1

0 ,
c = 1 × 10−4 × I−1

0 (for dashed-line dependencies). The parameters
of the incident pulse in accordance with the formulas (35) and (36)
are as follows: w0 = 100λ, M0 = 0.1, P = 0.1 (1); P = 0.25 (2);
P = 0.5 (3); P = 1 (4); P = 2 (5).

“instant” nonlinearity. Lines 1–5 in this figure correspond to
the values of P = 0.1,0.25,0.5,1,2.

The almost complete coincidence of solid and dashed lines
in Fig. 1 testifies to the weakness of the influence of frequency
dispersion of cubic nonlinearity on the effect of polarization
ellipse self-rotation for given values of intensity and duration
of the incident pulse. After traversing some hundreds of
wavelengths in a medium, the shape of the propagating
pulse practically does not change, the ellipticity degree of
its polarization ellipse is constant, and the z dependence of
the angle of rotation of the polarization ellipse [Fig. 1(b)]
replicates the shape of the intensity profile I (z/λ) [Fig. 1(a)]
(the difference between these two dependencies becomes

visible for P = 2 and higher input intensities). This testifies
direct proportionality of �(z/λ) to I (z/λ) in this case.

In order to validate our model of nonlocal and nonlinear
response of the medium, we have performed a number
of numerical simulations in a broad range of parameters
of the nonlinear medium for the long pulses (hundreds of
wavelengths) and for the small values of the intensity of the
incident radiation. Changing the parameters I0 and M0, we
have tracked the value of the rotation angle of the polarization
ellipse in the peak of the propagating pulse. We established
that these values of the rotation angle are directly proportional
to I0 and M0. At that, the rotation does not occur if M0 = 0.
Such a dependence of � on M0 and I0 is wholly in accordance
with the plane-wave polarization ellipse rotation in isotropic
medium with cubic nonlinearity predicted in Ref. [3]. In the
latter case the angle of rotation was found to behave as the
following: � ∼ χ (3)

xxyy(ω; −ω,ω,ω)M0PI0z.
For the bigger intensities of the incident radiation, unlike in

Fig. 1, there occurs change of shape of the temporal envelope
of the propagating laser pulse owing to the nonlinear optical
response of the medium. In addition, the polarization ellipse
rotation angle dependence on the propagation coordinate
changes its character.

In Fig. 2 we compare the difference between the instant
(Kerr) and retarded (Raman) nonlinear response in the same
way as in Figs. 1(a) and 1(b), but for bigger values of
intensity. For P ≈ 10, Kerr [Fig. 2(a)] and Raman [Fig. 2(b)]
nonlinearity mechanisms yielding the same values of χ (3)

xyxy

and χ (3)
xxyy , give different z dependencies of the intensity

(solid lines), ellipticity degree (dashed lines), and the angle
of rotation of the polarization ellipse (dotted lines) in the
laser pulse traversed about 200 wavelengths in a medium.
For such big intensities this difference is caused by the strong
broadening of the spectrum of the pulse, which also makes
unjustified the SVEA in this case (predicting similar behavior).
In addition, the abrupt changes of I , M , and � indicate that the
SVEA may give wrong results even in the case of propagation
of relatively long pulses.

B. Medium with nonlocality of nonlinear optical response

Comparison with SVEA for the long pulses. The effects
caused by the nonlocality of the linear optical response were
discussed in Ref. [18] in detail. In the present work, in order
to demonstrate how the polarization plane rotation occurs,
caused solely by the spatial dispersion of cubic nonlinearity,
we use γ1 = 0 and d1 = 0 for the example shown in Fig. 3.
There one can see the z dependencies of the intensity (solid
lines), the ellipticity degree (dashed lines), and the angle of
orientation of the polarization ellipse (dotted lines) for the
long pulse traversed in a medium about 600 wavelengths. The
curve �(z/λ) practically replicates I (z/λ). The maximum
of �(z/λ) appears to be shifted in the direction of pulse
propagation [relatively to the intensity maximum—Fig. 3(a)].
This is due to the fact that for the given period of time
the front part of the pulse traverses in a medium more than
the backward part of the pulse (which enters the medium
some periods of oscillation later), thus experiencing stronger
polarization rotation than the backward part. The increase of
the distance traversed in a medium makes closer the maxima
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FIG. 2. The dependencies of the intensity I (z/λ) (solid lines),
the ellipticity degree M(z/λ) (dashed lines), and the angle of rotation
of the polarization ellipse �(z/λ) (dotted lines) on the propagation
coordinate z/λ for the pulse traversed approximately 200 wavelengths
in the nonlinear medium, P = 10 and a = 2 × 10−4 × I−1

0 , b = 0,
c = 0 (а); a = 0, b = 1 × 10−4 × I−1

0 , c = 1 × 10−4 × I−1
0 (b). The

other parameters of the medium and the pulse are the same as in
Fig. 1.

of the intensity and the polarization plane rotation angle. The
pulse, which was linearly polarized at the beginning, now
becomes elliptically polarized, and its front and backward parts
have the ellipticity degree of opposite signs (opposite sense of
polarization rotation). This is caused by the opposite signs of
the intensity-dependent contributions to the effective refraction
indices for the circularly polarized components of the electric
field in a medium with spatial dispersion. In particular, this
results in the difference of the group velocities of the circularly
polarized components. If χ (3)

xxyy is small, then the sense of
rotation is the same in the front and in the backward parts of
the pulse [see Fig. 3(a)]. The increase of the χ (3)

xxyy (at fixed
γ3) results in the asymmetric dependence of �(z/λ) relatively
to the center of the propagating long pulse [see Fig. 3(b)].
In this case its front and backward parts have the opposite
sense of rotation of the electric field vector. When shortening
the duration of the incident pulse, the dependencies I (z/λ),
M(z/λ), and �(z/λ) become even more sophisticated. This

FIG. 3. The dependencies of the intensity I (z/λ) (solid lines),
the ellipticity degree M(z/λ) (dashed lines), and the angle of rotation
of the polarization ellipse �(z/λ) (dotted lines) on the propagation
coordinate z/λ for the pulse traversed approximately 600 wavelengths
in nonlinear medium. The intensity of the incident pulse is P = 1,
its longitudinal half width (corresponding to the effective duration)
is w0 = 300λ, and the ellipticity degree is M0 = 0. The nonlinear
medium parameters are γ3 = 0.1 × (λI0)−1, d3 = 0.05λ, a = 0, b =
c = 2 × 10−6 × I−1

0 (a) and b = c = 2 × 10−4 × I−1
0 (b); the other

parameters of the medium and the pulse are the same as in Fig. 1. The
increase of the χ (3)

xxyy (at fixed γ3) in (b) (by means of the increase of
b and c) results in the asymmetric dependence of �(z/λ).

effect is especially strong if w0 is of the order of cτ2. The value
of the angle of rotation of the polarization ellipse in the peak of
the propagating pulse appears to be directly proportional to P

(initial intensity) in a broad range of parameters of the radiation
and medium with spatial dispersion of cubic nonlinearity,
which is in accordance with the “classic” theory [1]. And,
as was expected, the rotation of the polarization plane does
not take place if γ3 = 0 or d3 = 0.

C. Propagation of ultrashort pulses in a medium
with nonlocality of nonlinear optical response

When considering the ultrashort (several-oscillation) pulses
the dispersion length calculated from the parameters of the
linear response of the medium is about tens of wavelengths.
Owing to the nonlinearity of the medium and to the nonlocality
of its linear and nonlinear response, the propagating pulse,
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FIG. 4. The hodograph of the electric field strength vector for the pulse traversed 40 wavelengths in the nonlinear medium, P = 2.5 (a) and
P = 5 (b). The half width of the incident pulse is five wavelengths. The nonlinear medium parameters are γ3 = −0.1 × (λI0)−1, d3 = 0.05λ,
a = 0, b = c = 10−3 × I−1

0 ; the other parameters are the same as in Fig. 1.

which was linearly polarized at the medium border acquires
an orthogonal polarization component during the propagation.
In this case it is more convenient to represent the changes of
the Ex and Ey by the hodograph of the electric field vector
rather than by the conventionally defined in Eqs. (33) and (34)
M(z/λ) and �(z/λ) quantities, because in some fragments of
the propagating pulse the changes of its Cartesian components
cannot be treated as similar (even roughly) to the harmonic
oscillations. The hodograph can be represented as a curve in the
space of parameters E′

x = Ex/(PI0)1/2, E′
y = Ey/(PI0)1/2,

and z, traced by the end of the electric field vector. The
example of such a hodograph is shown in Fig. 4 for the pulse
with initial half width of five wavelengths after traversing
in a medium 40 wavelengths with P = 2.5 (a) and P = 5
(b). The line projected to the plane E′

x = const represents
the dependence E′

y(z/λ), and the line projected to the plane
E′

y = const represents the dependence E′
x(z/λ). It can be seen

that the increase of the initial intensity results in the increase
of the orthogonal polarization component. The hodograph
looks like a deformed helix with changing radius, and its axis
coincides with the z axis. In this case it is not possible to
discuss the polarization state of light.

In a number of cases the helicity of the hodograph changes
along the pulse (for example, from right to left, or vice versa),
which reflects the change of the sense of rotation of the electric
field vector. Such a case is well illustrated in Fig. 5, where the
fragmentation of the pulse into two parts occurred, and the
senses of rotation of the electric field vector within these parts
are opposite.

If one considers the medium without spatial dispersion,
when the hodographs of the electric field vector in the
propagating pulses with initial values of polarization ellipse
ellipticity degree −M0 and M0, as it was expected, are
absolutely reflection symmetric with respect to one another
relatively to the plane yz, because the optical properties of such
a medium are identical for right- and left-handed circularly
polarized components of light. In the presence of nonlocality
of the nonlinear optical response of the medium ultrashort

pulse with initial ellipticity degree M0 of the same sign as
−γ3χ

(3)
xxyy(ω; −ω,ω,ω), rotates faster than in vacuum, and the

pulse with the opposite sign of the ellipticity degree −M0

rotates slower. Thus, various regimes of pulse propagation can
take place depending on the relations between the quantities
M0, a, b, c, and γ3. The hodographs of two pulses with
initial ellipticities M0 and −M0 may rotate either in the
same direction or in opposite directions with different rates of
rotation (see Fig. 6) depending on the parameters of medium.
Under certain conditions there can be realized the situation,
when the hodograph of one pulse is rotating, and the hodograph
of another almost does not rotate.

Our numerical investigations have shown that the pulse
possessing initially circular polarization maintains its polar-
ization state during the propagation in a medium with spatial

FIG. 5. The hodograph of the electric field strength vector for the
pulse with peak intensity P = 5 and half width of five wavelengths
after traversing 40 wavelengths in a medium with spatial dispersion
of nonlinearity. Here b = c = 10−4 × I−1

0 ; the other parameters are
the same as in Fig. 4.
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FIG. 6. The hodograph of the electric field strength vector for the pulse with peak intensity P = 1, half width of five wavelengths and the
ellipticity degree M0 = 0.25 (a) and M0 = −0.25 (b) after traversing 40 wavelengths in a medium with spatial dispersion of nonlinearity. Here
b = c = 0.0025 × I−1

0 , γ3 = 0, and d3 = 0; the other parameters are the same as in Fig. 3.

dispersion of cubic nonlinearity. The same result is given
by the slowly varying envelopes method. The nonzero value
of γ3 provides nonlinear circular dichroism, also predicted
by the slowly varying envelopes method, which is the
intensity-dependent difference of the absorption lengths for
the circularly polarized components of the light field with
opposite rotation directions. The latter is illustrated by Fig. 7,
where the hodographs of the electric field vectors for pulses
with M0 = 1 (a) and M0 = −1 (b) are shown. It can be seen
that for a distance of 40 wavelengths in a medium with spatial
dispersion the absorption for the pulse with M0 = −1 (b) is
remarkably stronger than that for a pulse with M0 = 1 (a).

IV. CONCLUSION

In the present work, we propose the model of the nonlocal
and nonlinear optical response of the medium with frequency

dispersion, allowing one to formulate the material equations
without the requirement of smallness of characteristic dimen-
sion scale of the nonlocality and without the limitations on the
duration of the propagating pulse. The modification of FDTD
with ADE was used for the description of the propagation
of elliptically polarized pulses of arbitrary duration in such a
medium. For relatively long pulses the results of the numerical
analysis coincide with those obtained analogously within the
SVEA. For the ultrashort pulses (containing about 10 or less
oscillations of the electric field vector) the results of our
numerical simulations significantly differ from those predicted
by the SVEA, particularly, from the analytic expressions for
the intensity-dependent ellipticity degree and the angle of
rotation of the polarization ellipse in the case of propagation
of monochromatic radiation. For this case we define new
conventional conceptions of the ellipticity degree and the angle
of rotation of the polarization ellipse, since the conception

FIG. 7. The hodograph of the electric field strength vector for the circularly polarized pulse with peak intensity P = 2.5, half width of five
wavelengths, and the ellipticity degree M0 = 1 (a) and M0 = −1 (b), after traversing 40 wavelengths in a medium with spatial dispersion of
nonlinearity. The medium parameters are the same as in Fig. 4.
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of the polarization state is only valid for monochromatic
or quasimonochromatic (long enough) pulses. However, in
certain cases, when the changes of the Cartesian components
of the electric field in the propagating ultrashort pulse cannot
be approximated (even roughly) by the harmonic oscillations,
then it is rather correct to discuss the changes of the modulus
of the electric field strength vector and its orientation. It
is more convenient to analyze Ex and Ey by means of
the hodograph of the electric field vector. The relations
between the polarization parameters of the incident pulse and

the medium parameters determine the scenario of the pulse
evolution.
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