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Localized transversal-rotational modes in linear chains of equal masses
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The propagation and localization of transversal-rotational waves in a two-dimensional granular chain of equal
masses are analyzed in this study. The masses are infinitely long cylinders possessing one translational and
one rotational degree of freedom. Two dispersive propagating modes are predicted in this granular crystal. By
considering the semi-infinite chain with a boundary condition applied at its beginning, the analytical study
demonstrates the existence of localized modes, each mode composed of two evanescent modes. Their existence,
position (either in the gap between the propagating modes or in the gap above the upper propagating mode),
and structure of spatial localization are analyzed as a function of the relative strength of the shear and bending
interparticle interactions and for different boundary conditions. This demonstrates the existence of a localized
mode in a semi-infinite monatomic chain when transversal-rotational waves are considered, while it is well known
that these types of modes do not exist when longitudinal waves are considered.
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I. INTRODUCTION

Many investigations have been devoted to the propagation
of acoustic and elastic waves in periodic samples such as
superlattices, multilayered structures, and phononic crystals
in particular because of the presence of frequency band gaps,
in which only nonpropagating waves can be excited. These
waves, called evanescent waves, are particular solutions of
the wave equation that decay or increase exponentially with
distance. They are involved in many physical phenomena
including coupling in and out of waveguides and resonators [1],
near-field optics [2], tunneling [3,4], subwavelength focusing
[5], or surface waves [6,7]. The question of the existence
or nonexistence of localized vibrations and surface acoustic
waves is of large interest in mechanics and acoustics because
of the important role played by these modes in various physical
processes [8–10]. It was shown that localized modes may be
excited and associated with local defects of periodicity or with
the ends of the lattice. The case of a localized mode occurring
in one-dimensional (1D) monatomic [11,12] and diatomic
[12–14] lattices has been studied previously for compressional
waves. The localized modes engendered by an impurity of
mass and force constant different from those of the atom it
replaces in the chain have been characterized. As a results of
these works, it is well known that in a semi-infinite linear chain
of atoms, the vibrations cannot be localized near the free edge if
all the masses and interactions between the neighboring atoms
are equal. However, in this 1D lattice with a single degree of
freedom, the localized vibrations exist near the first mass of the
chain when the masses take alternatively two different values
and the chain starts from a lighter mass. By modifying also the
force constant of the impurity, the frequency of the localized
mode can lie either in the forbidden frequency band between
optical and acoustic branches or above the optical branch [13].

The localized vibration modes in periodically layered
infinite and semi-infinite superlattices (SLs) have also
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attracted increasing attention over the years. In particular, an
inhomogeneity embedded in a SL with perfect periodicity
(e.g., a defect, a free surface, or an interaction with a
substrate) is shown to cause localized vibrations within the
frequency gaps induced by the periodicity of a SL. Evidence
of these modes has been demonstrated both theoretically
[15,16] and experimentally via Raman spectroscopy [17], a
phonon reflection experiment [18], and picosecond ultrasonic
measurements [19,20].

More recently, the understanding and control of these
localized modes have been reported in a 1D diatomic granular
chain excited longitudinally. The granular chain consists of
closely packed ensembles of elastically interacting particles. In
these diatomic chains, where the beads are coupled by a spring
responding to compression and dilatation, a band gap exists
between the optical and acoustic propagating branches. Under
certain conditions, depending on the parity of the number
and on the characteristics (mass and diameter) of the beads
in the chain, it was shown both theoretically [21–23] and
experimentally [22–24] that one or two localized modes exist
in these forbidden bands. Intrinsic localized modes, which are
also known as discrete breathers, have also been reported in
compressed 1D nonlinear diatomic granular crystals [25–27].

Here we demonstrate theoretically that a localized mode
exists in a 2D monatomic granular phononic crystal composed
of infinitely long cylinders with equal masses. The considered
mechanical system possesses one translational and one rota-
tional degree of freedom and the contacts between the cylinders
are provided by linear shear and linear bending rigidities. In
these granular crystals the elastic contacts between adjacent
particles occur over a surface that is much smaller than the par-
ticle dimensions and much softer than the particles themselves.
This enables the propagation of elastic waves at frequencies
much lower than the acoustic resonance frequencies of the
individual particles [28,29]. The problem considered could be
realized experimentally, for instance, using a chain composed
of short magnetic cylinders. To investigate the vibrational
response of the chain, it can be excited at one of its ends
by a shaker. The attractive magnetic force between cylinders
causes in this case the prestress of the contacts between the
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cylinders, initiating their shear and bending contact rigidities
[30]. Two dispersive propagating acoustic modes, in which the
rotational and transversal motions are mixed, are predicted in
this granular phononic crystal. These modes are separated by
a gap of forbidden frequencies. By considering a semi-infinite
chain with different boundary conditions, we establish the
necessary criteria for the existence of a localized mode.
Simple analytical expressions are obtained for the propagating
and localized modes, which provide the opportunity for a
straightforward evaluation of the existence and the frequency
of the localized mode. With the use of free boundary condition
and when the structure is not composed of empty cylindrical
shells, the frequency of the localized vibration, composed
of the two evanescent acoustic modes, is located inside the
low-frequency gap for waves propagation. Localization is also
demonstrated with the use of more rigid boundary conditions.
In this case the frequencies of the localized modes lie either
in the forbidden band between the two propagating modes
or above the upper propagating mode. It is worth mentioning
that each of the localized coupled transversal and rotational
modes in the evaluated chain of cylinders is composed of two
evanescent modes. This is an important difference from earlier
studied cases of longitudinal localized modes in linear chains
of beads [21–23] and in layered structures [11,12], where at
each frequency only a single evanescent mode could exist.

The results of our research are complementary to the recent
theoretical [28,31,32] and experimental [33] investigations of
the acoustic waves in 2D and 3D granular crystals possessing
rotational degrees of freedom. The Cosserat theory predicts the
existence of additional rotational bulk elastic modes [34,35]
and the existence of additional surface acoustic waves with
purely horizontal polarization of shear displacements [36],
which are absent in the classical theory of elasticity of
isotropic solids. Recently, the experimental observation of the
coupled rotational-translational bulk modes in a noncohesive
granular phononic crystal [33] was reported. It was also
demonstrated that the Cosserat theory in general fails to
predict correctly the dispersion relations of the bulk elastic
modes in granular crystals even in the long-wavelength limit
because it does not account for all effects of the material in-
homogeneity on its elastic behavior. A remarkable interaction
between longitudinal, transversal, and rotational motions of
the particles was demonstrated theoretically [32], leading to
a complete band gap, the Dirac cone and to the existence
of zero-energy rotational vibrations. These investigations
were conducted in search of potential application of these
crystals as phononic metamaterials for shear wave control.
The investigations described below were also inspired by
the currently growing general interest in edge and surface
waves of various physical natures [37–41], which is stim-
ulated by the progress in the understanding of topological
insulators.

The theoretical analysis of the propagation in an infinite
chain of a cylinder is presented in Sec. II. Then the study
focuses on the search for the possible localized modes in
the chain. Their existence, general position (within the gap
between the propagating modes or the gap above the upper
propagating mode), and localization structure are analyzed
in Sec. III for different boundary conditions applied at the
beginning of the chain.
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FIG. 1. (Color online) (a) Representation of the infinite linear
granular chain. (b) Illustration of different possible motions.

II. INFINITE LINEAR GRANULAR CHAIN

A. Theory

The 2D linear chain under consideration is made of
infinitely long cylinders with a circular cross section, as
depicted in Fig. 1(a). The structure is characterized by a lattice
constant a = 2Rc, where Rc is the radius of the cylinders.
Each cylinder possesses one translational and one rotational
degree of freedom. The shear force at the contact between
two adjacent particles is described by a spring of constant
rigidity ξ s . The elongation of the springs introduces forces
and momenta that induce the motion of the particles: the
displacement w along the y axis and the rotation ϕ around
the z axis [Fig. 1(b)]. Here T and R indicate purely transversal
and rotational motions, respectively, and T R and RT refer to
coupled transversal-rotational modes with a predominance of
translation or a predominance of rotation, respectively.

The equations of motion of the zeroth particle obtained by
applying the Lagrange principle [42] are

mẅ0 = −ξ s(δs−1 − δs1), (1a)

I ϕ̈0 = −ξ sRc(δs−1 + δs1), (1b)

where m is the mass of the cylinder and I is its inertia
momentum. The shear spring elongations, i.e., the relative
displacements between the zeroth particle and its neighboring
particles at the contact points, are denoted by δsn, with n the
particle number, and are explicitly given by

δs−1 = w0 − w−1 + Rc(ϕ0 + ϕ−1), (2a)

δs1 = w1 − w0 + Rc(ϕ1 + ϕ0). (2b)

The bending rigidity at the contacts of radius r is described
by two additional springs with normal rigidities ξB (Fig. 2).
They are located at the edge points of the contacts and are
oriented orthogonally to the contact surface. The resulting
additional momenta acting on the zeroth particle are described

θ
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(a) (b) ξB

2r

FIG. 2. (Color online) Schematic representation of the bending
rigidity: (a) contact geometry and (b) bending coupling.
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by M0n = − (Rcθ)2

2 ξB(ϕ0 − ϕn), with n = −1,1 and θ the
angular contact dimension. The radius of the contact is defined
by r = Rcθ

2 .
The equation of motion for the rotation (1b) is then modified

to account for all additional momenta �M =− (Rcθ)2

2 ξB(2ϕ0 −
ϕ−1 −ϕ1) applied on the zeroth particle.

The equations of motion become

mẅ0 = −ξ s[2w0 − w−1 − w1 + Rc(ϕ−1 − ϕ1)], (3)

I ϕ̈0 = −ξ sRc[w1 − w−1 + Rc(2ϕ0 + ϕ−1 + ϕ1)]

− (Rcθ )2

2
ξB(2ϕ0 − ϕ−1 − ϕ1). (4)

Their solutions are sought in the form of plane waves

Vn =
(

wn(x,t)

�n(x,t)

)
= veiωt−ikxxn , (5)

with the new variable � = Rcϕ, kx the complex wave
number in the x direction, and v = (Aw

A�
) the amplitude vector.

Equation (5) is developed around the equilibrium position
x0 of the central particle Vn = veiωt−ikxx0e−ikx�xn , where

�xn = xn − x0 is the relative coordinate between the central
particle and the nth particle and ω is the angular frequency.

Finally, the substitution of Eq. (5) into the set of equations
(3) and (4) leads to the eigenvalue problem

Sv = −	2v, (6)

where 	 = ω/ω0 is the reduced frequency with ω0 = 2
√

ξ s/m

and S is the dynamical matrix defined by

S =
( − sin2 q −i sin q cos q

ip sin q cos q −p(cos2 q + pB sin2 q)

)
,

where pB = θ2

2
ξB

ξ s is the bending rigidity parameter, p =
ω2

1/ω
2
0 = mR2

c /I with ω1 = 2Rc

√
ξ s/I , and q = kxa/2 is

the normalized wave number. Physically, the value of the
parameter p is equal to or larger than 1. Depending on the
mass distribution, the cylinders can be radially inhomogeneous
(I � mR2) and the limit case of p = 1 corresponds to a chain
made of cylindrical infinitely thin shells.

The eigenvalue problem (6) can be solved for either 	 or
sin q. When 	 is the unknown, the solution of this eigenvalue
problem gives the dispersion curves 	 = 	(q). There exist
two possible values of 	2

± for a given wave number q, i.e.,
two modes defined by the square roots of the mathematical
expression

	2
± = 1

2 {sin2 q + p(cos2 q + pB sin2 q) ±
√

[sin2 q + p(cos2 q + pB sin2 q)]2 − 4pBp sin4 q}. (7)

Alternatively, when sin2 q is the unknown, there exist two values of S2
± = sin2 q± and thus two wave numbers q± for a given

frequency 	,

S2
± = sin2 q± = 	2 1 + p(pB − 1)

2pBp

⎛
⎝1 ±

√
1 − 4pBp(	2 − p)

	2[1 + p(pB − 1)]2

⎞
⎠ with pB �= 0. (8)

The displacement and rotation of the two modes can then be
written in the form(

wn±
�n±

)
=

(
Aw±
A�±

)
e−i2q±neiωt

= A�±

(
α±
1

)
e−i2q±neiωt , (9)

with α± the ratio between the transversal Aw± and rotational
A�± amplitudes of the modes defined by

α± = Aw±

A�±
= iS±C±

	2 − S2±
, (10)

where C2
± = cos2 q±, and n the particle number.

Equation (7) describes the 	 = 	(q) dispersion of the
propagative and evanescent waves in the structure. When
the solutions for the wave number q, determined by Eq. (8),
are purely real, the waves are propagative. Evanescent waves
whose frequency lies in the forbidden band for propagating
waves are characterized by a complex-valued wave number
in such a way that the amplitude of the mode should decay
when it penetrates the chain. In this case, Eq. (7) describes
the dispersion of waves that are attenuated to the right when n

increases and to the left when n decreases.

Equation (7) is periodic and can be limited to a normalized
wave number q value lying between 0 and π

2 . In this study,
the analysis is restricted to the first Brillouin zone and waves
propagating to the right (q > 0).

B. Dispersion curves of the propagating modes

Figure 3 describes the 	 = 	(q) dispersion curves of the
propagating modes depending on the value of the bending
rigidity parameter pB . The dispersion curves are restricted
to a real wave number, i.e., to a wave propagating to the
right (the positive direction). The eigenmodes of the granular
chain motion are composed of two components, the transversal
motion T and the rotational motion R. In Fig. 3, the plotted
eigenvalues are colored relative to the type of associated
eigenvectors that have been classified and the nature of
the modes is labeled. Coupled transversal-rotational modes
propagate in the chain: the solid red lines correspond to the
modes with a predominance of rotation (RT ) and the dashed
blue lines correspond to the modes with a predominance of
translation (T R). The frequencies of the modes at the edge of
the Brillouin zone, i.e., at normalized wave numbers q = 0
and q = π/2, are found analytically and are indicated to
emphasize the dependence of these characteristic frequencies
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FIG. 3. (Color online) Different possible dispersion curves de-
pending on the value of the bending rigidity parameter: p = 2 and (a)
pB = 0, (b) 0 < pB < 1/p (pB = 0.2), (c) pB = 1/p (pB = 0.5),
(d) 1/p < pB < 1 (pB = 0.7), and (e) pB > 1 (pB = 1.2).

on p and pB . Without bending rigidity, i.e., with pB = 0
[Fig. 3(a)], a counterbalance between rotational and transversal
motions takes place, resulting in a zero-frequency mode called
also a soft mode. As illustrated in Fig. 3(b), this mode
propagates when the bending rigidity parameter pB increases,
i.e., pB > 0. In fact, this counterbalance disappears due to
the additional momenta �M acting between the particles.
Two band gaps are noticed in this structure, one between the
two propagating modes and one above the upper mode. The
width of the band gap between the two propagating modes
is described analytically. As illustrated in Fig. 3(b), when
0 < pB < 1/p the lower and upper limits of the first band
gap are

√
pBp and 1, respectively. When pB = 1/p the band

gap closes [Fig. 3(c)]. When 1/p < pB < 1 the boundaries of
the band gap are specified by 1 and

√
pBp [Fig. 3(d)]. Finally,

when pB > 1, the band gap is located between 1 and
√

p

[Fig. 3(e)]. Note that, by definition, p is always greater than
or equal to 1.

To know the lower limit of the upper band gap, the
extremum of the upper propagative band 	+ must be de-
termined. The bending rigidity has an important influence
on the structure of this mode. For low bending rigidities
pB < 1 − 1/p, the second propagating mode is monotonic
with a negative group velocity and its maximum is equal to

√
p

[Fig. 4(a)]. For the values of pB between 1 − 1/p and 1 + 1/p

this mode becomes nonmonotonic with a zero-group-velocity
point and its maximum is equal to

	ZGVP =
[

4pBp2

4pBp − (1 + pBp − p)2

]1/2

0
0

0.5

1

1.5

2

q π/2 0
0

0.5

1

1.5

2

q π/2

0
0

0.5

1

1.5

2

q π/2

(a) (b)

(c)

Ω

√
p

Ω

Ω

ΩZGVP

√
pBp

RT

TR

RTTR

RT

RT

TR

TR

FIG. 4. (Color online) Upper limit of the second propagative
band depending on the value of the bending rigidity parameter: (a)
pB < 1 − 1/p (p = 2 and pB = 0.3), (b) 1 − 1/p < pB < 1 + 1/p

(p = 2 and pB = 0.9), and (c) pB > 1 + 1/p (p = 2 and pB = 1.7).

[Fig. 4(b)]. Finally, for the values of pB above 1 + 1/p the
second mode is monotonic with a positive group velocity and
its maximum frequency is equal to

√
pBp [Fig. 4(c)].

III. LOCALIZED MODES

The study focuses now on the search for localized modes in
the chain. With the aim of inducing localized modes, the linear
chain is considered semi-infinite and a boundary condition is
applied at its beginning. The analysis shows that to satisfy the
boundary condition for one given frequency, two waves must
be combined. As noted in Eq. (7), these two waves have wave
numbers q+ and q−, respectively. The localized modes are, by
definition, the modes whose amplitude decreases away from
the boundary. Therefore, the localized wave is a combination of
two evanescent waves and its decay is related to the imaginary
parts of the wave numbers q+ and q−. Since the analysis is
restricted to modes with an amplitude that decreases when
n increases (to the right), the imaginary parts of the wave
numbers must be negative.

In order to know at which frequency and for which
parameters p and pB the two wave numbers q+ and q−
of the two combined waves are complex with a negative
imaginary part, a description of the band structure is presented
in Sec. III A. The general method to determine the frequency
of the mode induced by the boundary conditions is presented
in Sec. III B and the way to determine the profiles of the
transversal and rotational displacements as a function of the
cylinder positions is presented in Sec. III C. This method is
applied to different boundary conditions in Sec. III D and the
range of parameters pB and p for which localization takes
place is defined and the spatial structure of the modes is
described.

A. General description of the dispersion curves

In the considered linear chain of cylinders, exhibiting
two degrees of freedom each, there exist two allowed wave
numbers for one single frequency (8). Depending on the value
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−
as a function of the frequency 	 for a homogeneous cylinder (p = 2)
when pB = 0.9. (b) Corresponding dispersion curves 	 = 	(q).

of the frequency, these wave numbers can be both complex,
both purely real, or one complex and the other purely real. This
is illustrated in Fig. 5(a), where the real and imaginary parts
of S2

+ and S2
− are plotted as a function of the frequency where

p = 2 and pB = 0.9. Figure 5(b) represents the corresponding
dispersion curves. This description provides information about
the wave numbers. On the one hand, if

0 � sin2 q � 1, (11)

a real solution for the wave number q exists and the
corresponding mode is propagative. On the other hand, if

sin2 q < 0, sin2 q > 1, or sin2 q = β ′ + iβ ′′, (12)

no purely real solution for q exists and the corresponding mode
is evanescent.

When at least one of S2
± satisfies Eq. (11), the corresponding

frequency 	 lies in a propagative band. When both S2
+ and S2

−
satisfy one of the inequalities of Eq. (12), the corresponding
frequency lies in a band gap. Thus, as can be seen in Fig. 5, for
example, there is one propagative and one evanescent mode
in the first propagative band, i.e., when 	 ∈ [0,1], or two
evanescent modes in the first band gap, i.e., when 	 ∈ [1,

√
p].

See Ref. [43] for a more detailed description of S2
+ and S2

− as
a function of the parameters p and pB .

Localization occurs when the frequency lies in a band gap,
i.e., when the two corresponding wave numbers are complex

with a negative imaginary part. If sin2 q < 0, the wave takes
the form of a simple exponentially decreasing function because
the wave number has an imaginary value

q1 = −i arcsinh(|H |), (13)

where H is the square root of the right-hand side of Eq. (8). If
sin2 q > 1, the wave takes the form of a decaying function with
additional oscillation because the wave number has a complex
value

q2 = −π

2
− i arccosh(|H |). (14)

If sin2 q is complex, it takes the form

q3 = q ′
3 − iq ′′

3 , (15)

with q ′
3 = Re[arcsinh(|H |)] and q ′′

3 = Im[arcsinh(|H |)],
which corresponds to an exponentially decaying wave with
additional oscillations. See Ref. [43] for a detailed way of
determining these wave functions.

B. Determination of the frequency of the modes
induced by the boundary condition

We are interested in analyzing the existence of the localized
modes when the chain of cylinders is semi-infinite and one of
its ends is either mechanically free or attached to an absolutely
rigid wall by springs. The rigidities of these springs are, in
general, different from those of the chain. Formally, both
situations can be mathematically accessed by modifying the
rigidities between the first negative and the zeroth particles
in the infinite chain from −∞ to ∞ for completely blocking
the motion of the first negative cylinder and looking for the
vibrations localized on the cylinders with non-negative n.

The shear and bending forces at the contact between the
first negative and zeroth particles are described by springs of
constant rigidity ξ s ′

and ξB ′
, respectively. As above, the other

contacts are described with spring rigidities ξ s and ξB . The
new equations of motion for the particle n = 0 become

mẅ0 = −ξ s ′
[w0 − w−1 + Rc(ϕ0 + ϕ−1)]

+ ξ s[−w0 + w1 + Rc(ϕ0 + ϕ1)], (16)

I ϕ̈0 = −ξ s ′
Rc[w0 − w−1 + Rc(ϕ0 + ϕ−1)]

− (Rcθ )2

2
ξB ′

(ϕ0 − ϕ−1)

−ξ sRc[−w0 + w1 + Rc(ϕ0 + ϕ1)]

− (Rcθ )2

2
ξB(ϕ0 − ϕ1). (17)

Then the motion of the n = −1 particle is completely blocked,
i.e., w−1 = 0 and ϕ−1 = 0, which mimics the absolutely rigid
wall. So if ξ s ′ = ξB ′ = 0, the beginning of the chain, starting
with the zeroth particle, is mechanically free and if ξ s ′ �= 0
and ξB ′ �= 0, the chain is attached to an absolutely rigid
wall by the springs of different rigidities ξ s ′

and ξB ′
. By

varying the ratio between these rigidities and those between
the other cylinders of the chain, the boundary conditions are
modified.
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When w−1 = 0 and ϕ−1 = 0, Eqs. (16) and (17) become

mẅ0 = −ξ s ′
(w0 + Rcϕ0) + ξ s[−w0 + w1 + Rc(ϕ0 + ϕ1)],

(18)

I ϕ̈0 = −ξ s ′
Rc(w0 + Rcϕ0) − (Rcθ )2

2
ξB ′

ϕ0

− ξ sRc[−w0 + w1 + Rc(ϕ0 + ϕ1)]

− (Rcθ )2

2
ξB(ϕ0 − ϕ1). (19)

Note that all the modes in the chain, i.e., both propagating and
evanescent modes, satisfy the equations of motions (3) and (4).
Then the difference between Eqs. (3) and (18) leads to

(ξ s ′ − ξ s)(−w0 − �0) − ξ s(w−1 − �−1) = 0. (20)

Likewise, the difference between Eqs. (4) and (19) leads to

− �0ξ
B ′ + �0ξ

B − �−1ξ
B = 0. (21)

Finally, these two boundary conditions can be rewritten as

(l1 − 1)(w0 + �0) + w−1 − �−1 = 0,

(l2 − 1)�0 + �−1 = 0, (22)

with l1 = ξ s′

ξ s and l2 = ξB′

ξB .
To satisfy the system (22) two evanescent waves must be

combined. The resulting mode has a displacement wn and a
rotation �n of the form

wn = wn+ + wn− = A+α+e−i2q+neiωt + A−α−e−i2q−neiωt ,

(23)

�n = �n+ + �n− = A+e−i2q+neiωt + A−e−i2q−neiωt . (24)

The expressions (23) and (24) are then substituted into the two
conditions (22), which gives the system of equations

(
(l1 − 1)(α+ + 1) + α+ei2q+ − ei2q+ (l1 − 1)(α− + 1) + α−ei2q− − ei2q−

l2 − 1 + ei2q+ l2 − 1 + ei2q−

)(
A+
A−

)
=

(
0
0

)
. (25)

Solutions exist if the determinant of the matrix on the left-hand side of Eq. (25) is equal to zero. Thus the following relation
between the frequency of the modes induced by the boundary condition, the ratios of the rigidities l1 and l2 and the wave numbers
q±, is obtained:

l1
[
(C+ − iS+) iS+C+

	2−S2+

] − 2C+ 	2

	2−S2+

l1
[
(C− − iS−) iS−C−

	2−S2−

] − 2C− 	2

	2−S2−

= l2(C+ − iS+) + 2iS+
l2(C− − iS−) + 2iS−

. (26)

When the ratios between the shear rigidities and the bending rigidities are the same, i.e., l1 = l2 = l′, the relation (26) becomes

iS+C+
	2 − S2+

+ l′(C+ − iS+) − 2C+
l′(C+ − iS+) + 2iS+

= iS−C−
	2 − S2−

+ l′(C− − iS−) − 2C−
l′(C− − iS−) + 2iS−

. (27)

Finally, for a given l′, the frequency of the possible oscillations
in the chain when a boundary condition is applied at its
beginning can be determined by substituting Eq. (8) into
Eq. (27). Since the calculation of the general expression (for all
l′) of this frequency is too cumbersome, only expressions for
particular values of l′, i.e., for particular boundary conditions,
will be given. The case of free boundary conditions (l′ = 0) is
studied in Sec. III D 1 and results by considering the link to
the infinitely rigid wall to be more and more rigid (l′ > 0) are
presented in Sec. III D 2.

C. Determination of the transversal and rotational
displacements of the localized modes

According to Eq. (9), the amplitudes of the transversal wn

and rotational �n displacements of the localized modes as
a function of the particle number n can be determined by
combining two evanescent modes

(
wn

�n

)
= A+

(
α+
1

)
e−i2q+neiωt + A−

(
α−
1

)
e−i2q−neiωt . (28)

From Eq. (25), the discrete displacements (28) can be rewritten
in the form(

wn

�n

)
= A−

[
Z

(
α+
1

)
e−i2q+nei	t +

(
α−
1

)
e−i2q−nei	t

]
,

(29)

with Z = A+
A−

= − l2−1+e2iq−
l2−1+e2iq+ . In the following, the normalized

displacements are calculated with A− = 1.
The structure of these displacements (29) as a function of

the particle number depends on the wave numbers q+ and q−
of the combined evanescent waves. The forms of these wave
numbers depend on the position and value of localized mode
frequency. They can take a form that corresponds to a simple
exponential decaying function or to a decaying function with
few oscillations. The results for different boundary conditions
are presented in the next section. The existence or nonexistence
of localization is described as a function of the parameters p

and pB and the profiles of the displacements are illustrated.
Note that the localized modes are plotted with a dotted line to
clearly show and compare the frequency value of this mode
with the frequencies of the propagating modes in the following
dispersion curves. However, it is important to keep in mind
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that the localized mode contains two components with two
different complex wave numbers.

D. Results for different boundary conditions

In this section we analyze the localization phenomena for
several different particular boundary conditions applied at
the beginning of the chain. In all the considered cases it is
convenient to present the boundary condition (27) in the form

α+
α−

= f (S+,S−), (30)

where α± are defined by Eq. (10) and f is a function dependent
on the considered boundary conditions. With the notation
introduced in Eq. (30), the ratio wn/�n, which provides
information on the relative changes in regard to the depth
n of the displacements and rotations in the localized mode,
can be written as

wn

�n

= α−
Zf (S+,S−)e−i2(q+−q−)n + 1

Ze−i2(q+−q−)n + 1
. (31)

Analytically, it is convenient to search for the frequencies that
satisfy (α+/α−)2 = f 2(S+,S−) rather than Eq. (30). So when
the solutions are found, we choose among them those that
satisfy Eq. (30) and not α+/α− = −f (S+,S−).

1. Free boundary condition

When l′ = 0 and ξ s ′ = ξB ′ = 0, the boundary of the chain is
mechanically free because there is no link between the particle
n = −1 and the particle n = 0. Equation (27) becomes

α+
α−

= S2
+

S2−
. (32)

By substituting the expression of S2
± [Eq. (8)] into Eq. (32)

squared, the solutions for the mode frequencies are 	2
L1free

=
pBp2

p(pB+1)−1 and 	2
L2free

= 1. These solutions satisfy the boundary
conditions (32) and thus provide the possible frequencies of
the localized modes if pB > 1/p.

The simple analytical expressions obtained for the prop-
agating and localized modes provide the opportunity for a
straightforward evaluation of the existence and the frequency
of the localized mode depending on the relative strength of the
shear and bending interparticle interactions. For a localized
mode to exist, the solutions 	L1free,L2free should not cross the
dispersion curves of the propagating modes of the infinite
chain 	±.

When the chain is composed of empty cylindrical shells
(p = 1), the solutions 	L1free and 	L2free are equal to 1 and
cannot provide localization because for all values of pB these
frequencies lie in a propagative band (Fig. 3). When p > 1, if
a band gap exists between the two propagating modes (pB �=
1/p), the frequency 	L1free always lies in the first band gap.
Thus the localized vibration, composed of the two evanescent
acoustic modes, exists near the mechanically free end of the
chain when p > 1 and pB > 1/p.

For the waves localized in the first band gap it is
straightforward to show that wn/�n [Eq. (31)] is always

n
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FIG. 6. (Color online) Dispersion curves and corresponding dis-
crete displacement profiles of the localized mode in the case of free
boundary conditions and for a homogenous cylinder (p = 2): (a)
1/p < pB < 1 (pB = 0.7) and (b) pB > 1 (pB = 1.7). The solid red
curves correspond to the RT mode, the dashed blue curves correspond
to the T R mode, and the dotted black lines indicate the frequency
value 	L1free .

real. For this particular boundary condition f (S+,S−) �= 1
[Eq. (32)]. Consequently, wn/�n depends on n. In the case
of the mechanically free boundary condition, in the derived
localized mode, the oscillations are in antiphase (wn/�n < 0)
independently of n and the ratio of their amplitudes |wn|/|�n|
varies with depth.

In Fig. 6 the profiles of the displacements are plotted on
the right of the considered dispersion curves for homogeneous
cylinders (p = 2) and two different values of pB . The am-
plitudes of the rotational and transversal displacements of the
localized mode are always a combination of a simple decaying
function and a decaying function with few oscillations. As
expected from a physical background, the mode is more
localized, i.e., its amplitude decays more rapidly, when its
frequency is far away from the two band edges. In Fig. 6(b),
for pB > 1, the contribution to the rotational motion of the
simple exponentially decaying function is more important
than the contribution of the decaying function with additional
oscillations.

2. Chain in contact with rigid substrate

When l′ = 1, the link between the chain and the rigid wall
is performed via the same springs as the springs between all
the other cylinders, i.e., ξ s = ξ s ′

and ξB = ξB ′
. Equation (27)

becomes

α+
α−

= 1. (33)

By substituting Eq. (8) into Eq. (33) squared, the solu-
tions for the mode frequencies are 	2

L1l′=1
= p

1+p−pBp
and

	2
L2l′=1

= 1. These solutions satisfy the boundary condi-
tions (32) and thus provide the possible frequencies of the
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FIG. 7. (Color online) Dispersion curves and corresponding dis-
crete displacement profiles of the localized mode when l′ = 1 for
(a) homogeneous cylinders (p = 2) with pB = 0.3 < 1/p and (b)
empty cylindrical shells (p = 1) with pB = 0.2 < 1/p. The solid red
curves correspond to the RT mode, the dashed blue curves correspond
to the T R mode, and the dotted black lines correspond to 	L1l′=1

.

localized modes if pB < 1/p. For frequency 	L2l′=1
= 1,

the mode is not localized for any values of p and pB

because this frequency always crosses a propagative band.

For pB < 1/p and for all p � 1, the frequency 	L1l′=1
is

located in the first band gap. Thus, for this boundary condition,
localization exists when pB < 1/p and p � 1 and when the
frequency lies in the first band gap. Figures 7(a) and 7(b)
present the dispersion curves and the corresponding profiles of
the displacements in the cases of a homogeneous cylinder (p =
2) and an empty cylindrical cylinder (p = 1), respectively.

For these particular boundary conditions f (S+,S−) = 1 and
Eq. (31) reduces to wn/�n = α−, with α− > 0. Consequently,
neither the relative phase nor the ratio of the amplitudes of
displacements and rotations depends on n. The oscillations wn

and �n are found to be in phase at all depths (wn/�n > 0).
By increasing l′, the link to the rigid wall becomes more

rigid. For intermediate values of l′ between 1 and +∞, analyt-
ical expressions of the localized mode become cumbersome
and the description of the existence of localization cannot be
reported in detail analytically. However, it is possible to study
the localization and corresponding displacements numerically.
For example, with l′ = 2, Eq. (27) becomes

α+
α−

= 1 − S2
+

1 − S2−
. (34)

By substituting Eq. (8) into Eq. (34) squared, the solutions for
the mode frequencies are found

	2
L1l′=2

=
−p(pB + 1) + p2

(
p2

B + pB + 1
) +

√
p2

[
p2

(
p2

B + pB + 1
)2 − 2p

(
p3

B + 1
) + (pB − 1)2

]
2(pBp + p − 1)

,

	2
L2l′=2

=
−p(pB + 1) + p2

(
p2

B + pB + 1
) −

√
p2

[
p2

(
p2

B + pB + 1
)2 − 2p

(
p3

B + 1
) + (pB − 1)2

]
2(pBp + p − 1)

.

These solutions satisfy the boundary conditions (32) and thus
provide the possible frequencies of the localized modes for all
values of p and pB .

The frequency 	L2l′=2
is not real and the frequency 	L1l′=2

can be found in the upper band gap when pB > 0 and for
different values of p. The description of S2

+ and S2
− in the upper

band gap [43] provides an opportunity to describe the profiles
of the displacements depending on the value of the parameters.

Three different cases are possible: either S2
+ < 0 and S2

− <

0, or S2
+ and S2

− are complex, or S2
+ > 1 and S2

− > 1. See
Ref. [43] for a description of the values of the parameters p

and pB corresponding to these three cases.
Examples of dispersion curves and corresponding profiles

of displacements are depicted in Fig. 8 for these three
cases. Figure 8(a) corresponds to the case where S2

+ < 0
and S2

− < 0. In this case, the wave numbers q+ and q−
constituting the localized mode are both in the form of Eq. (13),
which corresponds to a simple exponentially decreasing wave
function. The oscillations are in phase (wn/�n > 0 and real)
independently of n and the ratio of their amplitudes |wn|/|�n|
varies with depth.

Figure 8(b) corresponds to the case where S2
+ and S2

− are
complex. The wave numbers are both in the form of Eq. (15),
which corresponds to a decaying wave function with additional

oscillations. The values of wn/�n are complex and depend on
n, i.e., the relative phase and the ratio of the amplitudes depend
on n.

Figure 8(c) corresponds to the case where S2
+ > 1 and

S2
− > 1. The wave numbers constituting the localized mode are

both in the form of Eq. (14), which corresponds to a decaying
wave function with additional oscillations. The oscillations
are in antiphase (wn/�n < 0 and real) independently of
n and the ratio of their amplitudes |wn|/|�n| varies with
depth. When the bending rigidity increases [Fig. 8(c)], the
transversal displacement vanishes and the rotational motion is
dominant.

When l′ → +∞, Eq. (27) becomes

α+
α−

= S2
+

S2−
.

This case is identical to the one with l′ = 1, except
that the localization will start from the n = 1 particle. In
fact, by increasing l′ the link to the wall at the n = −1
particle becomes more and more rigid and finally, when
l′ → +∞, the motion of the zeroth particle is completely
blocked and the zeroth cylinder becomes part of the rigid
wall.
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FIG. 8. (Color online) Dispersion curves and discrete rotational
and transversal displacements when l′ = 2 and (a) p = 2 and pB =
0.08, (b) p = 1.2 and pB = 2, and (c) p = 2 and pB = 2.95.

IV. CONCLUSION

In this work we have demonstrated that localized modes
can be exhibited in a 2D monatomic granular crystal when
transversal and rotational motions are considered. The chain
is composed of cylinders of equal mass, which possess
one translational and one rotational degree of freedom. The
interaction between transversal and rotational waves leads
to two dispersive propagating acoustic modes, separated by
a gap of forbidden frequencies. By modifying the bending
and shear rigidities between the end of the chain and a rigid
wall, we have established the required conditions for the
existence of a localized mode in the semi-infinite chain of
cylinders. The special feature of the evaluated linear chain
of cylinders, exhibiting two degrees of freedom each, is that
the localized mode is composed of two evanescent modes.

This is an important difference from earlier studied cases
of longitudinal localized modes in linear chains of beads
and in layered structures where at each frequency only a
single evanescent mode could exist. The advantage of this
theoretical evaluation of discrete granular crystal is to obtain
simple analytical expressions for the propagating and localized
modes. Depending on the ratio between the rigidities of the
springs connecting the first cylinder in the chain to the rigid
wall and the rigidities between the other cylinders of the
chain, the frequency of the localized mode can lie either in
the forbidden band between the two propagating modes or
above the upper propagating mode. We have examined the
profiles of the rotational and transversal displacements of the
localized mode as a function of the particle number and for
different boundary conditions. Depending on the position of
the localized mode frequency with respect to the propagating
bands, these profiles and the degree of localization are various.
The results of our research, the mode localization in a chain
with cylinders of equal mass, are complementary to the recent
theoretical [28,31,32] and experimental [33] investigations of
the acoustic waves in 2D and 3D granular crystals where the
roles of the rotational degrees of freedom of the beads on the
wave propagation have been analyzed.

In the future, this investigation should be extended to two-
and three-dimensional granular crystals in terms of the wedge
and the surface waves characterizing these structures and also
to comparison of these surface waves with the prediction
of surface modes existing within the Cosserat continuum.
In the experimental investigations of these localized modes
the considered configuration would be realized using a chain
composed of magnetic cylinders. To investigate the vibrational
response of the chain, it can be excited at one of its ends by a
shaker. The attractive magnetic force between cylinders causes
in this case the prestress of the contacts between the cylinders,
initiating their shear and bending contact rigidities.
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[41] D. Jukić, H. Buljan, D.-H. Lee, J. D. Joannopoulos, and

M. Soljacic, Opt. Lett. 37, 5262 (2012).
[42] A. Suiker, A. Metrikine, and R. de Borst, Int. J. Solids Struct.

38, 1563 (2001).
[43] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.89.013201 for a detailed description of the
dispersion curves and details of some calculations.

013201-10

http://dx.doi.org/10.1103/PhysRevB.40.8577
http://dx.doi.org/10.1103/PhysRevB.40.8577
http://dx.doi.org/10.1103/PhysRevB.40.8577
http://dx.doi.org/10.1103/PhysRevB.40.8577
http://dx.doi.org/10.1103/PhysRevB.53.4549
http://dx.doi.org/10.1103/PhysRevB.53.4549
http://dx.doi.org/10.1103/PhysRevB.53.4549
http://dx.doi.org/10.1103/PhysRevB.53.4549
http://dx.doi.org/10.1103/PhysRevB.38.6066
http://dx.doi.org/10.1103/PhysRevB.38.6066
http://dx.doi.org/10.1103/PhysRevB.38.6066
http://dx.doi.org/10.1103/PhysRevB.38.6066
http://dx.doi.org/10.1103/PhysRevLett.91.076101
http://dx.doi.org/10.1103/PhysRevLett.91.076101
http://dx.doi.org/10.1103/PhysRevLett.91.076101
http://dx.doi.org/10.1103/PhysRevLett.91.076101
http://dx.doi.org/10.1119/1.19405
http://dx.doi.org/10.1119/1.19405
http://dx.doi.org/10.1119/1.19405
http://dx.doi.org/10.1119/1.19405
http://dx.doi.org/10.1121/1.1763598
http://dx.doi.org/10.1121/1.1763598
http://dx.doi.org/10.1121/1.1763598
http://dx.doi.org/10.1121/1.1763598
http://dx.doi.org/10.1063/1.2034082
http://dx.doi.org/10.1063/1.2034082
http://dx.doi.org/10.1063/1.2034082
http://dx.doi.org/10.1063/1.2034082
http://dx.doi.org/10.1121/1.2779130
http://dx.doi.org/10.1121/1.2779130
http://dx.doi.org/10.1121/1.2779130
http://dx.doi.org/10.1121/1.2779130
http://dx.doi.org/10.1103/PhysRevE.82.056604
http://dx.doi.org/10.1103/PhysRevE.82.056604
http://dx.doi.org/10.1103/PhysRevE.82.056604
http://dx.doi.org/10.1103/PhysRevE.82.056604
http://dx.doi.org/10.1103/PhysRevLett.104.244302
http://dx.doi.org/10.1103/PhysRevLett.104.244302
http://dx.doi.org/10.1103/PhysRevLett.104.244302
http://dx.doi.org/10.1103/PhysRevLett.104.244302
http://dx.doi.org/10.1103/PhysRevE.82.061303
http://dx.doi.org/10.1103/PhysRevE.82.061303
http://dx.doi.org/10.1103/PhysRevE.82.061303
http://dx.doi.org/10.1103/PhysRevE.82.061303
http://dx.doi.org/10.1103/PhysRevE.82.031305
http://dx.doi.org/10.1103/PhysRevE.82.031305
http://dx.doi.org/10.1103/PhysRevE.82.031305
http://dx.doi.org/10.1103/PhysRevE.82.031305
http://dx.doi.org/10.1088/1367-2630/13/7/073042
http://dx.doi.org/10.1088/1367-2630/13/7/073042
http://dx.doi.org/10.1088/1367-2630/13/7/073042
http://dx.doi.org/10.1088/1367-2630/13/7/073042
http://dx.doi.org/10.1103/PhysRevB.86.134307
http://dx.doi.org/10.1103/PhysRevB.86.134307
http://dx.doi.org/10.1103/PhysRevB.86.134307
http://dx.doi.org/10.1103/PhysRevB.86.134307
http://dx.doi.org/10.1103/PhysRevLett.107.225502
http://dx.doi.org/10.1103/PhysRevLett.107.225502
http://dx.doi.org/10.1103/PhysRevLett.107.225502
http://dx.doi.org/10.1103/PhysRevLett.107.225502
http://dx.doi.org/10.1134/S1063771006020114
http://dx.doi.org/10.1134/S1063771006020114
http://dx.doi.org/10.1134/S1063771006020114
http://dx.doi.org/10.1134/S1063771006020114
http://dx.doi.org/10.1103/PhysRevB.77.235125
http://dx.doi.org/10.1103/PhysRevB.77.235125
http://dx.doi.org/10.1103/PhysRevB.77.235125
http://dx.doi.org/10.1103/PhysRevB.77.235125
http://dx.doi.org/10.1088/0953-8984/22/22/225502
http://dx.doi.org/10.1088/0953-8984/22/22/225502
http://dx.doi.org/10.1088/0953-8984/22/22/225502
http://dx.doi.org/10.1088/0953-8984/22/22/225502
http://dx.doi.org/10.1088/0953-8984/24/49/492203
http://dx.doi.org/10.1088/0953-8984/24/49/492203
http://dx.doi.org/10.1088/0953-8984/24/49/492203
http://dx.doi.org/10.1088/0953-8984/24/49/492203
http://dx.doi.org/10.1016/j.optcom.2013.02.055
http://dx.doi.org/10.1016/j.optcom.2013.02.055
http://dx.doi.org/10.1016/j.optcom.2013.02.055
http://dx.doi.org/10.1016/j.optcom.2013.02.055
http://dx.doi.org/10.1364/OL.37.005262
http://dx.doi.org/10.1364/OL.37.005262
http://dx.doi.org/10.1364/OL.37.005262
http://dx.doi.org/10.1364/OL.37.005262
http://dx.doi.org/10.1016/S0020-7683(00)00104-9
http://dx.doi.org/10.1016/S0020-7683(00)00104-9
http://dx.doi.org/10.1016/S0020-7683(00)00104-9
http://dx.doi.org/10.1016/S0020-7683(00)00104-9
http://link.aps.org/supplemental/10.1103/PhysRevE.89.013201



