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Coarse-grained particle model for pedestrian flow using diffusion maps
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Interacting particle systems constitute the dynamic model of choice in a variety of application areas. A
prominent example is pedestrian dynamics, where good design of escape routes for large buildings and public
areas can improve evacuation in emergency situations, avoiding exit blocking and the ensuing panic. Here we
employ diffusion maps to study the coarse-grained dynamics of two pedestrian crowds trying to pass through a
door from opposite sides. These macroscopic variables and the associated smooth embeddings lead to a better
description and a clearer understanding of the nature of the transition to oscillatory dynamics. We also compare
the results to those obtained through intuitively chosen macroscopic variables.
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I. INTRODUCTION

Understanding the dynamics of interacting particle models
is desirable in many contexts, including the modeling of
pedestrian crowds, a subject of high social relevance. This type
of knowledge can be used for the design of emergency exits and
evacuation strategies, and to improve the flow of large crowds
of pedestrians in nonemergency situations, e.g., at airport
security, large conferences, or shopping malls. Pedestrians can
be usefully described as particles, interacting with each other
via so-called social forces as well as with the environment
(see Refs. [1,2] and [3–6] for further references on pedestrian
and many-particle models). This description naturally leads to
the study of systems of ordinary differential equations with
a large number of dimensions, i.e., four per particle (two
positions and two velocities on the plane). In Ref. [7], a typical
scenario where two pedestrian crowds try to pass through a
door from opposite sides [1] is studied: Using the door width
as a bifurcation parameter, a critical door width can be found,
at which the system undergoes an apparent macroscopic Hopf
bifurcation: the system transitions from a blocked state to an
oscillating state with pedestrians from the two sides alternating
in crossing through the door. One can simulate this system at
the level of interacting individuals, yet the dynamics exhibit an
inherent separation of time scales, suggesting the possibility to
successfully describe the system by coarse-graining methods.
The derivation of a successful collective motion model in terms
of good macroscopic variables has, however, proven to be
difficult [7].

In general, many dynamical systems (including interacting
particles, like our pedestrian model) are characterized by a
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separation of scales. In such cases, it is sometimes possible
to describe and understand the motion of large ensembles
of particles in a collective sense through the derivation of
explicit equations for the relevant leading statistics (e.g.,
moments). At intermediate system sizes, the infinite particle
limit assumptions that underpin such collective equations
become inaccurate, yet separation of time scales and the
associated convergence of the high-dimensional dynamics
to a low-dimensional, slow manifold (cf. Fenichel’s theory
[8], see also the slaving principle [9,10]) are still present. It
then becomes crucial to determine good sets of macroscopic
observables that parametrize this manifold; these are the
variables in terms of which collective equations can now be
formulated (closed). The same issue arises in equation-free
methods [11,12], where a so-called restriction operator maps
the high-dimensional variables to a useful low-dimensional
representation. Macroscopic observables that are good candi-
dates for low-dimensional descriptions may be known from
experience, e.g., low-order moments of a particle distribution,
yet for many new systems it is desirable to find such variables
in a systematic and algorithmic fashion based on simulation
or experimental data.

This links our particle modeling with machine learning
(and, in particular, with manifold learning techniques): given
observations of trajectories of our model we must determine
how many, and then which slow variables are sufficient to
describe the collective dynamics of pedestrian flow.

Classical linear approaches for gaining insight into large-
scale, complicated data structures include principal component
analysis (PCA) [13] and multidimensional scaling (MDS)
[14,15]. These methods have been successfully applied to
numerous problems in physics and chemistry (see, e.g., the
monograph [16] and references therein). PCA and MDS,
being linear methods by construction, since they employ linear
combinations of the data set, are not able to economically
recover complicated nonlinear structures in a data set. This has
led to the invention and development of nonlinear data-mining
techniques such as isomap [17], local linear embedding (LLE)
[18], and spectral methods [19,20].
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TABLE I. Model parameters.

Number of pedestrians Np 200
Terminal velocity v0 1.5 m s−1

Reaction time τ 0.22 s
Pedestrian-pedestrian repulsion V 15 m2 s−2

Pedestrian-wall repulsion VB 10 m2 s−2

Pedestrian-pedestrian length scale σ 1 m
Pedestrian-wall length scale R 2 m
Corridor width Cw 5 m
Corridor length Cl 45 m

In this paper, the recently developed nonlinear manifold
learning method of diffusion maps [21,22] is used to analyze
pedestrian model data, focusing on the oscillatory regime, at
a macroscopic level. Systematically selecting a few leading
diffusion map components naturally leads to user-independent,
data-based dimension reduction; this is particularly helpful
in problems for which experience and empirical insight in
appropriate variable selection is lacking.

The remainder of the paper is structured as follows.
The pedestrian model and the diffusion map algorithm are
introduced in Secs. II and III, respectively. In Sec. IV the
diffusion map representation of the pedestrian model is
computed and the results are compared with those in Ref. [7].
Section V contains a brief discussion and an outlook for future
applications.

II. PEDESTRIAN MODEL

The particle model from Ref. [7] is used to study the
behavior of pedestrians in a long, narrow corridor, trying to
pass through a door, modeled as an opening in the middle
of the corridor, from opposite sides. The observed behavior
drastically depends on the door width w. A small door blocks
the corridor, while a larger door gives rise to oscillatory
behavior, with crossings from alternate sides, in an apparent
Hopf bifurcation. The model is a variation of the model
of Helbing and Molnár [1,2], who studied the behavior of
pedestrians affected by social forces, extended by noise in
order to avoid deadlock situations.

According to the social force model, the equations of
motion for a particle (a pedestrian) is given as

z̈i = F0
i +

∑
j

fij +
∑
B

fiB + ni , (1)

where zi ∈ R2 is the ith particle position i = {1, . . . ,Np},
and Np is the total number of particles. The four different
contributions in (1) are the direction force F0

i , the pedestrian-
pedestrian interaction fij , the pedestrian-wall interaction fiB ,
and the noise ni . They are described in more detail in
Appendix A. All model parameters can be found in Table I.
Throughout the paper, numerical values are given in units of
the characteristic length scale for the pedestrian interaction
σ [(A2)].

Since pedestrians interact with the environment via the wall
force fiB , the geometry of the corridor plays an important role.
In Ref. [7] a corridor of length Cl and width Cw with a door of
width w in the middle of the corridor is studied (Fig. 1). Two
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FIG. 1. (Color online) Snapshots showing the oscillatory dy-
namics of the pedestrian motion for w = 0.6 > w∗ = 0.55. After
initialization, the pedestrians form two milling crowds one on each
side of the door (t = 6 s). At t = 11 s, the (red circle) crowd on the
right begins moving through the door, leading to a net flux to the left.
After some time, pressure from the right-hand side of the door has
decreased enough so that the (blue dot) crowd on the left can break
through (t = 21 s). At t = 36 s, the situation is reversed, and now
the red circle crowd can start moving through the door again. This
behavior repeats in a periodic fashion, analyzed in Ref. [7].

crowds of pedestrians try to pass the door from opposite sides
and the two crowds have the same population size Np/2. For
pedestrians starting on one side of the door, the target direction
e0
i is the center of the door. At the moment pedestrian i passes

the door, e0
i is updated to point to the end of the corridor,

i.e., e0
i is chosen parallel to the corridor longitudinal axis.

The number of pedestrians is conserved by applying periodic
boundary conditions.

In Ref. [7], a coarse equation-free bifurcation analysis was
presented using the macroscopic variables

m = 1

2
(mred + mblue) and ṁ = dm

dt
, (2)

where

mα =
∑

i∈α κ(xi)xi∑
i∈α κ(xi)

(3)

is a weighted average for pedestrian group α (red, blue)
using the weighting function κ(x), which gives more weight
to pedestrians close to the door. The particular choice of
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macroscopic variables was a compromise between filtering for
noise reduction and clarity of the ensuing macroscopic descrip-
tion. The more natural choice m = (mred − mblue)/2 and ṁ as
macroscopic variables gave rise to a noisy macroscopic signal.
Further analysis by tools from dynamical systems theory, e.g.,
bifurcation analysis, was hindered by this noise. Therefore, (2)
has been chosen to study the pedestrian behavior (see Ref. [7]
for a detailed discussion). An apparent Hopf bifurcation is
detected at a door width w∗. For w < w∗, the door is too
small for pedestrians to pass. They gather in front of the door
in what (neglecting small fluctuations of ni) corresponds to
a macroscopic equilibrium. For w > w∗, the door is large
enough to let pedestrians pass through, leading to macroscopic
oscillations (Fig. 1). Moreover, the fast time scale is observed
during the early stages of the transient after initialization
(t = 0). These transients decay over a time scale of ≈3 s,
while the oscillations have a longer time scale of 40 s. For
systems with a smaller gap between time scales, transients
take longer. Those systems can still be analyzed by means of
diffusion maps using longer simulations.

The selection of variables in Ref. [7] was intuitive and may
well depend on the authors. The purpose of the following is to
find macroscopic variables intrinsic to the problem data; we
also expect these variables to result in good noise filtering.

III. DIMENSION REDUCTION BY DIFFUSION MAPS

Diffusion maps were recently proposed (see Refs. [21–23])
as a nonlinear manifold learning/dimension reduction tech-
nique. The goal is to find a (nonlinear) coordinate trans-
formation (i.e., a diffusion map), between the data space
and a (low-dimensional) embedding space; the Euclidean
distance in the embedding space approximates the diffusion
distance (defined in Appendix B). Briefly, and qualitatively,
the diffusion distance between two data points is small if it
is easy to transition between them in a well-defined diffusion
process on a graph determined by the data (see Appendix B
for details).

If the high-dimensional data happen to lie on (close to) a
low-dimensional curved manifold, diffusion maps have been
used to extract a parametrization of this manifold and gain
insight into the geometric structure underlying the data (see,
e.g., Refs. [24–30]). Details of the procedure for diffusion map
computation, highlighting the dimension reduction aspect, are
presented in Appendix B; they are intended mainly to introduce
notation, and are not an extensive review on diffusion maps.

We focus on data resulting from dynamic simula-
tions/observations (possibly multiple ones) of dynamical sys-
tems (here, our particle-based pedestrian model); the diffusion
maps computation is a purely postprocessing step. We ignore
the temporal structure of the data (which also allows us
to merge different trajectories); for the exploitation of time
information in the form of delay reconstructions in a diffusion
map context see Ref. [31]. The ordering in time of data
points xi = x(ti), taken from a trajectory x(t) at discrete times
ti = i�t,i ∈ {1, . . . ,N}, will thus not influence the diffusion
map construction. The only quantities of interest are the
pairwise distances of the points in data space; it is thus possible
to analyze the structure of data when the underlying equations
of motion are unknown.

dij

Dij

ε̃

FIG. 2. (Color online) One-dimensional manifold embedded in
R2. The data points are created using (4). ε̃ is representative of
a characteristic distance between data points on the manifold [red
(dark gray) segment]. dij denotes the Euclidean distance between
two points i and j (dashed line). Although the Euclidean distance is
small between these points, the geodesic distance along the manifold,
denoted by Dij , is much larger [green (light gray) segment], making
it a much better measure of the actual closeness of the two points.

A standard toy illustration example is the swiss roll data set
in Fig. 2 (cf. [32]). An embedding into R2 is given by

(x1,x2) = (θ cos θ,θ sin θ ), (4)

where θ ∈ [0,4π ]. Assume that the two-dimensional data
points on this sampled manifold (black dots in Fig. 2) are
the result of experimental observations or of a dynamical
simulation. Although this manifold lies in two dimensions,
it is only one-dimensional, i.e., both coordinates are functions
of a single variable, θ , that parameterizes the curve. Clearly,
any linear dimension reduction method, e.g., PCA and MDS,
would fail to detect the one-dimensional structure of the
manifold: projection of the data in Fig. 2 on any line would mix
the order of data points on the manifold. Techniques such as
diffusion maps, as we briefly outline below, can successfully
perform this reduction.

To determine the intrinsic data geometry from such a data
set X, diffusion maps use Markov chains to describe a diffusion
process on the data set. Pairwise Euclidean distances dij are
computed for all data points, and weighted (soft-thresholded,
using the scaling parameter ε) through the diffusion kernel Aij

[(B3) in the Appendix B] to give pairwise affinities between
the points. The rows of the resulting affinity matrix A are
normalized to yield a Markov transition matrix M between
points in the data set [(B4)]. The time-t diffusion distance
Dt is defined in terms of this Markov matrix; it is small, if
the t-step transition probability in the Markov chain is high
[(B5)]. The transformation [(B10)] ensures that the Euclidean
distance in diffusion map space is (an approximation of) the
diffusion distance between the data points [(B7)].

For the procedure to yield informative results several (often
problem-dependent) considerations apply; if, for example, in
Fig. 2 the scaling parameter ε in (B3) is not comparable to some
characteristic distance ε̃ between the data, but even larger than
the dij shown, points will be identified as close neighbors that
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FIG. 3. (Color online) Determining appropriate ε values for ob-
servations over a range of door widths (w ∈ [0.5,0.7] with �w =
0.01 and 500 observations for each w). (a) The number L of elements
in the distance matrix d smaller than ε is plotted as a function of
ε. The limiting behavior (5) is shown as the dashed black lines.
In between these limits, L(ε) shows two scaling regimes, namely
[4 × 10−4, 2 × 10−3] and [2 × 10−2, 2 × 10−1]. To clarify this, the
sparsity pattern of the distance matrix d is inspected for two values
of ε, ε = 2 × 10−3 representing the blocked regime (w < w∗) and
ε = 0.03 representing the oscillating regime (w > w∗). (b) and
(c) show the parameter-ordered matrix elements (small w: top left,
large w: bottom right), which are smaller than ε (dots). For ε = 0.002
[(b)], the dots are all located in the upper left corner, denoting blocked
states. The oscillating regime is visible at ε = 0.03 [(c)]. Oscillating
state distances do not register in the left panel, since they are larger
than ε = 0.002.

intuitively should not be. Selection of an appropriate value
for ε in the kernel (B3) is also problem/data dependent; one
can arrive at such a value through investigation of the scaling
behavior of the pairwise distances dij . Let L(ε) be the number
of dij smaller than ε. For large ε all dij are smaller, while for
small enough ε only the diagonal dii is smaller (actually, zero):

lim
ε→∞ L(ε) = N2, lim

ε→0
L(ε) = N ; (5)

clearly, ε should be chosen between those limits. This behavior
is illustrated for the pedestrian flow example in Fig. 3, and will
be discussed in more detail below. From scaling arguments,
the dimension of the manifold can be estimated from the slope
of L(ε) on a logarithmic plot [33].

Another important consideration is the relative scaling of
the data coordinates so that the (weighted) Euclidean distance
in the numerator of the diffusion kernel is informative for the

problem considered; this would arise for example in chemical
composition data where different components are present at
proportions differing by orders of magnitude.

Diffusion map computation for large data sets can
be computationally expensive. Naive, nonsparse storage
of the Markov matrix grows like O(N2). The computation
of the k + 1 largest eigenvectors can be performed taking
advantage of the sparsity of the matrix d (cf. [31]). When
the diffusion map coordinates for a new data point xN+1 are
needed, adding the point to the data set and repeating all
diffusion map computations from scratch is not necessary.
Indeed, one can estimate the diffusion map coordinates of
this N + 1st out-of-sample point using the Nyström extension
[25,34]: Using (B10), the N + 1st coordinate of eigenvector
� i is approximated as

� i,N+1 = 1

λi

N∑
l=1

MN+1,l� i,l , (6)

for i = 1, . . . ,k. It is only necessary to compute a single new
row of M , thus saving computation time.

IV. RESULTS

We now turn to the application of the diffusion map
algorithm (Sec. III) to specific scenarios of pedestrian flow
(Sec. II). The section is structured as follows: First a metric
on the high-dimensional data space is introduced, in order to
construct the distance matrix in (B2). Then we use diffusion
maps to obtain a two-dimensional embedding of the dynamics
for fixed door width, w = 0.7 > w∗, and compare to the
results in Ref. [7]. Finally, a diffusion map embedding for
data points assembled for different values of w is computed.
This allows us to characterize the bifurcation and compare the
Hopf bifurcation points obtained from the two approaches.

A. Pedestrian model data

A data point xj , taken from a trajectory of (1), contains the
positions and velocities of all pedestrians

xj = [Z1, . . . ,ZNp
] ∈ Rn, (7)

where Zk = [zx,k,zy,k,żx,k,ży,k] for pedestrian k, and
n = 4Np. In a preprocessing step, the data points are trans-
formed componentwise to the interval [0,1] to make them
comparable. More precisely, let G = {x,y,vx,vy} denote the
set of positions and velocities and C = {red,blue} denote the
color (grayscale), i.e., crowd, of the pedestrian, respectively.
We choose the pedestrian labels such that Ired = {1, . . . ,Np/2}
and Iblue = {Np/2 + 1, . . . ,Np} denote the two index sets for
the red (circles) and blue (dots) pedestrians, respectively. In a
first transformation step, we shift the minimum to zero by

z̃g,i = zg,i − min
g,c

∀i ∈ Ic, g ∈ G, c ∈ C, (8)

where ming,c = mini∈Ic
zg,i for g ∈ G,c ∈ C. Afterwards, the

data is scaled with

˜̃zg,i = z̃g,i

maxg,c

∀i ∈ Ic, g ∈ G, c ∈ C, (9)
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where maxg,c = maxi∈Ic
z̃g,i �= 0 for g ∈ G,c ∈ C, onto the

interval [0,1]. We drop the tilde in the following for notational
convenience.

In the new data set X, the pedestrians are still labeled. Our
selection of a pairwise distance between configurations should
be invariant to particle label permutations. One could use, for
example, an earth-mover’s distance [35] for this purpose; we
choose instead a metric easier to compute, employing the mean
and centered moments of four features of the data set: red
circle/blue dot x,y positions and red circle/blue dot velocities.
A new data vector

x̃i = [〈Z〉g,c,m2(Z)g,c, . . . ,m100(Z)g,c] ∀g ∈ G, c ∈ C,

(10)

is constructed, where 〈·〉g,c and mi(Z)g,c is shorthand notation
for the mean and ith centered moment in a list of all
feature-color combinations, respectively. The resulting data
set is defined as in (B1)

X = {x̃i ∈ Rn|i = 1, . . . ,N}, (11)

where n = 800. Note, that the dimension of the data points
is conserved. This pre-processing step is only applied to
compute the distance between snapshots without labels of the
pedestrians. The distance between two observations x̃i ,x̃j ∈ X

can then be defined as

dij = ‖x̃i − x̃j‖. (12)

Diffusion maps will allow us to reduce this 800-dimensional
data set to a two-dimensional representation of the dynamics.

B. Length scale selection

Before the algorithm from Sec. III can be applied, an
estimate for the length scale ε is required. The function L(ε)
[(5)] is investigated for data points obtained over a range of
w values (Fig. 3). In this figure, the limiting behavior for
ε → ∞ and ε → 0 is clearly visible. Between the two limiting
plateaus, a third one exists for ε ∈ [2 × 10−3,3 × 10−2]. It
separates two scaling regimes. The scaling regime for smaller ε

is representative of blocked state dynamics, when the particles
simply jiggle on each side of the door, and their configurations
do not change appreciably. The larger ε regime is representa-
tive of the oscillatory dynamics, where appreciable variations
between successive data snapshots arise. This is echoed in the
size of the elements dij plotted in matrix format (bottom panel
in Fig. 3). In order to rationalize the different regimes, the
matrix elements of d are ordered by the door width parameter,
i.e., small w observations are found to the top left and large w

observations towards the bottom right of Fig. 3 (bottom panel),
respectively. The small distances [smaller than ε, marked in
red (dark gray)] between blocked state configurations originate
from model noise. Note that distances between blocked and
oscillating states are typically large [empty regions at the
top right and bottom left corner in Fig. 3 (bottom panel),
respectively]. After inspection of this figure, we chose the
fixed value ε = 0.03 for all subsequent computations.
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FIG. 4. (Color online) diffusion map embeddings for three tra-
jectories in the blocked regime (w = 0.4 < w∗), including transients.
The inset magnifies the region of the (noisy) final state. Color
(grayscale) indicates the different trajectories of the system.

C. Diffusion map embedding

We first analyze, using diffusion maps [and, in particular,
the one-step diffusion, i.e., t = 1 in (B5) and (B10) from
Appendix B], the blocked regime for small door widths
w < w∗. Here, the pedestrians congregate on both sides of the
door without being able to pass through it. Initial transients in
diffusion map coordinates for this regime are shown in Fig. 4
for 100 s and �t = 0.1 s. Figure 4 shows the two-dimensional
embedding from the blocked regime (w < w∗). The axis labels
follow the naming in previous literature, where �j on the axes
denotes the j th component of ŷ [(B10)], i.e., the component
in the direction corresponding to the j th largest eigenvalue
(after the trivial one at 1). It is clear in Fig. 4 that, after an
initial transient, the data points become randomly distributed
in diffusion map space; the spread of the ball in the inset is
indicative of the noise in the simulation.

The picture changes drastically when analyzing a trajectory
for, say, w = 0.7 > w∗, all other simulation parameters being
kept constant. Now, a particle simulation over 500 s with
�t = 0.1 s is used, resulting in 5000 observations. Initial
transients are ignored in the remainder by using the last 3500
data points only. The resulting two- and three-dimensional
diffusion map embeddings are shown in Fig. 5.

The third component can be written as a function
�3(�1,�2), and therefore a two-dimensional embedding is
sufficient to describe the long-term dynamics. These results
will later be compared to the original ones in Ref. [7] in
Sec. IV D.

Finally, the diffusion map embedding for data points taken
from trajectories over a range of door widths w ∈ [0.5,0.7]
(sampled with �w = 0.01) is computed. Each trajectory was
now computed for 5000 time steps and subsampled: every
third data point of the last 1500 time steps was used for the
embedding. Since the periodic orbits have a period of about
40 s, this covers approximately four periods and therefore
yields enough data for a good embedding. The resulting matrix
size (10500 × 10500) is close to the limit of what can be rou-
tinely handled by MATLAB on a workstation [36] without using
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FIG. 5. (Color online) diffusion map embedding of data in the
oscillating regime (w = 0.7 > w∗). The last 3500 data points of a
trajectory (sampled with �t = 0.1) are shown. A periodic orbit is
clearly visible in the �1−�2 plane. Big red (dark gray) dots denote
points in diffusion map space for which characteristic microscopic
states are included as surrounding insets in the figure. �3 in the
three-dimensional embedding can be written as a function of �1

and �2.

special algorithms for memory optimization. The resulting
embeddings are shown in Fig. 6. All possible two-dimensional
projections as well as the full three-dimensional embedding for
the first three eigenvectors are shown.

The color (grayscale) here encodes the corresponding door
width of the data points [blue (black and light gray): w = 0.5,
red (dark gray): w = 0.7]. It is clearly visible in the (�2,�3)
plane, that a transition from a blocked state [blue (black) points
at (0,0)] to an oscillating state occurs. The amplitude of the
oscillations increases with door width, in accordance with
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FIG. 6. (Color online) Diffusion map embeddings computed
from a data set containing points for different parameter values w.
The parameter range for the door width is 0.5 to 0.7 with �w = 0.01.
Every third data point from the last 1500 iterations for each parameter
value has been used, resulting in a data set with 10500 data points.
Various projections of the data set are shown in (a)–(d) in diffusion
map space. The color (grayscale) encodes the door width from
w = 0.5 [dark blue (black and light gray)] to w = 0.7 [red (dark
gray)]. The �1 coordinate roughly encodes the w regime. The increase
in oscillation amplitude is best visible in the (�2,�3) projection [(c)],
showing periodic solutions for several door widths. As in Ref. [7],
the amplitude of the oscillations grows with increasing w. The full
three-dimensional representation is shown in (d).
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ṁ

(b)

−0.1 0 0.1

−0.05

0

0.05

PCA1

P
C

A
2

(c)

−0.1 0 0.1
−0.05

0

0.05

PCA1

P
C

A
3

(d)

FIG. 7. (Color online) Coarse phase portraits using (a) diffusion
maps, (b) the intuitive variables of Ref. [7] and (c), (d) principal
components. Data points along a limit cycle are shown for the last
400 time steps of a 5000 time step simulation. Color (grayscale)
indicates time (see text). There is a clear one-to-one correspondence
between (m,ṁ) and (�1,�2). The diffusion map embedding appears
to remove the corners in (b) [red (dark gray) and green (light gray)
dots]. Two-dimensional projections of phase portraits in terms of
leading PCA coefficients (c) and (d) are also included for comparison.
The two-dimensional diffusion map embedding has the smoothest
appearance.

the findings in Ref. [7]. One can argue, from inspection of
the different projections, that �1 encodes the parameter w,
distinguishing small door widths (small values of �1) from
large ones (large values of �1).

D. Comparison with other macroscopic representations

We now compare the macroscopic representation of
Ref. [7], which they denoted (m,ṁ), with the diffusion map
representation (�1,�2). The last 400 time steps of a 5000
time step simulation, covering one oscillation period for a
door width w = 0.7 are used for this comparison in Fig. 7.
Diffusion maps do not consider time labeling of the data
points, yet to assist the interpretation of these results (and
since, here, the data come from a single long trajectory, so that
the time labels are actually available) we use color (grayscale)
in these embeddings to encode time. Blue (black) data points
lie at the beginning of the trajectory, and the color (grayscale)
progresses over green (light gray) to red (dark gray).

There is a clear one-to-one correspondence between (m,ṁ)
(arrived at by the authors of Ref. [7] through a combination
of intuition and experience) and the diffusion map coordinates
(�1,�2) (which were arrived at automatically based on the
intrinsic geometry of the data). It is also interesting that
the diffusion map representation appears to give well-filtered
phase portraits, less sensitive to noise than the (m,ṁ) but also
the principal component-based ones; this actually enhances
the computational quantification of the underlying Hopf
bifurcation through Poincaré map sections.

One might consider as a shortcoming of the diffusion
map approach the fact that, as new particle simulation data
become available, one does not have explicit formulas for
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FIG. 8. (Color online) Phase space trajectories in diffusion map space (top), reconstructed through the Nyström extension [(6)] from new
data points, compared to those in terms of the variables in Ref. [7] (bottom); transients are shown for the blocked regime w = 0.53 (left), just
after the onset of oscillations for w = 0.58 (middle), and for w = 0.65 (right). For w = 0.53, the stationary state is stable and the trajectories
approach this stable equilibrium; for w = 0.58 and w = 0.65 the trajectories spiral away from the unstable equilibrium towards the coarse limit
cycle. Both embeddings exhibit the same qualitative behavior.

their embedding; in PCA, by contrast, new data on the same
low-dimensional linear subspace can be expressed in PCA
coordinates through a projection with a few simple inner
products. This can be overcome through the use of the Nyström
extension, as long as the new data points remain close to
(have a sufficient number of close neighbors on) the regions
of the low-dimensional manifold already sampled. Figure 8
illustrates this by presenting newly computed transients in
Nyström-reconstructed diffusion map space (top) [and their
counterparts in (m,ṁ) space, bottom] for w = 0.53 < w∗,
w = 0.58 > w∗ and w = 0.65 > w∗. All trajectories were
computed for 2000 time steps. The reference data set for the
Nyström extensions through (6) consists of the data collected
in the previous section over a range of door widths w. The plots
in the variables m and ṁ as well as the plots in �2 and �3

are clearly noisy; it appears that the Nyström extension, while
allowing us to embed the data in diffusion map space, gives
rise to trajectories comparably noisy to the m and ṁ ones.
Smoother trajectories could be obtained by using reference
embeddings computed for a fixed door width. Nevertheless,
both embeddings show the same qualitative behavior, namely
a convergence to a fixed point for w < w∗ and oscillatory
behavior for w > w∗.

E. Transition to oscillatory regime

In order to establish the Hopf nature of the bifurcation at
w∗ = 0.55 proposed in Ref. [7], the amplitude of �2 in Fig. 9 is
plotted against the bifurcation parameter w. The figure clearly
shows the gradual growth and subsequent saturation of the
oscillation amplitude as a function of the door width; there is

relatively little variation in the oscillation period (not shown).
A comparison with the results from a direct simulation in the
variables (m,ṁ) shows the same bifurcation point w∗ = 0.55.
A detailed bifurcation analysis is found in Ref. [7] and is not
the focus of this paper.

Careful inspection of the snapshots of the oscillatory
dynamics shows that the period of the oscillations is influenced
by the return, through the periodic boundary conditions, of
particles that passed through the door in the previous crossing
surge. Small amplitude oscillations (close to the onset of the
instability) correspond to fewer particles crossing in such a
single surge event. If the particles did not have the opportunity
to reenter, the problem would not be a stationary one—the
density of particles congregating at each side of the door
would gradually diminish after every surge, and this would
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FIG. 9. (Color online) Bifurcation diagrams in diffusion map
space (max �2, min �2) (left) and in the (max m, min m) variables
of Ref. [7] (right). Both diagrams are consistent with an apparent
Hopf bifurcation at a critical door width of w∗ = 0.55. The panel in
diffusion map space on the left appears slightly smoother.

013304-7



MARSCHLER, STARKE, LIU, AND KEVREKIDIS PHYSICAL REVIEW E 89, 013304 (2014)

t=180s

t=185s

t=190s

t=195s

t=200s

t=205s

t=210s

−4 −2 0 2 4
−20

0
20

V
(x

)

FIG. 10. (Color online) Potential V (x) over x below the cor-
responding microscopic configuration for different times of the
simulation with door width w = 0.7.

of course affect the switching times between crossings from
alternate sides of the door. To provide an intuitive physical
explanation of the mechanism underlying these switches, we
show, in Fig. 10, a number of snapshots distributed along the
oscillation; for each one of them we have calculated the force
exerted on a colorless test pedestrian positioned on the corridor
centerline by all the surrounding pedestrians. We then plot the
integral of this force as a function of the position along the
centerline, obtaining a sense of a pressure potential felt by
the particle; the gradient of this computed quantity influences
the particle motion. This potential is computed as follows: for
any given fixed snapshot, the test pedestrian is located in a
sequence of positions along the corridor axis, i.e., y = 0 and
x ∈ [−4,4] with �x = 0.05; the force in corridor direction
[(A2)] applied by the other pedestrians, Fx(x), is computed,
and the potential is then obtained as

V (x) = −
∫ x

−4
Fx(x ′)dx ′ (13)

using the gauge V (−4) = 0. Figure 10 interleaves the evolu-
tion of the detailed state and the evolution of the potential over
one oscillation period. We clearly see this pressure potential
building up on the blue left-hand side of the door during the

first couple of snapshots, and then reversing (as now the density
of red circle particles on the red right-hand side of the door is
larger). When, eventually, the blue dot particles that crossed
return through the periodic boundary conditions, the blue dot
particle density on the blue left-hand side of the door is roughly
restored, and the pressure potential repeats.

The interactions of the pedestrians in front of the door
clearly lead to surges through the door from alternate sides;
the occurrence of these surges depends (as we tried to argue
above) on the density of pedestrians in the neighborhood of
the door. The periodic boundary conditions and the return of
pedestrians through them back to the door is important in
replenishing the particle density close to the door, making
the behavior not just alternating, but regularly periodic and
making the instability appear like a Hopf bifurcation. Other
mechanisms of replenishing particle density, without periodic
boundary conditions, such as the random injection of particles
at some average rate, can also lead to regular periodic behavior
by balancing overall particle inflow and outflow. On the
other hand, keeping the densities close to the door effectively
constant (through idealized particle reservoirs) would make the
problem take a bistable switching aspect, with a noise-induced
distribution of switching times.

In all computations in this paper, the number of red circle
and blue dot particles, as well as their intrinsic properties,
were taken to be identical. This makes the oscillation have a
symmetric nature in time: evolving forward for half a period
(coarsely) commutes with reflecting the corridor around the
door (x = 0) and flipping particle colors (grayscales). Such a
symmetry (picturesquely called ponies on a merry-go-round
(POMs) [37,38]) has implications for the bifurcation scenarios
possible [39]. Breaking any of these symmetries would destroy
the POM nature of the limit cycles we observe.

V. CONCLUSION AND OUTLOOK

We have shown in this article that diffusion maps can be
successfully applied to assist the study of pedestrian dynamics.
The pedestrian model is used as a representative example of
a particle system with time-scale separation. Not only does
the use of diffusion maps avoid the need for user-specific
selection of good coarse variables, it also appears here to lead
to filtered, smoother coarse trajectories, which can be helpful
in coarse-grained bifurcation analysis. Our study confirms that
the use of diffusion maps is well suited for studying systems
where intuition about good coarse variables is lacking.

On the other side of the coin, the lack of physical interpreta-
tion of the diffusion map embedding is a nontrivial drawback.
There is clearly an upfront cost in the computation of diffusion
maps, involving the computation of (many) pairwise distances
and some large-scale linear algebra eigencomputations. As
we already mentioned, careful data structuring, fast nearest-
neighbor detection algorithms, and matrix sparsity can help
make this task easier, so that the methods become applicable
to very large data sets.

The automated discovery of good coarse variables is a
crucial enabling technology for multiscale computations, and,
in particular, for the application of equation-free techniques to
new problems. In such computations, the ability to routinely
transform from fine-scale (for us here, particle position and
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velocity) space to coarse-grained (here diffusion map) space
is an important component of the algorithms. And while, as
we discussed, tools like the Nyström extension help in one
direction of this transformation (the restriction to diffusion
map space), the converse transformation (the lifting) is non-
trivial and can involve sophisticated multiscale interpolation
and extrapolation techniques (see for example the discussion
in Ref. [40] and the techniques proposed there).

In our work we implicitly assumed that the appropriate
macroscopic description would be in terms of deterministic,
ordinary differential equations; indeed Figs. 4, 5, and 6 and
our discussion of the Hopf nature of the underlying bifurcation
support this assumption: our system is well modeled by a set
of ODEs (modulo a little noise).

In other problems, however, stochastic effects may well
be more pronounced, and the appropriate coarse description
might be in terms of effective SDEs or the associated effective
Fokker-Planck equations [41]; and while the estimation of
coarse right-hand sides would now include both effective drifts
and effective diffusivities, the role of diffusion maps remains
the same: detect the coarse variables in terms of which the
effective SDEs can be formulated.

It is worth noting that we have already mentioned a version
of our pedestrian problem where such an effective stochastic
reduction might be called for: the constant density case, where
one might expect noise-induced bistable switching to lead to
a distribution of surge times from alternate sides of the door.

While in this paper we reexamined, through a different
approach, phenomena whose existence we already knew, our
pedestrian model still possesses in its parameter space a wealth
of possible behaviors that will pose their own challenges to
data mining and coarse bifurcation computations. We know,
for example, that for large enough door widths lane formation
(the formation of striations in the pedestrian traffic pattern)
will take place. The spatiotemporal nature of this instability
will clearly need more and different coarse variables than the
ones that were sufficient here, and the nature of the underlying
coarse instability is yet to be explored.

Finally, as another interesting avenue of research, we
mention the possibility of using coarse graining in the study
of heterogeneous crowds. Here, we had blue dot and red
circle pedestrians, that were otherwise identical. If the intrinsic
properties of these particles (in the form of preferred target
velocities, different interactions with the walls, different
reaction times and/or perception distances, etc.) are not fixed,
but sampled from a distribution, the problem acquires a new
dimension. Recent developments involving mathematical tools
from uncertainty quantification hold promise towards effective
coarse graining in such heterogeneous problems [42,43].
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APPENDIX A: SOCIAL FORCES
AND MODEL PARAMETERS

The inherent driving force of a pedestrian i is given by its
target direction e0

i and velocity v0. The force F0
i tries to align

the trajectory of the pedestrian to its target direction with

F0
i = τ−1

[
v0e0

i − żi(t)
]
, (A1)

where żi(t) is the velocity of pedestrian i at time t and τ is the
reaction time.

The pedestrian interaction is modeled by the term

fij = f(V,σ,rij )

=
{−V [tan (g(‖rij‖)) − g(‖rij‖)] rij

‖rij ‖ , ‖rij‖ � σ

0, ‖rij‖ > σ.

(A2)

Here, rij is the vector from pedestrian i to j , ‖rij‖ is the
distance between pedestrians i and j , and V is the repulsion
strength. The cutoff length σ reflects the fact that largely
separated pedestrians do not influence each other. g(‖ · ‖) =
π
2 ( ‖·‖

σ
− 1) is introduced as a shorthand notation.

The third term describes the interaction of pedestrians with
walls. Since pedestrians try to avoid collisions with walls, a
repulsion force

fiB = f(VB,R,riB ) (A3)

is introduced. It has the same functional dependence as (A2),
but a different repulsion strength VB and different range
R > σ . The vector riB is the distance vector between pedes-
trian i and the closest point on boundary B.

The last term in (1) is the additive noise, which is introduced
to avoid deadlock situations. It also reflects that people tend to
avoid collisions with other persons by moving to one preferred
side (assuming the pedestrian live in the same country). Here,
we assume that the pedestrians tend to move to the right,
leading to a noise term as

ni = n
‖
i ei + n⊥

i e⊥
i = n

‖
i ei + n⊥

i

(
0 −1
1 0

)
ei , (A4)

where n
‖
i and n⊥

i are the noise components parallel and
perpendicular to the target direction ei , respectively. Both
components are normally distributed with

n
‖
i ∼ N (0,(s‖)2) and n⊥

i ∼ N (0.1s⊥,(s⊥)2) (A5)

where s‖ = 0.00158 and s⊥ = 0.0632. N (μ,s2) is a normal
distribution with mean μ and variance s2.

APPENDIX B: DIFFUSION MAP ALGORITHM

For convenience of the reader and definition of notation,
the diffusion map algorithm is summarized in the following,
see Refs. [21,22] for details. It has been successfully applied
to physical problems, e.g., the description of a driven interface
in an Ising variant model [26] or the study of the dynamics of
animal groups [28].
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Given a set of properly scaled observations

X = {xi ∈ Rn|i = 1, . . . ,N}, (B1)

where N is the number of observations and n is the dimension
of the data, we compute all pairwise distances and arrange
them in the distance matrix d:

dij = ‖xi − xj‖, i,j = 1, . . . ,N. (B2)

Usually, ‖ · ‖ is the Euclidean norm in Rn, but it can also be
chosen to be problem specific [cf. (12), where we use a norm
on moments]. The scaling parameter ε is used to compute the
affinity matrix A as

Aij = exp

(
−d2

ij

ε2

)
. (B3)

Note that large distances in d are being mapped to small
pairwise affinities in A. The rows of A are normalized to
obtain a Markov transition matrix

Mij =
⎛
⎝ N∑

j=1

Aij

⎞
⎠

−1

Aij , (B4)

where Mij is the one-step probability of transitioning from xi

to xj . M therefore defines a diffusion process, i.e., a Markov
chain, on X.

Using M , the time-t diffusion distance Dt between two
points xi ,xj ∈ X is defined as

Dt (xi ,xj )2 =
∑

k

∣∣Mt
ik − Mt

jk

∣∣2

φ0(k)
, (B5)

where

φ0(k) =
∑N

j=1 Akj∑N
i=1

∑N
j=1 Aij

(B6)

is the stationary distribution (cf. [44]). The diffusion distance
Dt measures the difference in probability for transitioning
from state i and j to state k, respectively. If the probabilities
are the same, state k is equally well connected to states i

and j by a diffusion process. (In a continuous analog, Dt

measures the overlap of the two distributions after time t

resulting from initializing with δ distributions centered at
xi and xj , respectively.) The terms are normalized by the
stationary distribution φ0(k), which represents the probability
to find the diffusion process in state k for t → ∞. We then
define a transformation from points xi ∈ X to points yi ∈ Y

such that the Euclidean distance in Y equals the diffusion
distance in X, i.e.,

‖yi − yj‖2 = Dt (xi ,xj )2. (B7)

A termwise comparison with (B5) using pt (xi ,xk) = Mt
ik/√

φ0(k) yields the transformed coordinates y:

yi = [pt (xi ,x1), . . . ,pt (xi ,xN )]T , (B8)

where pt (xi ,xj ) is the probability of transitioning from point xi

to xj in t steps. A useful approximation of this embedding can
be formulated in terms of the eigenvalues and eigenvectors
of M; if the data indeed lie on (or reasonably close to) a
low-dimensional manifold, only a few (say, the first k + 1)
leading eigenvalues/eigenvectors need to be computed

M� i = λi� i , i = 0, . . . ,k, (B9)

where λi > λj for i < j , assuming nondegeneracy of the
eigenvalues. Since M is a Markov matrix, λ0 = 1 and �0 is a
vector containing only entries of 1. The transformation from
data space to diffusion map space, with ŷi ∈ Rk , is given by

xi �→ [
λt

1�1,i , . . . ,λ
t
k�k,i

]T = ŷi , (B10)

where �u,v is the vth component of eigenvector �u. For
k � N this transformation constitutes a dimension reduction
scheme.

Note that for larger t (i.e., when using longer times in
the diffusion process) higher eigenvalues become increasingly
damped as we take their powers; fewer leading (slower)
components of ŷi will then suffice to approximate the data
to a given accuracy. This allows the structure of the data
manifold to be investigated at different scales [45]. This
approach, through its ability to parametrize curved, nonlinear,
manifolds can be more economical in the representation of
data possessing such structure than linear methods (such as
PCA or MDS).
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