
PHYSICAL REVIEW E 89, 013305 (2014)

Stable-phase method for hierarchical annealing in the reconstruction of porous media images
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In this paper, we introduce a stable-phase approach for hierarchical annealing which addresses the very large
computational costs associated with simulated annealing for the reconstruction of large-scale binary porous
media images. Our presented method, which uses the two-point correlation function as the morphological
descriptor, involves the reconstruction of three-phase and two-phase structures. We consider reconstructing the
three-phase structures based on standard annealing and the two-phase structures based on standard and hierarchical
annealings. From the result of the two-dimensional (2D) reconstruction, we find that the 2D generation does
not fully capture the morphological information of the original image, even though the two-point correlation
function of the reconstruction is in excellent agreement with that of the reference image. For the reconstructed
three-dimensional (3D) microstructure, we calculate its permeability and compare it to that of the reference 3D
microstructure. The result indicates that the reconstructed structure has a lower degree of connectedness than that
of the actual sandstone. We also compare the computation time of our presented method to that of the standard
annealing, which shows that our presented method of orders of magnitude improves the convergence rate. That is
because only a small part of the pixels in the overall hierarchy need to be considered for sampling by the annealer.
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I. INTRODUCTION

Porous media, whose microstructures have significant
effects on their macroscopic properties (such as mechani-
cal, capillary, electrical conductivity, and permeability), are
composed of solid material skeletons and many crowded tiny
pores created by the partition of material skeletons [1–9].
To understand how the microstructure of porous media
affects their macroscopic properties, one needs the real three-
dimensional (3D) structure of porous media. In many cases,
only the two-dimensional (2D) structure can be obtained.
In this case, the foundation of the researching method is to
generate the 3D microstructure of porous media based on
the original 2D image. An effective reconstruction procedure
enables one to generate accurate structures, and a subsequent
analysis can be performed on the 3D structure to obtain the
desired macroscopic properties of the media.

The reconstruction procedure can be regarded as an opti-
mization problem, which can be seen as finding a realization
(configuration) that makes the discrepancies between the
statistical properties of the realization and that of the original
2D structure minimized. Recently, two general approaches
[10–22] based on statistical reconstructions have actively been
pursued. The first method is based on the conditioning and
truncation of Gaussian random fields [10–13]: successively
passing a normalized uncorrelated random Gaussian field
through a linear and then a nonlinear filter to yield the discrete
values representing the phases (or states) of the structure.
This approach is mathematically elegant and computationally
very efficient but model dependent, so it can only impose
the volume fraction and the two-point probability function
as constraints for reconstruction. This is a drawback, and
even more serious, it is difficult to generalize the structures
for systems with more than two phases. Another popular
stochastic approach to reconstruct the 3D microstructure of a
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porous medium is the simulated annealing (SA) reconstruction
algorithm [14–21]. This method was first introduced by
Rintoul and Torquato in 1997 [22], which starts with a given,
arbitrarily chosen, initial configuration of a random medium
and a set of target functions. By continuously interchanging the
phases of pixels in the digitized system, the target function is
gradually coming close to the minimum, which illustrates that
the reconstruction has a similar distribution as the experimental
structure. This method is model independent and, in principle,
it can include any type and number of statistical correlation
functions as microstructure information. In addition, it is a
global optimization algorithm and can generate the optimum
structure making the discrepancies of statistical properties
between the generation and the original 2D image minimized.

The attractive convergence property of the SA algo-
rithm [14–22] is offset rapidly by the high demand for
computational resources, particularly for the reconstruction of
a large-scale microstructure—very common in porous media.
To enhance the rate of convergence, several methods were
proposed within the SA reconstruction framework. Jiao and
co-workers proposed the “surface optimization” rule [14]. In
this rule, pixels are grouped into two subsets: low-energy
subsets and high-energy subsets. Only the pixels in the
high-energy subset are selected. These biased pixel selection
rules exclude certain pixels from being selected. Our group
proposed a different-phase-neighbor- (DPN-) based pixel
selection rule [23]. In this rule, the selection probability of
a pixel is determined by the number of its DPNs, which does
not exclude any pixel from being selected. These methods,
indeed, accelerate the rate of convergence, but they are still
very large computational costs for generating the large-scale
microstructure.

Another important method for improving the rate of conver-
gence is a hierarchical simulated annealing (HSA) algorithm,
which is proposed by Alexander and co-workers [24–26]. In
the procedure of hierarchical reconstruction, the larger-scale
structures are obtained from coarser scales. Because each
scale is treated as a separate annealing procedure, the finer
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FIG. 1. (Color online) The microstructure of two random reser-
voir sandstones. (a) Two-phase microstructure (black, grain; white,
void). (b) Three-phase microstructure (black, grain; gray, clay; and
white, void).

structure can be eroded or can be destroyed. The more serious
drawback is that this method continues to visit every pixel
at every scale, including the finest scale, so there remains
a substantial computational burden for visiting very large
numbers of pixels at the finest scale. In this paper, we propose
a truly hierarchical method (the stable-phase method) in which
large-scale structures are synthesized and are fixed in place at
coarse scales where only local fine-resolution details remain
to be refined at finer scales. Because only a small part of
the pixels in the overall hierarchy need to be considered for
sampling by the annealer, our presented method of orders of
magnitude improves the convergence rate and the quality of the
final result. The rest of this paper is arranged as follows: The
description of the two-point correlation function (TPCF) [27]
for the three-phase microstructure is given in Sec. II. In Sec. III,
our presented method is briefly outlined. In Sec. IV, the
reconstruction of three-phase and two-phase structures based
on the original 2D images are performed. For the reconstructed
3D structure, we evaluate its transport property and compare
it to that of the real sandstone. Finally, remarks are concluded
in Sec. V.

II. REPRESENTATION OF THE TWO-POINT
CORRELATION FUNCTION

The date for the TPCF is acquired [27] by throwing numbers
of random vectors on the microstructure, determining the
likelihood of the beginning and end of each vector (�r) lying in
a particular phase and examining the number fraction of the
sets (vectors) that satisfy the different phases [Fig. 1(a)]. For
a two-phase microstructure, there exist two phases, phase 1
and phase 2, with the volume fraction of each phase defined
as follows:

Vk

Vtotal
= vk, k ∈ [1,2], (1)

where V1 and V2 are the volumes of the two phases,
respectively, and v1 and v2 are their corresponding volume
fractions. Clearly,

2∑
k=1

Vk = Vtot and
2∑

k−1

vk = 1. (2)

If the N number of random points is thrown into a given
microstructure and the number of points falling into phase k

is Nk , then the one-point probability function (Pk) can define
the volume fraction through the following relation as N (the
total number) is increased to infinity:

Pk = Nk

N

∣∣∣∣
N→∞

= vk. (3)

Now, assign a vector starting at each of the random points in
a two-phase microstructure as shown in Fig. 1(a). Depending
on whether the head and the tail of these vectors fall within
phase 1 or phase 2, there will be four different probabilities
(P11,P12,P21,P22) defined as follows:

Pkl(�r) = Nkl

N

∣∣∣∣
N→∞

{�r = �rl − �rk,(�rl ∈ φl) ∩ (�rk ∈ φk)}, (4)

where Nkl is the number of vectors with the head in phase k

(φk) and the tail in phase l (φl). Equation (4) defines a joint
probability distribution function for the occurrence of events
constructed by two points as the head and tail of a vector
when it is randomly thrown into a microstructure N number
of times. The two-point probability function can be defined
based on two other probability functions such that

Pkl(�r) = P {(�rl ∈ φl)|(�rk ∈ φk)}P (�rk ∈ φk). (5)

The first term on the right hand side of Eq. (5) is a conditional
probability function. Note that, at very long distances �r → ∞,
the probability of occurrence of the head point does not
affect the tail point and the two points become uncorrelated
or statistically independent and the conditional probability
function reduces to a one-point function,

P (�rk ∈ φk) = P {(�r → ∞),(�rk ∈ φk)|(�rl ∈ φl)}. (6)

The two-point correlation function will then be reduced to

Pkl(�r) = P (�rl ∈ φl)P (�rk ∈ φk), (7)

or

Pkl(∞) = vkvl. (8)

For the periodic boundary condition of the microstructure,
the two-point correlation function satisfies the following
relationship:

Pkl(�r) = Plk(�r). (9)

For a three-phase microstructure as shown in Fig. 1(b),
the indices (k,l) in the probability function representation
extend to three, and as a result, we have nine probabili-
ties (P11,P12,P13,P21,P22,P23,P31,P31,P33). Due to normality
conditions, the following equations are satisfied:∑

k=1−3

∑
l=1−3

Pkl(�r) = 1, (10)

∑
l=1−3

Pkl(�r) = vk, (11)

∑
k=1−3

Pkl(�r) = vl. (12)

Satisfying all three conditions for a three-phase microstructure
[k,l ∈ (1 − 3)] and knowing that the probability functions are
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FIG. 2. The rules of modeling and synthesis in hierarchical
reconstruction.

symmetric (Pkl = Plk), three nonlinear correlation equations
can be obtained as follows:

P11 + P12 + P13 = v1, (13)

P21 + P22 + P23 = v2, (14)

P31 + P32 + P33 = v3, (15)

and the nine probability functions will be reduced to six
independent functions (P11,P12,P13,P22,P23,P33), resulting
in the important conclusion that only three of the nine
probabilities should be considered as independent variables.
For instance, P11, P12, and P22 can be chosen as the three
probability parameters. The other probability functions can be
obtained through Eqs. (13)–(15). In all reconstructed systems,
we assume isotropy of the evolving system, and the sampling
is, therefore, performed only along orthogonal directions. It is
observed that this sampling procedure can be more accurate
than that by random sampling (throwing random points into
the system) because the former exhaustively incorporates
information from every pixel in the entire system.

III. HIERARCHICAL SIMULATED ANNEALING
ALGORITHM

To solve the problem of slow convergence in simulated an-
nealing [14–22], we introduce a stable three-phase hierarchical
annealing. An illustration of the three-phase hierarchy is shown
in Fig. 2, which contains two parts: modeling and synthesis.
In modeling, let x(s) represent an image at scale s where
decreasing s signifies progressively coarser scales, and let x

(s)
i

denote the pixel value of x(s) at position i; x
(s)
i ∈ {0,128,255}

(three phases: black, gray, and white). Let {i1,i2,i3,i4} be the
indices of the children of x

(s−1)
i at scale s. For a given binary,

the finest-scale image x(s), the coarser-scale representation

x(s−1), can be obtained from modeling using

x
(s−1)
i =

⎧⎪⎨
⎪⎩

0, if x
(s)
ij

= 0 ∀j,

255, if x
(s)
ij

= 255 ∀j,

128, otherwise.

(16)

The repeated use of (16) makes the original high-resolution
image coarsened to generate a series of target microstructures
for the hierarchical method at each resolution level as illus-
trated in Fig. 2.

In synthesis, a corresponding set of rules is established as
constraints on the annealing,

if x
(s−1)
i ∈ {0,255}, then x

(s)
ij

= x
(s−1)
i , (17a)

if x
(s−1)
i = 128, then x

(s)
ij

= 0, or x
(s)
ij

= 128. (17b)

The outcome of (17) is that each phase in the sample space
visited by the annealer must be consistent under (16) with the
result at all coarse scales. Black and white pixels stand for the
stable phase in the image domain that is preserved at all finer
scales. If the pixel is gray in a coarse scale, then the corre-
sponding set of pixels at finer scales can be black, white, or
gray. All pixels satisfied (17a) can be ignored in the annealing
sampler because their values previously have been stable.

Figure 2 illustrates the process of this coarsening method.
Progressively coarser model information is extracted using
expression (16) based on a large binary training image.
Synthesis begins with some coarse initialization, and annealing
is carried out at progressively finer scales (each scale is treated
as a separate annealing procedure), constrained by the results
of the previous scale according to (17). When annealing at
the final finest-scale result, it is affirmed that all values of the
pixels must be 0 or 255.

In the procedure of hierarchical reconstruction [24–26],
some energy function E(x) is needed. Numbers of energy
models have been proposed where the two-point correlation
function is a classic statistical function mainly containing a
number of properties of training images. Here the two-point
correlation function is chosen as the energy function. Let P

(s)
ij

[i,j ∈ (1,2) for two phases and i,j ∈ (1 − 3) for three phases]
express the two-point correlation function of the reference
image at scale s. And let Pij (x(s)) denote the two-point
correlation function of the generation at scale s. In the process
of hierarchical reconstruction, the calculation of the energy
function is based on the phases of the reference image. If the
reference image has two phases, there only needs to be one
independent two-point correlation function to reconstruct its
corresponding microstructure. If the reference image has three
phases, three independent two-point correlation functions are
needed as discussed in Sec. II,

E(x(s)) =
∑

r

[
P11(x(s)) − P

(s)
11

]2
for two phases, (18a)

E(x(s)) =
∑

r

[
P11(x(s)) − P

(s)
11

]2 +
∑

r

[
P12(x(s)) − P

(s)
12

]2

+
∑

r

[
P22(x(s)) − P

(s)
22

]
for three phases. (18b)

To evolve the digitized system toward the reference medium
(or in other words, minimizing E), the states of two arbitrarily
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selected pixels of different phases are interchanged. After
the interchange is performed, we can calculate energy E′
of the new state and the energy difference �E = E′ − E

between two successive states of the system. The new state
then is accepted with probability p(�E) via the Metropolis
method as

p(�E) =
{

1, �E � 0,

exp
(−�E

T

)
, �E > 0,

(19)

where T is the “temperature.” The decreased rate of T is
controlled by a cooling schedule which controls the system
to evolve to the desired state as quickly as possible without
falling into any local energy minimum. Because each scale
is treated as a separate annealing procedure, the algorithm
terminates for each scale when energy E [given by Eq. (18)]
is less than some small tolerance value or when the number
of consecutive unsuccessful phase interchanges is greater than
a large number. In each scale, our presented method is not
sensitive to the choice in annealing schedule. That is because
the large-scale structures are fixed at coarser scales, and finer
scales cannot destroy or cannot erode these structures. For a
given scale, only a small subset of pixels is needed to be visited.
This makes that much larger domains become computationally
tractable.

IV. DISCUSSION AND RESULTS

As stated in Sec. III, the method of hierarchical reconstruc-
tion involves the three-phase and two-phase reconstructions.
In this section, we first discuss the 2D reconstruction of
three-phase structures based on standard annealing. Second,
the 2D reconstruction of two-phase structures is performed on
standard annealing and hierarchical annealing, respectively.
Finally, our presented method is applied to perform a 3D
reconstruction of the sandstone sample. For the reconstructed
3D microstructure, we calculate its permeability and compare
it to that of the actual sandstone. In the procedure of
reconstruction, we set the white phase as phase 1, the gray
phase as phase 2, and the black phase as phase 3.

A. The 2D reconstruction of the three-phase structure

As an initial test for the three-phase structure, an inter-
penetrating disk model is generated, displayed in Fig. 3(a),
which is digitized into 256 × 256 pixel arrays. To effectively
reconstruct the three-phase structure, three independent two-
point probabilities are needed, so we choose the probabilities
of P11, P12, and P22 as the constraints. The simulation starts
from random initial configurations (the randomly generated
phase 1, phase 2, and phase 3 with fixed volume fractions
φ1 = 0.121, φ2 = 0.067, and φ3 = 0.812). After generating
an initial microstructure, two arbitrary pixels of different
phases are selected and are interchanged forming a new
microstructure. The energy difference between the initial and
the new state of the system decides the accepted probability of
the new state. After sufficiently being interchanged, the energy
difference between the original image and the reconstruction
is close to the minimum. The reconstruction result and the
reference structure are shown in Fig. 3. Note that, although
the correlation functions of the reconstructed structure agree

FIG. 3. (Color online) (a) and (b) are the original and the
reconstructed three-phase structures, respectively. (c)–(e) are the
comparison diagrams of the two-point correlation function for the
original and the reconstructed images.
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FIG. 4. (Color online) (a) is the reconstruction of Fig. 1(b).
(b)–(d) are the comparisons of the two-point correlation function
for the original and the reconstructed images.

FIG. 5. (a) and (b) are the original and the reconstructed binary
structures, respectively, based on standard annealing.

strikingly well with that of the reference image, the visual
images do not appear to be similar. This is because the two-
point correlation functions generally do not contain sufficient
information to uniquely determine a structure.

Figure 1(b) shows another three-phase microstructure
where the phases are defined as: The white color is the void
named phase 1, the gray and black colors are the clay named
phase 2, and the grain is named phase 3, respectively. And its
volume fractions are φ1 = 0.066, φ2 = 0.176, and φ3 = 0.758.
After generating an initial microstructure and interchanging
the different phases sufficiently, the reconstructed image
shown in Fig. 4(a) has similar morphological information
as that of the original image. And the comparisons of the
three independent two-point correlation functions between the
reconstruction and the real image are plotted in Figs. 4(b)–
4(d), respectively. The result shown in Fig. 4 illustrates that
the realization of the three-phase microstructure has similar
morphological information as the original image and their
correlation statistics match fairly well.

B. Standard and hierarchical reconstructions on the binary
structure

An equilibrium distribution of binary hard disks shown
in Fig. 5(a) will be studied by the standard and hierarchical
reconstruction methods. In the standard reconstruction, a
random initial structure (the same volume fractions of different
phases with that of the original image) is generated first.
Then, the different phases of the structure are chosen and
are interchanged. After interchanging the different phases
sufficiently, the optimum structure is obtained. A realization
of the standard reconstruction is shown in Fig. 5(b). In the
procedure of hierarchical reconstruction, its corresponding
coarser-scale representations are generated first as the refer-
ence images, displayed in Figs. 6(a)–6(d). Then, according
to the phases of the reference image, different two-point
correlation functions are chosen as the energy function: Only
one independent two-point correlation function P11 is needed
for the reconstruction of the two-phase microstructure, and
three independent two-point correlation functions of P11, P12,
and P22 are needed as the energy function for the reconstruction
of the three-phase structure. Annealing starts at some coarse
initialization structure (32 × 32) and progressively performs
at finer scales (each scale is treated as a separate annealing
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FIG. 6. (Color online) (a) is the original image at a full resolution
of 256 × 256. (b) 128 × 128, (c) 64 × 64, and (d) 32 × 32 are its
corresponding coarser scales. (e) 32 × 32, (f) 64 × 64, (g) 128 × 128,
and (h) 256 × 256 are the results of the hierarchical reconstruction.
(i) is the comparison of the two-point correlation function for both
the reconstructed structures and the original structure.

FIG. 7. (a) and (e) are two random reservoir sandstones at full
resolutions of 512 × 512. (b) 256 × 256, (c) 128 × 128, (d) 64 × 64,
(f) 256 × 256, (g) 128 × 128, and (h) 64 × 64 are their corresponding
subsamplings.

procedure), constrained by the result of the previous scale
according to (17). All pixels satisfied (17a) are ignored in
the annealing sampler as their values have previously been
stable. As scale s increased, only a small part of the pixels
need to be considered in the annealing sampler. The results
of hierarchical reconstruction are shown in Figs. 6(e)–6(h).
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FIG. 8. The results of the hierarchical reconstruction for the
image in Fig. 7(a). (a) 64 × 64, (b) 128 × 128, (c) 256 × 256,
and (d) 512 × 512.

Note that both reconstructed structures can match the original
correlation function very well [displayed in Fig. 6(i)] but yet
have a significantly different structure. This nonuniqueness is
because the lower-order correlation function generally does
not contain complete morphological information.

The hierarchical reconstruction of the real random media
is something we are interested in. Two random reservoir
sandstone images are chosen, shown in Figs. 7(a) and 7(e).
Their corresponding coarser-scale representations are dis-
played in Figs. 7(b)–7(d) for Fig. 7(a) and Figs. 7(f)–7(h)
for Fig. 7(e), respectively. Annealing begins at some coarse
initialization structure (64 × 64) and progressively performs
at finer scales. The results of the hierarchical reconstruction
for Figs. 7(a) and 7(e) are shown in Figs. 8 and 9, respectively.
The synthesis results of Figs. 8 and 9 exhibit the similar
features observed in the reference images, except that the void
regions typically are more rounded in shape. This implies that
the hierarchical annealing method can reproduce the salient
morphological information of the original image using the
two-point correlation functions. And the comparisons of the
two-point correlation function between the reconstructions
and the real images are plotted in Figs. 10(a) and 10(b),
respectively. Note that the realizations based on the method
described here have similar morphological information as
that of the original images and their correlation statistics are
statistically indistinguishable.

C. The reconstruction of the 3D microstructure

The method of hierarchical reconstruction has been per-
formed on two random reservoir sandstone images, and the

FIG. 9. The results of the hierarchical reconstruction for the
image of Fig. 7(e). (a) 64 × 64, (b) 128 × 128, (c) 256 × 256,
and (d) 512 × 512.

results illustrate that our presented method can reproduce a
similar distribution as the original image. The main aim of
our presented method is to solve the high demand for compu-
tational resources and to enhance the rate of convergence for
the reconstruction of the high-resolution microstructure. In the
following, this method is applied to reconstruct the reservoir
sandstone at a very high resolution of 256 × 256 × 256
where each of the pixels constitutes a cubic region of size
7.5 × 7.5 × 7.5μ m3. For the reconstructed 3D microstructure,
we calculate its permeability and compare it to that of the real
sandstone.

Figure 11 shows the procedure for the hierarchical re-
construction, which is started at the coarse initialization
structure (32 × 32 × 32). In the intermediate scales in Fig. 11,
gray pixels, whose values have not yet been stabilized, are
present on the interface between black and white regions.
The progressive thinning of the gray mediation demonstrates
the significance in the reduction in computational complexity
since the number of sites sampled at scale s is limited directly
by the number of gray pixels presented in the converged result
at scale s − 1. The number and proportion of the pixels to be
visited in a single pass of the annealer as the scale increases
from (32 × 32 × 32) to (256 × 256 × 256) for Fig. 11 are
plotted in Fig. 12. As seen in Fig. 12(b), the pixels to be visited
are normally only a small fraction of the total, especially at
fine scales.

The most significant advantage of the presented model
is the reduction in the computation time in the process of
reconstruction. The comparison of the energy vs computation
time between the standard and the hierarchical sampling
is shown in Fig. 13(a). It is noted that the energy of
the hierarchical annealing drops rapidly and the energy is
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FIG. 10. (Color online) A comparison diagram of the two-point
correlation function for the original and the reconstructed images. (a)
is the comparison of the two-point correlation function for Figs. 7(a)
and 8(d). (b) is the comparison of the two-point correlation function
for Figs. 7(e) and 9(d).

converged very low compared with that of the standard anneal-
ing. The energy “spikes” in the hierarchical annealing curve
are due to synthesis from one scale to the next. Immediately
after synthesis, local configurations are at a high energy due
to the pixels to be visited in random configurations. Since
these high energies are due to local errors or inconsistencies,
they are remedied easily, and energy levels immediately
drop as the sampling algorithm progresses. Several different
cooling schedules for the hierarchical annealing are shown in
Fig. 13(b). It shows that all the reconstructions are completed
in a short time and their final energies are in the same level,
which illustrates that these cooling schedules are slow enough
for the reconstruction system. Both Figs. 13(a) and 13(b) are
presented with log-log scales. However, none of the SA results
are able to match the results of HSA for both computational
time and final energy.

In order to illustrate that the reconstructions quantitatively
are successful, we will seek to measure and to compare their
effective properties. The permeability K , which reflects some
level of connectedness information about the pore space, is
chosen as the effective property. Here we use pore network

FIG. 11. (a) Training image and the results of the hierarchical
reconstruction and the standard reconstruction.(a) Training image at
256 × 256, (b) initial ternary result at 32 × 32 × 32, (c) ternary result
at 64 × 64 × 64, (d) ternary result at 128 × 128 × 128, (e) final result
at 256 × 256 × 256, and (f) binary result. The unstable regions are
represented in gray.

modeling to calculate the permeability K of the porous
medium. In pore network modeling, the void space of the
porous medium is represented first at the microscopic scale by
a lattice of pores connected by throats [28,29]. Then, Darcy’s
law is applied on the pore network to calculate the permeability
K of the porous medium,

K = QμL

A �P
, (20)

where A is the cross-sectional area of the domain, L is the
length, and μ is the fluid viscosity. Q and �P are the flow
rate and the pressure drop, respectively, when we specify a
constant pressure drop across the network. Table I compares
the permeability of the reference 3D microstructure to those
of the reconstructions. It can be seen that the permeabilities of
the reconstructions have similar values to that of the reference
sandstone. But the permeability of the reconstructions is lower
than that of the actual sandstone, which indicates that the
reconstructed structures have, in general, a lower degree of
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FIG. 12. The number and the proportion of pixels to be visited in
a single pass of the annealer as the scale increases from 32 × 32 × 32
to 256 × 256 × 256.

connectedness than that of the actual sandstone. The reason
is that the two-point correlation function is not sufficient to
capture full connectedness information.

V. CONCLUSION

In this paper, a stable-phase method for hierarchical an-
nealing has been presented, which solves the high demand for
computational resources associated with simulated annealing
for the reconstruction of large-scale binary porous media
images. In our presented method, the two-point correlation
function, obtained from a 2D reference image, is used as
the morphological descriptor. Because our presented method
contains the reconstruction of three-phase and two-phase struc-
tures, we consider reconstructing the three-phase structures
based on standard annealing and the two-phase structures
based on standard and hierarchical annealings. From the result
of the 2D reconstruction, we find that the reconstructions of
the three-phase and two-phase structures generally capture
the salient features of the reference structures. However,
even though the correlation functions of the reference images
and that of the generations match fairly well, the recon-

FIG. 13. (Color online) Energy vs computational time (on a
3.30 GHz Intel core i5 class machine): (a) the comparison for standard
annealing and hierarchical annealing; (b) several cooling schedules
for hierarchical annealing.

structions still deviate from the reference structures. The
reason is that the low-order correlation function generally
does not contain complete morphological information. For
the reconstructed 3D microstructure, we calculate its per-
meability and compare it to that of the real sandstone. The
result indicates that the reconstructed microstructure cannot
capture the full connectedness of the actual sandstone. The
reason is that the lower-order correlation function cannot

TABLE I. The permeability of the reference and the reconstructed
sandstone.

Permeability (K)
Structure The volume fraction (φ1) (mD)

Reference sandstone 0.169 3010.3
SA reconstruction 0.168 2218.8
HSA reconstruction 0.168 2101.6
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capture full connectedness information. To obtain the more
accurate microstructure, higher-order information should be
incorporated, which will be discussed in the next paper.

The most significant advantage of our presented model
is the reduction in the number of exchanged pixels by
the annealer in the overall hierarchy. This paper presents
the results of the reduction experienced for the generations
of 3D microstructures. Only 5.21% of the pixels in the
overall hierarchy need to be considered for sampling by the
annealer: an order of magnitude reduction in the computational
requirements. And the assertion that black and white never
change at finer scales prevents large structures created at

coarse scales from eroding when annealed at finer scales at
high temperatures. These are the reasons that our presented
method of orders of magnitude improves the convergence rate
and the final energy.
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