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First principles nonequilibrium plasma mixing

C. Ticknor,1 S. D. Herring,1 F. Lambert,2 L. A. Collins,1 and J. D. Kress1

1Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2CEA, DAM, DIF, F-91297 Arpajon, France

(Received 30 July 2013; published 27 January 2014)

We have performed nonequilibrium classical and quantum-mechanical molecular dynamics simulations that
follow the interpenetration of deuterium-tritium (DT) and carbon (C) components through an interface initially
in hydrostatic and thermal equilibrium. We concentrate on the warm, dense matter regime with initial densities
of 2.5–5.5 g/cm3 and temperatures from 10 to 100 eV. The classical treatment employs a Yukawa pair-potential
with the parameters adjusted to the plasma conditions, and the quantum treatment rests on an orbital-free density
functional theory at the Thomas-Fermi-Dirac level. For times greater than about a picosecond, the component
concentrations evolve in accordance with Fick’s law for a classically diffusing fluid with the motion, though,
described by the mutual diffusion coefficient of the mixed system rather than the self-diffusion of the individual
components. For shorter times, microscopic processes control the clearly non-Fickian dynamics and require a
detailed representation of the electron probability density in space and time.

DOI: 10.1103/PhysRevE.89.013108 PACS number(s): 52.27.Gr, 52.65.Yy

I. INTRODUCTION

Interfaces between interpenetrating fluids represent a com-
mon physical environment encountered in a diverse set of
circumstances, including zone boundaries in gas and ice giant
planets [1], the ablator-fuel divide in inertial confinement
fusion (ICF) capsules [2–6], the creation of complex chemical
mixtures [7–9], and the initiation region for self-assembly
of nanostructures [10,11]. While some of these examples
must function at a microscopic level, such as in the case of
self-assembly or chemical mixtures, others would appear to
operate on a macroscopic scale of general hydrodynamics,
such as planetary layers and ICF capsule implosions. Yet, at a
fundamental level, all interface dynamics involve microscopic
processes. Therefore, for large-scale systems, a crucial ques-
tion becomes on what spatial and temporal timescales does the
transition from a microscopic to macroscopic representation
occur? This question has ramifications in the realm of materials
at extreme conditions. To investigate the interface dynamics in
this regime, we concentrate on a representative problem given
by the initial interfacial mixing at the ablator-fuel boundary of
an imploding ICF capsule.

A particularly crucial stage occurs at the peak velocity of
the ablator impact on the fuel in which small imperfections
at the interface can grow into hydrodynamical instabilities,
such as Rayleigh-Taylor [6], that have deleterious effects
on the implosion process. This situation occurs for com-
pressed materials (∼5–20 g/cm3) at intermediate temperatures
(10–50 eV), the traditional warm, dense matter regime (WDM)
consisting of a soup of atoms, ions, and electrons that usually
requires a quantal treatment. Such microscopic properties as
electron thermal conductivities, viscosity, and diffusion play
significant roles in controlling the magnitude of the instabilities
and mixing [12]. The diffusion also determines the distance
over which contaminants such as the ablator material can pene-
trate and degrade the fuel [4,5]. These properties, however, are
generally determined from equilibrium simulations although
the interface exists in a decidedly nonequilibrium state. Our
investigation focuses on the diffusion process through the
first large-scale molecular dynamics (MD) simulations of

a plastic-fuel (C-DT) interface using an orbital-free finite-
temperature density functional theory (OF-DFT) approach that
treats the electrons quantum mechanically through a Thomas-
Fermi-Dirac approximation. In addition, we also employed a
classical MD method with a screened pair potential to gauge
quantum-mechanical and sample-size effects. We examine the
interface evolution in general and specifically the approach to
a classical hydrodynamical (Fickian) behavior and the micro-
scopic processes governing the diffusive interpenetration.

II. FORMULATION

To address this complex, nonequilibrium system, we
perform both classical and quantum molecular dynamics
numerical simulations of an ideal C/DT interface and directly
observe the atomistic mixing. For the quantal case, we
invoke the Born-Oppenheimer approximation and separate the
electronic and nuclear motions. The Ni nuclei move according
to classical equations of motion (EOM) in response to a
force on the ion from the interactions with other ions and
a quantal contribution from the Ne electrons at a fixed
ion configuration within an isokinetic ensemble [13]. The
force due to the electrons derives from a finite-temperature
orbital-free density functional theory [14] treatment in a
Thomas-Fermi-Dirac mode with the kinetic-entropic form of
Perrot [15], the electron-ion interaction from a regularization
prescription, and the exchange-correlation from a local density
Perdew-Zunger form [16]. The technique has proven highly
effective in spanning the WDM regime, producing equilibrium
mass transport quantities and equations-of-state for both single
and multicomponent dense plasmas [17–21] that agree well
with the computationally more intense Kohn-Sham DFT at
low temperatures and with simpler models such as the one-
component plasma at high temperatures [14].

We also performed classical molecular dynamics sim-
ulations using the scalable parallel short-range molecular
dynamics (SPaSM) code [22] for a Yukawa pair-potential,

Vij (Rij ) = ZiZj e
2

Rij
e−Rij /λ, where Zie is the effective charge

of atom i, λ is the screening length, and Rij is the distance
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FIG. 1. (Color online) A schematic diagram of the initial condi-
tion: DT (small black dots) and C (large red circles) start on either
side of z = 0 at t = 0 in hydrostatic and thermal equilibrium.

between atoms i and j . The regularization prescription from
the OF-DFT also determines the effective charge Zie for
each species, and a linearized Thomas-Fermi theory [23]
prescription sets the screening length λ. This choice of
effective charge and screening length assumes a uniform
plasma for a given species, either DT or C. The ions evolve
temporally according to the classical EOM with a force
determined from the spatial derivative of the potential Vij for
a microcanonical ensemble, which maintained within about a
percent of the initial temperature.

For both the classical and quantum MD simulations, we
consider a long box of length Lz and cross section Lx by
Ly divided at z = 0 with NDT hydrogenic atoms in the
left-hand compartment and NC carbon atoms in the right,
shown schematically in Fig. 1. We impose periodic boundary
conditions in all three directions, which in turn gives rise to
two interfaces at z = 0 and z = ±Lz/2. A single surrogate
particle of atomic weight 2.5 g/mol serves for DT. Holding the
temperature fixed at T , each side is independently equilibrated
by varying the number of particles until the total pressures
become equal [P DT = P C]. This prescription establishes
an initial condition of hydrostatic equilibrium at the same
temperature. We then allow the two components to mix.

For the orbital-free molecular dynamics (OFMD) case, we
find that the requisite C density needed to enforce hydrostatic
equilibrium with a DT sample at 2.5 g/cm3 remains at about
5.4 g/cm3 over the temperature range of 10 to 100 eV. We
use a volume of approximately 0.6 × 0.6 × 10 nm3 having
1200 DT and 556 C atoms. The long dimension sets a limit on
the maximum duration with the simulations terminating once
particles from either interface meet in the middle. We also ran
simulations for a volume of 1.4 × 1.4 × 16 nm3 with over 104

particles, which yielded results agreeing within a few percent
with those of the standard volume. Typical time steps ranged
between 0.025 and 0.008 fs for temperatures between 10 and
100 eV, respectively.

Despite the difference in the treatment of the particle
interactions, the Yukawa required about the same initial C
density to obtain hydrostatic equilibrium, 5.5 g/cm3. Between
10 and 100 eV, the effective charge for hydrogen ZH changes
from 0.72 to 0.93 while that for carbon, ZC ranges from 2.6
to 4.1. For a given temperature and density, the screening
parameters λ for DT and C are about the same and vary from
0.9 to 1.9aB over the temperature range. Neither parameter
changes during a given simulation.

Additionally, we employed the Yukawa simulations to test
convergence in volume and particle number. Since properties
of the interpenetrating species come from cross-sectional

averages, we first examined the sensitivity for a cell length,
fixed at the OFMD case (Lz = 16 nm), to an area varied
between 1 × 1 and 18 × 18 nm2 and total particle numbers
from about 104 to 3 × 106 ions. A number of ions of around
104 proved sufficient to reach convergence in the properties
and physical structure of the evolving sample. With a set
cross-sectional area, we varied the length of the cell to support
simulations of up to 3 ps duration. The area, particle number,
and cell length studies with Yukawa potentials served to
validate the basic OFMD findings, which were more restricted
in sample size and temporal range.

We performed equilibrium calculations in order to deter-
mine basic static and transport properties for comparison with
the nonequilibrium interface simulations. We consider a fixed
number of atoms N = NDT + NC and volume that yielded the
average of the densities of the initial two sides. At a given
temperature, equilibrium MD simulations with both OFMD
and Yukawa produced trajectories of positions and velocities of
the ions from which self (De

DT,De
C) and mutual (De

12) diffusion
coefficients were extracted [20]. We designate the equilibrium
results by a superscript e. Typically, samples of 500 atoms
and trajectories of at least 104 time steps proved sufficient
to calculate converged equilibrium properties to within a few
percent. For the mutual diffusion coefficient, we employ a
value of unity for the thermodynamic factor Q, consistent with
calculations based on an analysis [24] of the pair-correlation
functions from the equilibrium simulations.

III. RESULTS AND DISCUSSION

The conditions described by Fig. 1 as delineated in the
discussion above indicate a system initially in hydrostatic and
thermal equilibrium with a density difference of only a factor
of two and would seem to presage a rather prosaic interpen-
etration. Such a view though would prove erroneous as an
examination of the plasma coupling coefficient � [25] would
indicate. This parameter gives a qualitative measure of the
state of a partially ionized medium, ranging from domination
by interactions (strongly coupled: � � 1) to domination by
kinetics (weakly coupled: � � 1). For our initial conditions
at 10 eV, �C ≈ 10 and �DT ≈ 1. The temperature mainly
controls these values with the valence shells of both C and
hydrogen nearly completely ionized. For the fully mixed result,
�mix ≈ 3. On the other hand, at 100 eV, �C ≈ 2.1, �DT ≈ 0.2,
and �mix ≈ 0.6. Thus, the components cover a broad range
of plasma conditions from fully segregated to fully mixed
and dramatically change both temporally and spatially as the
system evolves.

In Fig. 2, we present a representative case of the nonequilib-
rium OFMD simulations for a temperature of 40 eV, showing
the cross-sectionally-averaged number densities ni(z,t) of
the DT (circles) and C (squares) ions at various times. The
two components display comparable interpenetration. Many
macroscopic prescriptions exist for characterizing the width
of the interface [8,9]; the simplest arises from the application
of Fick’s diffusion law, [dni/dt = D

f

i ∇2ni], starting from
ni(z,0) a step function. An analytical solution of the form

ni(z,t) = Ai

2
erfc

(
z − zi

0

2wi(t)

)
, (1)
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FIG. 2. (Color online) The OFMD simulated line density and fits
are shown for the DT-C interface for 40 eV at times 7.7 (black), 17.4
(blue, gray), and 27.6 (green, light gray) fs. Both the line densities of
DT (circles) and C (squares) are shown. The error function fits are
shown as solid lines. The time of each curve is also labeled with an
arrow.

yields the temporal evolution, where Ai is the amplitude,
zi

0 is the location of the interface, and wi is the width of

the interface such that wi(t) =
√

D
f

i t , with D
f

i a diffusion
coefficient. The degree to which the simulations of the number
density as a function of z and time for the individual species
follows this form gives a measure of the departure of the
microscopic evolution from a purely macroscopic diffusion
picture. To this end, we performed a nonlinear least-squares
fit of the cross-sectionally integrated number density ni(z,t) to
the error-function expression in Eq. (1) and designate with a
superscript f the resulting diffusion coefficient. The results
roughly follow the simple fits; however, some deviations
manifest themselves in the leading edges and in density
depletions near the interface as seen at later times. An
important test of the pressure matching procedure is to track
zi

0, the position of the interface. The fitted values of zi
0 start at

zero and move only a small amount over the duration of any
simulation, typically less than 1% of Lz.

Figure 3 displays the Yukawa (a) and OFMD (b) widths,
extracted from the error function fits as a function of time
for temperatures of 10 and 60 eV for DT (symbols). We
focus first on the behavior of the Yukawa widths in Fig. 3(a).
The greater range of the Yukawa simulations in sample
size and trajectory length permit more accurate quantitative
analysis, which in turn can help illuminate the OFMD results.
At late times (t > 100 fs), the widths approach a purely
diffusive behavior, achieving the characteristic t

1
2 form. From

this asymptotic behavior, we can therefore directly extract
a diffusion coefficient D

f

i and plot the resulting expression

wi(t) =
√

D
f

i t as solid lines in Fig. 3. On the other hand,
the departure from the pure Fickian behavior at early times
emphasizes the importance of microscopic processes. To
account more realistically for the overall time behavior, we
employ an alternative fit for the width:

wi(t) =
√

D
f

i t(1 − e−√
t/τ ). (2)

FIG. 3. (Color online) Comparison of extracted widths as a func-
tion of time for (a) Yukawa and (b) OFMD simulations. Widths from

the asymptotic fit
√

D
f

DTt (solid lines); the function from Eq. (2) is
shown as dashed line for 60 eV; and widths from error-function fits
(symbols). The temperatures are 10 eV for lower black curves and
60 eV for upper red curves.

At early times, the width is a linear function of time, which
corresponds to ballistic behavior with the two components
experiencing only small numbers of collisions and moving
almost as if free particles. As time passes, the particles
experience more interactions, and the conditions around the
interface become more complicated. The parameter τ provides
an approximate measure for the transition from the ballistic to
the intermediate state. Eventually, at long times, the mixing
becomes substantial and Fickian behavior ensues with the
transition coming at approximately 20τ . For the Yukawa
simulations, we find that the two-parameter fit of Eq. (2) works
well over the entire range as indicted by the example at 60 eV
(dashed line) and that τ remains roughly constant over the
temperature range (τ ≈ 17 fs). The diffusion coefficients agree
to within a fraction of a percent with those derived from a fit
to the purely asymptotic form (solid line).

We next examine the temporal evolution of the OFMD
widths in Fig. 3(b). Due to the shorter trajectories necessitated
by the large computer resources required, only the 10-eV
simulation reached purely Fickian asymptotic behavior. By
performing the Yukawa fits over the same limited trajectory
range as the OFMD, we find that a fit to only the asymptotic
form (t

1
2 ) generally underestimates the diffusion coefficient.

To determine an upper bound, we fit the OFMD width at
10 eV to Eq. (2) and extract τ ≈ 9 fs. Assuming the same
temperature independence of τ as discovered in the Yukawa
case and fitting the restricted OFMD trajectories to Eq. (2)
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FIG. 4. (Color online) Diffusion coefficients (a) Yukawa and
(b) OFMD simulations: the fitted widths from the nonequilibrium
simulations for DT are shown as black symbols and C as green (light
gray) symbols. Also shown are the equilibrium diffusion coefficients.
The self-diffusion for DT are open black squares with dashed lines
and for C are open blue squares with a solid line. The mutual diffusion
is shown as solid line with red squares (middle curve).

with τ fixed determines another value for diffusion coefficient.
The two values then give a lower and upper bound to the
OFMD diffusion coefficients at the higher temperatures. This
analysis indicates that the OFMD, compared to the Yukawa,
reaches Fickian behavior at a considerably shorter time and
has a smaller effective diffusion coefficient by almost a factor
of two. This latter observation we now explore in more detail.

We first concentrate on the effective diffusion coefficients
from the Yukawa simulations in Fig. 4(a). As indicated above,
reasonable values of the Fickian diffusion coefficients can be
determined from the asymptotic temporal trends. We plot
the diffusion coefficients extracted at late times from the
error-function fits for DT (black dots) and C (green circles)
for Yukawa interface simulations and compare to equilibrium
calculations of self and mutual diffusion coefficients. Interest-
ingly, the DT and C diffuse at about equal rates across the
interface, which at first seems counterintuitive, given that at
a specific temperature, the more massive component should
trail its lighter counterpart. The behavior of the equilibrium

self-diffusion coefficients De
α seems to confirm this contention.

However, the interface poses a more complex situation in
that the particle densities differ by a factor of two and
that the dynamics occur within a highly nonequilibrium
state. Despite these complications, both DT and C appear
to diffuse (intermix) according to the equilibrium mutual
diffusion coefficient (De

12) with a possible small departure
at the higher temperatures. We emphasize that this finding
emerges exclusively from the full microscopic simulations of
the interface.

We now turn to the OFMD simulations in Fig. 4(b) in
which we present the fitted diffusion coefficients for DT (black
symbols) and C (green symbols), as well as the self and
mutual diffusion coefficients for the DT and C mixture from
equilibrium calculations. The OFMD results mirror those for
the Yukawa with the DT and C diffusing across the interface
at about the same rate as given roughly by the equilibrium
mutual diffusion coefficient. As observed from the analysis of
the widths, the associated diffusion rates for the OFMD remain
about half those for the Yukawa. This difference may arise
from many factors, but certainly the explicit representation
of the electrons in the OFMD must play a role. As opposed
to the Yukawa parameters for each species that are fixed
to the initial conditions, the quantum mechanics (electron
density) physically adjusts the “effective charges and screening
lengths” locally (at the ion scale) and temporally in response
to the large gradients in the Coulomb fields (ion densities
of DT and C) as the interpenetration evolves away from the
interface.

Finally, in many applications, the distance di(t) to which
a specific component penetrates into another within a given
time can provide important information on its ability to affect
other processes with the mixed system. A simple estimate of
the diffusion distance is 2

√
Dt with the appropriate diffusion

coefficient D, in this case D12. For example, at 10 eV, the DT
would travel about 30 Å into the carbon in about 1 ps. We
emphasize though that this rule only applies once the system
has reach the hydrodynamical (Fickian) limit.

IV. CONCLUSION

Within the warm, dense matter regime, we have performed
nonequilibrium classical and quantum mechanical molecular
dynamics simulations in order to follow the interpenetration
of deuterium-tritium and carbon components through an
interface. For times greater than about a picosecond, the two
concentrations evolve in accordance with Fick’s law for a
classically diffusing fluid though with the motion best de-
scribed by the mutual diffusion coefficient of the mixed system
rather than the self-diffusion of the individual components.
For shorter times, microscopic processes control the clearly
non-Fickian dynamics at the interface. We have demonstrated
that even this seemingly simple case of an interface at
hydrostatic [P DT = P C] and thermal [T DT = T C] equilibrium
with only a concentration gradient exhibits complex behavior
that evolves through several stages with time. The MD
methods have considerable versatility and can handle more
complicated conditions such as pressure gradients and external
fields.
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