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In implicit large-eddy simulation (ILES), energy-containing large scales are resolved, and physics capturing
numerics are used to spatially filter out unresolved scales and to implicitly model subgrid scale effects. From
an applied perspective, it is highly desirable to estimate a characteristic Reynolds number (Re)—and therefore a
relevant effective viscosity—so that the impact of resolution on predicted flow quantities and their macroscopic
convergence can usefully be characterized. We argue in favor of obtaining robust Re estimates away from
the smallest scales of the simulated flow—where numerically controlled dissipation takes place and propose
a theoretical basis and framework to determine such measures. ILES examples include forced turbulence as a
steady flow case, the Taylor-Green vortex to address transition and decaying turbulence, and simulations of a
laser-driven reshock experiment illustrating a fairly complex turbulence problem of current practical interest.
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I. INTRODUCTION

High Reynolds number (Re) turbulent flow complexity
typically involved requires achieving accurate and dependable
large-scale predictions of highly nonlinear processes with
under-resolved computer simulation models. In large-eddy
simulation (LES) [1], the large energy-containing structures
are resolved, smaller structures are spatially filtered out, and
unresolved subgrid scale (SGS) effects are modeled. A crucial
practical LES computational aspect is the need to distinctly
separate the effects of spatial filtering and SGS reconstruction
models from their unavoidable implicit counterparts due to
discretization. Indeed, it has been noted [2,3] that, in typical
LES strategies, truncation terms due to discretization and
filtering [4,5] have contributions directly comparable with
those of the explicit models. Seeking to address the seemingly
insurmountable issues posed to LES by under-resolution, the
possibility of using the SGS modeling and filtering provided
implicitly by the numerics has been considered as an option
generally denoted as numerical LES (e.g., Pope [6]). Arbitrary
numerics will not work for LES: Good or bad SGS physics
can be built into the simulation model depending on the choice
of numerics and its particular implementation.

The monotone integrated LES approach—first proposed
by Boris [7] and Boris et al. [8], incorporates the effects of
the SGS physics on the resolved scales through functional re-
construction of the convective fluxes using locally monotonic
finite volume (FV) schemes. The more broadly defined implicit
LES (ILES) [9] generally uses high-resolution nonoscillatory
FV (NFV) algorithms to solve the unfiltered Euler or Navier-
Stokes (NS) equations; popular physics capturing methods
have been used in ILES, such as flux-corrected transport
(FCT), the piecewise parabolic method, Godunov, hybrid,
and total variation diminishing algorithms. By focusing on
inertially dominated flow dynamics and regularization of
under-resolved flow, ILES follows on the precedent of using
NFV methods for shock capturing—requiring weak solutions
and satisfaction of an entropy condition.

The utility of ILES for practical scientific and engineering
simulations is clear. Indeed, even with today’s powerful

supercomputers, direct numerical simulation (DNS), where
the physical kinematic viscosity ν is utilized and all the scales
are resolved, are usually limited on how high a Re can be
achieved. Here,

Re = UL/ν (1)

is a basic parameter that describes the degree of nonlinearity
of a flow [10], where U and L are the characteristic velocity
field and length scale.

Actual values of Re characterizing the flow at the smallest
resolved scales are not a priori available in coarse grained
simulation (CGS), such as LES or ILES where the smallest
characteristic resolved scale is determined by the resolution
cutoff wavelength prescribed by an explicit or implicit spatial-
filtering process. Using grid-dependent spatial filtering is the
common feature of state-of-the-art practical CGSs, such as
ILES. Since the small-scale cutoff is determined by grid
size, the implication is that grid refinement is associated
with observing smaller simulated physical structures on a
somewhat different problem with higher effective Re (Reeff),
e.g., Refs. [11,12]. Extensive ILES applications in engineering,
geophysics, meteorology, and astrophysics have been reported
[9]. Yet, an important and unique issue is still outstanding for
ILES: How one can estimate the values of the relevant effective
viscosity (νeff) produced by the numerical method. It is critical
to make progress on this matter, and further formalizing the
perceived abilities of ILES in computing high Re flow would,
indeed, offer significant values.

In particular, it would be highly desirable to be able to esti-
mate a characteristic ILES Reeff (therefore, a relevant νeff) so
that the impact of resolution on predicted flow quantities can be
characterized based on using suitable turbulence metrics. This
issue becomes especially important when one considers the
time-dependent turbulent flows [13,14] induced by Rayleigh-
Taylor and Richtmyer-Meshkov instabilities (RMIs) [12,15].
An estimation of νeff and Reeff is critical for determining
whether a flow of interest has achieved the minimum state [16]
and to assess convergence of macroscopic flow features. As
will be shown in the paper, the key to accurately estimating νeff
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is to find a way to do so away from the smallest scales of the
simulated flow where the numerically controlled dissipation
takes place. It is the goal of this paper to develop such a
methodology based on the recently improved understanding
on the energy transfer process.

This paper is organized as follows. In Sec. II, the modern
energy transfer dynamics, which forms the foundation of our
analysis, will be inspected first. The procedure for estimating
the numerical viscosity for ILES will be developed, first for two
special canonical cases and, second for general complex flows.
Section III will offer several illustrative examples on how the
methodologies developed can be implemented. A discussion
and conclusions will be presented in Sec. IV.

II. NUMERICAL VISCOSITY

The momentum equation for ILES can be written as

∂(ρui)

∂t
= fi + Ni − Di, (2)

where ρ is the mass density, ui is the velocity, and Ni is the
nonlinear (quadratic, pressure, and dilatation) contributions.
Also, when an external agent exists, fi represents the forcing
function. Obviously, fi equals zero for a decaying turbulence.
The numerical dissipation Di appears here explicitly to repre-
sent dissipation effects introduced by the numerics in the spirit
of the modified equations [2]—the equations whose continuous
solution closely approximates the (computed) discrete solution
of the numerical algorithm underlying the simulation model.

From the transport equation for the kinetic energy K ,

dK

dt
= P + � − ε, (3)

the implicit dissipation rate ε can be obtained. Here, P is
the production term, and � is the nonlinear transfer term. It
should be noted that the implicit dissipation rate ε not only
includes the dissipation Di associated with the numerics, but
also incorporates that from the energy-containing and inertial
ranges. The algorithm used by the researchers should allow
minimizing the numerical dissipation of the large scales by
maximizing the spectral resolution.

As already mentioned, some aspects of the small scales in
the ILES calculations are implicitly controlled at the SGS level.
Therefore, it is highly desirable to develop our scheme based
on the measurements least influenced by the SGS aspects.
Instead, the dynamics of the large scales controls the straining
and sweeping motions of the small scales [17]. The estimation
of the viscosity based on large-scale measurements would also
allow one to incorporate the additional time scales associated
with the external agencies [18].

The next step in our development is to utilize the results
from the energy transfer studies [19–26]. For DNS or ILES, in
order for inertial range dynamics to be independent of both the
large-scale energetics and the viscous dissipation, a wide-scale
separation must exist between the energy-containing scales
and the dissipation spectra in the wave-number space (for a
detailed discussion, see Zhou [16] and Zhou et al. [27]).

The flux rate of energy �(k) across a wave-number scale
k is the most basic measure of the energy transfer process.
In the Kolmogorov theory of the universal equilibrium range,

it is the only link between the energetic and the dissipative
scales of motion [10,21]. Indeed, this direct association makes
it possible to estimate the effective dissipation ε, a small-scale
measurement, only using large-scale flow field data. The
energy transfer function can be constructed by formally multi-
plying the velocity field to the momentum equation Eq. (2); the
spectral energy transfer function can then be obtained by taking
the appropriate Fourier transformation for various flow fields.
For homogeneous isotropic turbulence, it takes the form [21]

∂E(k,t)

∂t
= F (k,t) + T (k,t), (4)

where F (k) denotes the forcing spectrum and T (k) is the
energy transfer function. The direct association between
the inertial range spectrum and the “ideal” energy transfer
process makes it possible to estimate an effective dissipation
ε. Contributions to the total flux from the various scale
interactions can be written as

�(k) = −
∫ k

0
T (k)dk, (5)

and the effective dissipation is

ε = �(k∗) = −
∫ k∗

0
T (k)dk, (6)

where k∗ is chosen at which wave number the energy flux has
achieved a constant value. The accuracy of Eq. (6) for suffi-
ciently high Re can be demonstrated using the DNS of forced
isotropic turbulence (see, e.g., Fig. 4 of Kaneda et al. [28]).

Once the dissipation rate is obtained, νeff can be written
down, based on a dimensional argument. Since ILES is applied
to a broad range of engineering and scientific applications, a
scheme should be developed in the physical space. In this
fashion, νeffcan be written as

νeff = ε/�, (7)

where � is the enstrophy � = ω2/2 and the vorticity ω =
∇ × u can readily be evaluated based on the simulated velocity
u data.

Consistent with our dimensional estimate—Eq. (7), a νeff

computation strategy for forced isotropic turbulence, was
proposed [29] based on

νeff = εs/[2〈sij sij 〉T ], (8)

where εs denotes the dissipation imposed by the forcing
scheme, 〈〉T denotes the volume-time average, sum over
repeated roman indices is assumed, si,j = (ui,j + uj,i)/2 is
the strain tensor, and (),i = ∂()/∂xi . A later paper by Aspden
et al. [30] also tackled the same problem; their proposed νeff

had a structure similar to that of Eq. (7),

ν# = ε1/3ξ 4/3(�x)4/3, (9)

where �x is a characteristic computational cell width, ξ is a
dimensionless parameter,1

ξ = 0.203N0.102, (10)

1Instead of ξ , Aspden et al. [30] use �—which we use here for the
energy flux �(k).
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and N is the number of computational cells across the integral
length scale. The νeff computation based on Eqs. (9) and (10)
puts a special emphasis on (grid level) small-scale aspects
of the simulated flow, which differs philosophically from the
computation of νeff through Eq. (8) based on (resolved) small-
scale dissipation features.

In what follows, two special cases provide computable
values of the dissipation rate directly: the noted steady forced
turbulence case (Sec. II A) and transitional and decaying
turbulent flow (Sec. II B). The remaining task is to find a
practical way to evaluate the dissipation for the complex flow
cases (Sec. II C).

A. Forced and decaying turbulence

For forced isotropic turbulence, the target dissipation εs

is imposed by the forcing scheme, and νeff can be computed
through Eqs. (7) and (8). For decaying turbulence, the numer-
ical Re can be obtained more efficiently in a different fashion.
Note that the total energy is dominated by the contributions
from the energy-containing scales and the energy decaying
equation can be cast into a nondimensional form in terms of
the characteristic velocity and length scales U and L,

dK∗(t)

dt
= −�∗

Re
, (11)

where

K∗ = K

U 2
, (12)

t∗ = t(U/L), (13)

and �∗ is the nondimensional enstrophy (see, e.g., Sec. III B).
Both the energy decay rate on the left hand side of Eq. (11)
and the enstrophy can be computed based on resolved flow
quantities in the ILES simulation. For reference, the energy
decay rate can also be obtained from DNS databases with
various known Re’s. The Reeff of ILES can be determined via

Re = −�∗
(

dK∗(t)

dt∗

)−1

, (14)

and the corresponding effective viscosity can be estimated
based on Eq. (1).

It should be stressed that, although the approach just
articulated for decaying turbulence is somewhat distinctive
from that of the forced flows, the philosophy behind it is the
same. An accurate evaluation of the numerical viscosity or Re
must be carried out based on measurements that are dominated
by the energy-containing scales.

B. Complex flows

The turbulent flows of practical interest are usually both
high Re and complex. Yet, as a first cut, an interesting scheme
can be developed from the following procedure: (1) For a
highly resolved ILES flow, the compensated inertial range
occurs at lower spectral ranges. The bottleneck occurs as a
plateau at higher wave numbers [31–36]. (2) The flux is still
the only link between the energetic and the dissipative scales
of motion. (3) The effective dissipations of the computations

can be obtained directly from the inflow profiles of the inertial
range energy transfer.

Hence, a methodology should be advanced to estimate the
“input” of the energy into the energy transfer from the large
scales. The key is to carry out this estimation around the
energy-containing scales so that the small-scale information
where the dissipation is controlled by the numerical methods
is not needed. Fortunately, the characteristic time scale of the
energy-containing eddies U/L should be on the same order
of magnitude as the time scale of the energy-dissipation rate
ε/U 2. Based on dimensional ground, a dimensionless ratio D

can be introduced as

D = εL/U 3. (15a)

Recently, a significant amount of work has been devoted to
investigate the behavior of D as a function of Re [28,32,37,38].
A large body of experimentally and numerically generated
data suggested that a nondimensional parameter, such as
D, approaches a constant when Re becomes sufficiently
large (e.g., Fig. 1). We note that the outer-scale- (L) based
Re is approximately related to the Taylor microscale Reλ

[39,40] by Reλ ≈ (20/3)1/2
√

ReL in isotropic flow and by

FIG. 1. Nondimensional parameters: (a) εlf /u3 based on labo-
ratory data—from Ref. [37] with lf denoting a longitudinal integral
scale; (b) D = εL/u3based on computational simulation data—from
Ref. [28] with L denoting the integral scale.
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FIG. 2. Isosurfaces of vorticity magnitude scaled by the vorticity rms for ILES of forced turbulence at the finest two grid resolutions: (a)
1283, (b) 2563.

Reλ ≈ 1.4
√

ReL for turbulence in the far field of a jet. The
literature shows internal consistency between the establish-
ment of an inertial range and the asymptotic behavior of D →
D∞ = constant. The laboratory data compiled by Sreenivasan
[37] exhibited constancy for Reλ > 100. The collection of
computational data by Kaneda et al. [28] and Sreenivasan
[38] indicated that somewhat higher Reλ is needed, perhaps
around 200, for which the inertial range is about 1 decade
(e.g., Ref. [32]); observed data scatter for lower Re [e.g.,
in Fig. 1(b)] has been attributed [38] to differences among
forcing schemes, forced long-wavelength ranges, and box
sizes. These results depict the (viscosity-independent) energy-
dissipation-limit law for high (but finite) Re—e.g., Frisch [41]
and Sreenivasan [38]. At a high Re limit, the energy flux can
be estimated directly,

ε = D∞U 3/L. (15b)

Recent high-resolution ILES [12,15,29,42,43] shows a
limited inertial range of the kinetic energy spectrum as
well as distinct flow features associated with high Re
flows. The viscosity-independent dissipation rate may have
been, thus, captured for these high-resolution ILES flows,
and a dimensional estimation, such as νeff = ε/�—through
Eq. (7)—may provide a reasonable νeff in this context. These
ideas are the particular focus in the present paper.

III. CASE STUDIES

Here, several flows of increasing complexity will be
inspected: Forced homogeneous isotropic turbulence, the
evolution of the Taylor-Green vortex (TGV), and a laser-driven
reshock experiment. Through these illustrative examples, a
case is made for the capabilities of the procedure presented in
the previous section for estimating the ILES νeff and Reeff .

A. Forced isotropic turbulence

1. Problem description

Positive evaluations of the ILES of forced and decaying
isotropic turbulence were reported [42–47]. Comparisons of
instantaneous probability distribution functions (PDFs) of
explicit (LES) and ILES SGS viscosities in Ref. [29]—
computed with Eq. (8)—showed similar behaviors sensitive to
the actual SGS models involved, and cumulative distribution

functions of the vorticity and strain-rate magnitudes from ILES
and LES were in good agreement with those of the DNS of
isotropic turbulence. Domaradzki et al. [44] and Thornber
et al. [46] reported well-behaved ILES spectral eddy viscosi-
ties in agreement with theory. In contrast, poor performances
in this fundamental context were reported by Garnier et al.
[47] using finite difference (rather than FV) discretizations of
popular shock capturing schemes.

Here, we consider FV-FCT-based ILES of compressible
isotropic turbulence [48], based on using the forcing scheme
recently proposed in Ref. [49]. The equations describing the
modeled system in a triple periodic domain are the following:

ρ,t + (ρuj ),j = 0,

(ρui),t + (ρuiuj ),j + p,i = fi, (16)

E,t + [(E + p)uj ],j = 0,

where p is the pressure, E = ρujuj/2 − p/(γ − 1) is the
total energy density, γ is the ratio of specific heats, and
an ideal gas equation of state is assumed. Two separate
cases were considered with turbulent Mach numbers Ma =
U/(γp/ρ)1/2 with Ma ∼ 0.27 and 0.13, where U is the
root-mean-square (rms) value of the velocity fluctuations eval-
uated from 3(U )2 = 〈u2

i 〉T and 〈〉T denotes the time-volume
mean.

Time-dependent three-dimensional (3D) compressible flow
simulations were performed with 323, 643, 1283, and 2563

resolutions using the adaptively refined magnetohydrody-
namics solver (ARMS) code for grid-adaptive time-dependent
3D compressible flow simulations [50] with triple-periodic
boundary conditions enforced on a cubical domain and a
uniformly spaced computational grid; ARMS uses a multidi-
mensional 3D FCT algorithm which is spatially fourth-order
accurate in space and second-order accurate in time. Figure 2
exemplifies the developed vorticity field for the 1283 and 2563

resolutions, depicting flow dominated by elongated structures
characteristic of high Re isotropic turbulence.

PDF analysis associated with isotropic turbulence has
been reported for DNS (e.g., Refs. [51,52]) and has
been used extensively as a validation tool for ILES (e.g.,
Refs. [29,43,48,53]). The basic ideas are illustrated in Fig. 3 in
terms of the PDFs of characteristic velocity function measures.
PDF trends with increasing ILES resolution are the same as
for the increasing Re of the DNS data, suggesting a Reeff
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FIG. 3. PDF velocity analysis shows trends with varying Re predicted with DNS as a function of grid resolution. ILES (black)—solid
line: 323; dashed line: 643; dot-dashed line: 1283; and diamond: 2563. DNS by Jiménez et al. [51] (gray)—solid line: Reλ = 36; dashed line:
Reλ = 60; dashed-dotted line: Reλ = 96; diamonds: Reλ = 142; and X: Reλ = 168; ω′ = ω rms and results are for the Ma = 0.27 case. (a)
Transverse velocity derivatives, (b) velocity fluctuations, (c) and (d) vorticity magnitude, and (e) and (f) longitudinal velocity derivatives. PDFs
of longitudinal velocity derivatives are based on the full velocity field in (e), whereas, the corresponding figure (f) is based only on its solenoidal
part; the solenoidal velocity is extracted by inverse-Fourier transforming after a Helmholtz decomposition of the velocity field in Fourier space.

for ILES determined by grid resolution. Of considerable
interest in the context of assessing resolution as relevant
to ILES convergence is the fact that PDFs associated with
the DNS data approach what appears to be a high Re limit
above the mixing transition threshold Reλ ≈ 100 [54] [e.g.,
Fig. 3(d)]. As Reeff is increased, the SGS modeling implicitly
provided by a well designed ILES numerics consistently
captures expected asymptotic turbulence characteristics, such
as the Gaussian behavior of fluctuating velocity [Fig. 3(b)]
and the non-Gaussian PDF tails of its derivatives [Figs. 3(a)

and (e)]; a more detailed statistical analysis can be found in
Ref. [48].

The established negative bias in the PDF of the longitudinal
derivatives [51,52] also is captured by ILES [Figs. 3(e) and
3(f)]; this bias is recognized as due to turbulent intermittency
and self-amplification of longitudinal velocity increments in
isotropic turbulence [52]. Figure 3(e) shows that the tails of
the PDFs for the ILES-based longitudinal derivatives are wider
than for the DNS (with ILES trending closer to incompressible
DNS as the Ma decreases [48]). Figure 3(f) shows significantly
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FIG. 4. JPDFs of (a) vorticity magnitude and strain-rate magni-
tude, (b) vorticity magnitude and vortex stretching, and (c) strain-rate
magnitude and vortex stretching. All axes are scaled with the rms
vorticity ω′. Increasing darkness corresponds to increasing resolution
from 323 to 2563. Contour levels are plotted at 10−3, 10−4, 10−5, and
10−6; results shown are for the Ma = 0.27 case.

improved agreement between ILES and DNS when the PDF
analysis is based only on the solenoidal portion of the velocity
field. Compressibility mainly affects functions of longitudinal
derivatives, whereas, PDFs of transverse derivatives and
functions thereof (e.g., vorticity) are less affected by the
dilatational velocity [Figs. 3(a) and (c)].

Further (positive) ILES performance aspects are revealed
in terms of joint PDFs (JPDFs) of vorticity magnitude ω

and magnitude of the strain rate sij , vorticity magnitude and
vortex stretching σ = ωisijωj/ω

2, and strain-rate magnitude

TABLE I. Effective viscosity and Re for the forced turbulence
simulations.

Ma Resolution νeff (m2/s) Reλ (Reλ)2 ∼ ReL

0.13 323 24.0 × 10−3 63 3969
643 9.47 × 10−4 93 8649
1283 4.04 × 10−4 151 22801
2563 1.79 × 10−4 221 48841

0.27 323 1.70 × 10−3 63 3969
643 7.47 × 10−4 93 8649
1283 3.21 × 10−4 145 21025
2563 1.35 × 10−4 225 50625

and vortex stretching (Fig. 4). These two-dimensional statistics
depict a weak correlation between strong vortices and high
strain, whereas, high vortex stretching is associated more with
moderate levels of vorticity magnitude, not the intense vortices
that create wormlike structures. JPDF shapes, trends as
functions of grid resolution and depicted weak correspondence
between strain-rate magnitude and vortex stretching are in
close agreement with those in Ref. [51] as a function of
Re; a somewhat wider strain-rate data spread than for the
incompressible DNS [51] in Fig. 4(a) is associated with
the noted effects of compressibility on the distributions of
longitudinal velocity derivatives (also affecting the strain rate
[48]).

2. Effective viscosity and Reynolds number

The νeff can be computed through Eq. (8); the effective Reλ

then is computed as Reλ = Uλ/νeff with the Taylor microscale
of the velocity (λ) fluctuations computed in terms of resolved
velocity by

λ = 1

3

3∑
β=1

√〈
u2

β

〉
/〈(uβ,β )2〉. (17)

The effective viscosity and Reλ (Table I) are found to
approximately scale with power-law fits of the grid spacing h

as νeff ∼ h1.2 and Reλ ∼ h−0.6, respectively; the results suggest
that the mixing-transition threshold Reλ ∼ 100 effectively is
crossed (for ILES based on this particular numerics) between
the 643 and the 1283 grid resolutions. Yet, the flow has
not achieved the ReL = 1.6 × 105 [16,27] needed for the
minimum state.

Velocity fluctuation energy spectra and energy flux are
presented in Figs. 5 and 6 to illustrate the reasonableness of the
estimated Re. Using a Helmholtz decomposition, the instanta-
neous velocity fluctuation (around the volumetric mean) is split
into its solenoidal and compressible components according
to ui = uis + uid with the condition ujs

,j = 0 in physical
space translating into the condition kj ûjs

= 0 in Fourier space.
This condition is used explicitly to separate solenoidal and
dilatational components of the Fourier velocity transform in
the form ûis = ûi − ûid with ûid = (ûj kj )ki/k

2. The spectra
in Fig. 5 depict a short solenoidal inertial range consistent
with the Kolmogorov k−5/3 power law and corresponding
compressible contributions which are significantly less; a small
region of scale separation between energy-containing and
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FIG. 5. Compensated velocity energy spectra. Light gray: dilata-
tional component; dark gray: solenoidal component; black: total.
Solid line: 323; dashed line: 643; dashed-dotted line: 1283; and
diamonds: 2563. Each compensated spectra plot is offset by 2 decades
from the resolution below; results shown are for the Ma = 0.27 case.

dissipation scales begins to exist at 1283, becoming longer
for the finer resolution (higher Reeff) 2563 case. Consistent
with the latter results and Eq. (6), Fig. 6 shows energy
flux approaching a constant value—the solenoidal target
dissipation set by the forcing for the 2563 case.

Figure 5 also suggests consistency of the 3D velocity
spectra with a power law shallower than k−5/3 in the near-
dissipation region (the bottleneck effect); this feature of the
spectra is a standard prediction in DNS (e.g., Refs. [51,52])
and is recognized to be a characteristic feature of solutions
of the Navier-Stokes equations for high (but finite) Re—to
be captured by a (sufficiently resolved) CGS strategy. The
near-dissipation bump was captured quite robustly with ILES
in high-resolution studies of isotropic turbulence [55] and
turbulent jets [56]. Occurrence of the bump has been attributed

FIG. 6. Energy flux for FCT-based ILES of forced isotropic
turbulence at 1283 (gray) and 2563 (black) resolutions for the Ma =
0.27 case; the dashed line approximately indicates the solenoidal
target dissipation set by the forcing scheme (εs ∼ 0.5)—the same for
both resolutions.

to backscatter effects associated with the presence of worm
vortices at the smallest resolved scales [55].

B. Simulated transition and decaying turbulence

1. Problem description

The TGV is a well-defined flow that has been used as
a prototype for vortex stretching, instability, and production
of small-scale eddies to examine the dynamics of transition
to turbulence based on DNS [41,57,58]. The TGV case has
also been used to demonstrate how convective numerical
diffusion effects of certain algorithms can effectively be
used by themselves to emulate the dominant SGS physics
of transition to turbulence for high (but finite) Re flows
[11]. ILES strategies were verified in the TGV context for
a wide range of monotonic numerics over uniform grids,
including Eulerian (characteristics-based Godunov, varying-
accuracy FCT [59] with or without directional splitting) and
van Leer-based Lagrange-remap algorithms (see Ref. [11]).
The studies demonstrated that ILES can robustly capture the
(DNS predicted) kinetic energy dissipation rates around a
nondimensional transition time; this is exemplified in Fig. 7(a)
where slight effects of varying implicit SGS model specifics
also are apparent.2 Our focus in what follows is further
characterizing the resolution-dependent Reeff .

The ability of FCT algorithms to provide predictive under-
resolved simulations of the large-scale dynamics of turbulent
velocity fields with no free parameters and without SGS
models has been documented extensively (e.g., Ref. [11]
and Chap. 8 in Ref. [9]). FCT-based ILES of the TGV
was carried out using the ARMS code mentioned above [50].
In this context [12], we also recently used the radiation
adaptive grid Eulerian (RAGE) code [60] which solves the
multimaterial compressible conservation equations for mass
density, momenta, total energy, and partial mass densities,
using a second-order Godunov scheme; in turn, RAGE has
been verified extensively and has been validated against a wide
variety of analytic test problems and detailed experiments (e.g.,
Refs. [12,15]). As used, ILES models high Re convection-
driven flow with resolution dependent νeff determined by the
numerical simulation algorithm [11,12].

The TGV configuration involves triple-periodic boundary
conditions enforced on a cubical domain with a box side length
of 2π cm and a uniformly spaced computational grid. The flow
is initialized with the solenoidal velocity field,

u = +uo sin(kx) cos(ky) cos(kz),

v = −uo cos(kx) sin(ky) cos(kz), (18)

w = 0,

and the pressure is a solution of the Poisson equation for the
above given velocity field, i.e.,

p = po + ρ(uo)2

8
[1 + cos(2kz)] [cos(2kx) + cos(2ky)] .

(19)

2Following modified equation analysis [2,3], the corresponding
performance of classical LES methods [11] is sensitive to the
combined explicit and implicit SGS model specifics.
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FIG. 7. (Color online) TGV kinetic energy dissipation with ILES
based on various different numerics and implementations compared
with DNS [57,58]: (a) Eulerian (third-order characteristics-based
Godunov, split and nonsplit second-order and fourth-order FCT)
vs third-order van Leer-based Lagrange remap on a fixed uniform
1283 grid—from Ref. [11], (b) fourth-order nonsplit FCT vs
resolution—from Ref. [11], and (c) second-order RAGE Godunov
vs resolution—from Ref. [12]. The Re is based on the integral
scale.

An ideal gas equation of state, STP conditions, unity wave
number k, and Ma = 0.28 are chosen. Analysis is carried out
in terms of appropriate nondimensional variables, e.g., x∗ =
kx, t∗ = kuot.

2. Effective viscosity and Reynolds number

The mathematical flow simulation model is based on the
conservation equations of mass, momentum, and energy. ILES
models tested in Ref. [11] examined nominally inviscid flow
(Euler based as also considered here) or a linear viscous flow
for which SGS effects are neglected (Navier-Stokes based).
Reeff-dependent effects are clearly suggested in Figs. 7(b)
and 7(c). Coarser-grid results are associated with wider peaks
occurring at lower t∗, a trend that is consistently exhibited by
the DNS results as Re is lowered. Moreover, we also find a
consistent correlation between scaled profiles of nondimen-
sional mean kinetic energy dissipation rates −dK∗/dt∗and
enstrophy �∗ = 1

2 〈ω2〉/(kU 2), where K∗ = K/U 2[11]. Peak
�∗ values increase with grid resolution, and the observed
correlation between −dK∗/dt∗ and �∗ is consistent with
the relation −dK∗/dt∗ = −�∗/Re for an incompressible NS
fluid (see also Sec. II A). For a given grid resolution, the
suggested Reeff values are somewhat higher here for FCT than
RAGE-based ILES (based on visual comparisons with the DNS
in Fig. 7)—reflecting Reeff sensitivities to the details of the
SGS model provided implicitly by the numerics and its actual
implementation [11].

We can explicitly compute the νeff and a Taylor microscale
as in Sec. III A, based on the simulated 1283 and 2563 TGV
data from Ref. [11]; results listed in Table II focus particularly
on the relatively late times for which self-similar decaying
spectra are observed (Fig. 8) with available inertial ranges
consistently becoming longer with increasing resolution (and
larger associated Reeff). It should be noted that the highest Re
from DNS (5000) and ILES Reeff (ReL � 1500–3000) in the
TGV studies [Figs. 7(b), 7(c), and Table II are still on the low
side compared to the mixing-transition threshold values from
Ref. [54] ReL ∼ 1 to 2 × 104or Reλ ∼ 100. This fact also is
illustrated in Fig. 8, depicting kinetic energy spectra lacking
significant scale separation between the energy-containing and
dissipation scales, albeit suggesting the near-dissipation bump
in the energy spectra as Reeff approaches the mixing-transition
threshold.

TABLE II. Effective viscosity and Re for FCT-based ILES of the
Taylor-Green vortex.

t∗ νeff (m2/s) Reλ (Reλ)2 ∼ ReL

1283 8.85 1.41 × 10−3 29 841
19.7 8.64 × 10−4 21 441
29.9 5.55 × 10−4 25 625
42.9 4.52 × 10−4 21 441

2563 9.1 5.55 × 10−4 52 2704
19.1 3.40 × 10−4 38 1444
30.2 2.14 × 10−4 44 1936
39.8 1.78 × 10−4 41 1681
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FIG. 8. (Color online) Compensated spectra for the ILES-FCT
TGV cases of Table II.

C. Complex flow example: A laser-driven reshock experiment

1. Problem description

In this section, the Reeff analysis is explored further for
a complex flow example involving inhomogeneous features,
acceleration, transition and decay, as well as sensitivity to
initial condition resolution uncertainties. Turbulence metrics
for this kind of flow are not yet established, and the state-
of-the-art analysis largely relies on using unsteady versions
of diagnostics designed for developed homogeneous isotropic
turbulence. Furthermore, our analysis above (Secs. III A and
III B) involved a crucial simplifying feature: homogeneous
features—which could be approached by enforcing periodicity
and using uniformly spaced gridding; accurate spectral and
energy flux analysis addressing scale separation is typically
not practical when using nonuniform computational grids and
resolution refinements in localized regions as in this section.

ILES studies [61] of a laser-driven reshock experiment
[62] in the strong-shock high energy density regime were
recently carried out to better understand material mixing
driven by the RMI. ILES validation was based on direct
comparison of simulation and radiographic data. ILES was
also compared with published DNS data and the theory of
homogeneous isotropic turbulence. Despite the fact that the
flow was not homogeneous, isotropic, nor fully turbulent,
local regions in which the flow demonstrates characteristics
of homogeneous isotropic turbulence were identified by the
presence of high levels of turbulent kinetic energy (TKE) and
vorticity magnitude. After reshock, the analysis showed results
consistent with those for incompressible isotropic turbulence.
Self-similarity and Reeff assessments suggested that the results
were reasonably converged at the finest resolution.

The laboratory reshock experiments [62] were performed
using the University of Rochester’s OMEGA laser. The
laboratory target consists of a cylindrical beryllium (Be)
tube �1.4 mm in length and �0.5 mm in diameter with an
�100 μm wall thickness (Fig. 9). The progression of events

FIG. 9. (Color online) Target geometry.

in the experiment can be visualized in terms of the schematic
shock-interface diagram in Fig. 10. The target is successively
hit from both sides by two laser-driven shocks. The first, �5
kJ, at t = 0 ns, impacts the plastic ablator on the left, driving
a Mach �5 shock through the 20 μm aluminum (Al) tracer
disk adjoining the ablator. The tracer disk is, thus, propelled
to the right down the center of the cylinder, which is filled
with a low-density (60 mg/cc) CH foam. The second shock,
�4 kJ at 5 ns, impacts a plastic ablator at the right end of
the tube. The shocks collide at approximately 8 ns to the right
of the mixing layer, and the second shock hits (reshocks) the
mixing layer at approximately 10 ns, causing it to compress
until approximately 13 ns. At approximately 17 ns, the second
shock exits the mixing layer. At later times (beyond the present
scope), the mixing layer is further affected by compression
or expansion waves, and secondary shocks are generated by
reflections at the Be tube interface.

As in previously reported studies of the RMI [12,15,63],
ILES used the RAGE code [60] with appropriate equations of
state, adaptive mesh refinement (AMR) involving cubic cells,
and material interface treatments not activated; ILES, thus,
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FIG. 10. (Color online) Schematic of a shock-interface diagram
depicting the progression of events in the experiment. Crossing
locations are approximate.
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FIG. 11. (Color online) Simulated Al concentration visualization for 2.5 μm resolution data; times (in nanoseconds) from top left to bottom
right are t = 5, 7, 10 (reshock), 12, 17 (second shock leaves mixing layer), and 20 ns. The semitransparent isosurfaces reflect the approximate
location of the Be tube interface.

models high Re miscible flow. As we consider simulating
the RMI in laboratory experiments, we must also consider
the effects of modeling initial conditions for which limited
experimental characterizations are available. The Al interfaces
were perturbed using deformations with spectral content and
standard deviation emulating typical surface finish character-
istics as closely as possible to those in the laboratory samples;
a comparable k−2 spectrum was used as well for comparison
(see Ref. [61]).

Typical visualizations of the simulated Al concentration
are shown in Fig. 11. The presence of small-scale features
in the data suggests turbulent features in the mixing layers
which become more pronounced after reshock (t � 10 ns). In
Ref. [61], we argued that the better match found between the
finest (2.5 μm) resolution data and the laboratory experiments
was an indication that this simulation had a more appropriate
Reeff—i.e., high enough to expect achieving self-similar
characteristics.

RMI-induced turbulent flow is inherently unsteady and
involves transitional and decaying turbulence aspects. We
mined our simulation database using suitably adapted diagnos-
tics originally designed for statistically steady homogeneous
isotropic flow. We take advantage of the cylindrical geometry
of the problem, and azimuthal spatial averaging is carried out to
evaluate mean quantities; deviations around such mean values
are used to characterize relevant statistical fluctuations. The
simulations were performed at three maximum grid resolutions
(1.25, 2.5, and 5 μm), and all used AMR. The more computer

intensive 1.25 μm simulations involved only a quadrant of the
whole domain; for reference, a single quadrant 2.5 μm run
also was carried out.

Sampling of reshock simulation data focuses on flow
regions containing high levels of TKE and/or vorticity—
which, as noted, are neither homogeneous nor isotropic. Weak-
vorticity distributions associated with the sampled transitional
data are very distinct from the isotropic homogeneous data due
to their irrotational flow content. In Ref. [61], data filtering
based on vorticity content (ω > 0.5ωrms) was implemented
in order to have meaningful comparative analysis. Such
vorticity-based data filtering also was used here to obtain
quantitative estimates the characteristic velocity field U =
(2K/3)1/2, where K = 〈TKE〉 is the volumetrically averaged
specific TKE.

2. Effective viscosity and Reynolds number

Asymptotic estimates for an outer scale Reeff can also
be generated. Following the discussion towards the end of
Sec. II, we assume that high Re isotropic turbulence regimes
for which D = εL/U 3 ≈ 1

2 have been achieved3 and define a
time dependent L to be the outer scale prescribed by a mixing
width δMZ. As in Refs. [12,64], the material mixing zone (MZ)

3Following Ref. [28] [Fig. 1(b)], for a high Re, we expect D ∼
0.5 − 2 with D∞ ≈ 0.5.
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thickness δMZ is defined in terms of the mixedness M(y) by

δMZ =
∫

M(y)dy, (20)

where

M(y) = 4ψ(y)[1 − ψ(y)],

ψ(y) = 〈YAl〉, YAl = ρAl/ρ,

〈f 〉(y) =
∫

f (x,y,z)dx dz/

∫
dx dz, (21)

and ρAl denotes the Al partial mass density. We can, thus,
formulate an asymptotic model for the dissipation ε =
DU 3/(2L); in this context, we can now evaluate outer-scale
(asymptotic) measures of νeff = ε/[2〈sij sij 〉] and Reeff =
UL/νeff . The computed outer-scale-based measures of mixing
width νeff and outer-scale Reeff are plotted in Fig. 12 where
observed time shifts between features captured with varying
resolutions and different computational domains were com-
pensated for. Time shifts reflect on slightly differently resolved
initial interface conditions and their cumulative effects on the
flow conditions at reshock time; they also reflect on the fact
that only a quadrant of the full domain (and, thus, differently
allowed azimuthal constraints and nonlinear mode couplings)
was involved in the finest (1.25 μm) resolution simulation.
Such differences slightly affect TKE peak times and actual
reshock times (Fig. 13) but not actual TKE peak values—so
that the TKE production mechanisms appear well resolved
for the finest two resolutions. Examining the vorticity filtered
results vs resolution for times 2–6 ns after the TKE peak,
Fig. 12(c) depicts consistent Reeff values between 104 and
5×104—above the mixing-transition threshold [54] ReL �
1 to 2 × 104 with higher Reeff being associated with finer
resolution. Again, we note that the flow has not achieved the
ReL = 1.6 × 105 [16,27] needed for the minimum state.

IV. SUMMARY AND DISCUSSION

This paper focused on developing a framework for esti-
mating the Re of the complex flows computed using ILES.
The basic building block of our methodology is to utilize
our improved understanding of the energy transfer process
for turbulent flows where the existence of the inertial range
already is self-evident. Therefore, our approach restricts us
to the applications where the scale separation between the
energy-containing and dissipation scales has been illustrated.
The corollary of above statement is that we are not concerned
about these flows where the values of the Re clearly are low
as indicated by a simple inspection of their energy spectra.
This is extremely appropriate as the strength of the ILES is
its potential for capturing the highly turbulent flows of interest
for scientific and engineering applications. The low Re flows
our method ignored, however, usually can be computed using
DNS.

By construction, some aspects of the small scales in the
ILES calculations are implicitly controlled at the SGS level as
the dissipation of the energy is carried out by the numerical
method. The proposed procedures allowed us to sidestep those
measurements at the small scale. For those flows where our
methodology is applicable, the existence of a universal inertial

FIG. 12. (Color online) Asymptotic measures of the (a) mixing
width (b) νeff , and (c) outer-scale Reeff are shown.

range implies that, during the energy transfer process, the
energy flux is the only link between the energy-containing
scale, which controls the dynamics of the flow, and the
dissipation range. The dissipation of the energy, therefore,
is best estimated from the energy flux, which is evaluated with
energy-containing scale measurements. Thus, an important
implication is that the ILES numerics and grid resolution
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FIG. 13. (Color online) Volumetric integration used to measure
turbulent kinetic energy; effects of grid resolution and actual spatial
domain (full vs single quadrant) are examined.

should be chosen with great care so that the dissipation
from the energy-containing and inertial range scales can
sufficiently be reduced to yield high enough Reeff (to capture
the viscosity-independent energy-dissipation limit).

We are now at a position to address a practical question
the researchers often are confronted with. When is the grid
resolution fine enough? The answer, in fact, has already been
offered implicitly in previous sections describing our proce-
dure but will be highlighted and will briefly be summarized
here for completeness. Again, an existence of an inertial range
is a prerequisite for using our method. Once this minimum
threshold has been passed, as the length of the inertial range
increases, the Reeff can progressively be more and more
accurately estimated. With ILES, this improvement can be
achieved with increased resolutions. When the inertial range
of a given flow can be computed with a sufficient length, the
important energy-containing scale would be prevented from
being contaminated by the dissipation scale, which is not
universal. The critical Re indicating that the sufficient inertial
range length has been obtained has been called the minimum
state and has been determined as 1.6×105 [16]. As long as the
grid resolution is fine enough to achieve the minimum state,
the investigators can be sure that their numerical simulations
have reproduced all of the most influential physics of the flows.

The discussion above naturally leads us to another question
regarding the simulation environment for the cases of time-
dependent flows. For some complex flows of practical interest,

the flow fields may experience several distinctive phases. For
instance, the unsteady flows this paper employed as our case
studies (the TGV and the reshock problem) involve successive
crucial features one typically cares for: (1) transition, (2)
some degree of turbulence development, and then, (3) decay.
A different example, not considered here, is the turbulence
induced by Rayleigh-Taylor instability [see, for example, Refs.
[65,66] where the time-dependent flows start from rest and are
subject to a constant external forcing, either in the form of the
gravity or in the high acceleration. Hence, the second question
one must address can be phrased as the following. What is the
minimum time for transitioning to the minimum state? More
specifically, one can ask in a slightly different fashion: What is
the required grid resolution or box size so that the critical time
demanded for surpassing the minimum state can be achieved?

A reasonable answer can be obtained based on the time-
dependent mixing-transition criterion articulated in Ref. [16].
Several examples have been offered in Refs. [13,14] on the
utilization of such a criterion. A number of examples are
provided for turbulent flows induced by Rayleigh-Taylor and
Richtmyer-Meshkov (single shock) instabilities. The task to
carry out these analyses is relatively straightforward—since it
is widely accepted that the mixing layer widths of these flows
develop as a function of time. The situations become more
complicated when both first shock and reshock are involved.
For instance, in some inertial confinement fusion applications,
a time-dependent mixing width around material interfaces
evolves from the initial value and grows very large for strong
shocks. If the interface sees a second shock, the mixing again is
intensified [66]. The challenge in applying the time-dependent
criterion can be alleviated by taking advantage of rele-
vant extended phenomenological treatments as developed in
Ref. [67], and the same procedure demonstrated in Refs.
[13,14] can be carried out in a straightforward fashion. Of
course, not all applications have such simple models already
developed and available to the researchers. Nevertheless, high
quality experimental databases could be employed instead.
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